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Abstract

Revenue management practices often include overbooking capacity to account for customers
who make reservations but do not show up. In this paper, we consider the network revenue
management problem with no-shows and overbooking, where the show-up probabilities are specific
to each product. No-show rates differ significantly by product (for instance, each itinerary and
fare combination for an airline) as sale restrictions and the demand characteristics vary by
product. However, models that consider no-show rates by each individual product are difficult
to handle as the state-space in dynamic programming formulations (or the variable space in
approximations) increases significantly. In this paper, we propose a randomized linear program to
jointly make the capacity control and overbooking decisions with product-specific no-shows. We
establish that our formulation gives an upper bound on the optimal expected total profit and
our upper bound is tighter than a deterministic linear programming upper bound that appears
in the existing literature. Furthermore, we show that our upper bound is asymptotically tight
in a regime where the leg capacities and the expected demand is scaled linearly with the same
rate. We also describe how the randomized linear program can be used to obtain a bid price control
policy. Computational experiments indicate that our approach is quite fast, able to scale to industrial
problems and can provide significant improvements over standard benchmarks.

Keywords: Network revenue management, linear programming, simulation, overbooking, no-shows.



Introduction

Revenue management controls the sale of a perishable product to a heterogeneous population of

customers with different valuations for the same product. The physical product could be hotel rooms,

airline seats or media advertising slots sold at a specific price with sale restrictions. Typically, the

products are defined over a network and firms have to control the sale of multiple products that consume

different bundles of resources. For example, airlines products are itineraries that span different flight

legs, while hotel customers stay for multiple nights using the inventory over different days.

Revenue management practices often include overbooking capacity to account for customers who

make reservations but do not show up. No-show rates differ significantly by product as sale restrictions,

time-of-purchase and demand characteristics vary by product. However, models that consider no-show

rates by each individual product are difficult to handle as the state-space in dynamic programming

formulations or the variable space in approximations increases significantly. In this paper, we develop

tractable models for jointly making the capacity control and overbooking decisions in network revenue

management problems with product-specific no-shows.

While the problem setting is applicable to a wide range of industries, we use airline terminology

throughout the paper for concreteness. Thus, products are itinerary and fare-class combinations, where

a fare-class represents a revenue management fare-product corresponding to a fare combined with some

restrictions. The resources are the seats on the flight legs. The airline gets requests for the products

for a future date and it has to decide in real time which of these product requests to accept and which

to reject. In making this decision, the airline not only has to consider the uncertainty in the customer

arrivals but also the fact that not all customers who make purchases show up at the time of departure

of the flight. Because of these no-shows, the airline may choose to overbook and accept more itinerary

requests than the capacity of the flight leg. However, by overbooking it also runs the risk of denying

seats to customers with reservations, if the number that show up at the time of flight departure exceeds

the seating capacity of the flight leg. Since the number of dimensions of the state variable quickly gets

large in the dynamic programming formulations of practical problem instances, computing the optimal

capacity control policy is generally intractable and one has to resort to heuristics that approximate the

solution to the dynamic problem.

In this paper, we propose a randomized linear programming method for jointly making the capacity

control and overbooking decisions in network revenue management problems with product-specific

no-shows. In our approach, we generate samples of the demands for the products and the show-ups, and

solve a two-stage linear stochastic program, where the first stage decisions are the number of reservation

requests to accept and the second stage decisions are the number of denied boardings. It thus extends

the randomized linear programming method of Talluri and van Ryzin (1999) to overbooking decisions

with product-specific no-shows.

The approach that we propose has a number of appealing features. To begin with, it yields an

upper bound on the optimal expected total profit and we show that this upper bound is tighter than the
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one obtained by the deterministic linear program of Bertsimas and Popescu (2003). Having a tight upper

bound on the optimal expected total profit becomes valuable when trying to assess the performance of

approximate control policies. Moreover, there is evidence that methods obtaining tight upper bounds

also tend to yield policies with good profit performance; see for example Topaloglu (2009b) and Talluri

(2009). Also, by using samples of the random variables rather than their expected values, we are able

to better capture the stochastic nature of the network revenue management problem; for instance, our

model can accommodate arbitrary probability distributions for the demand random variables. As a

result, we expect the randomized linear program to yield good control policies.

Another appealing feature of our approach is that the deterministic linear program proposed

by Bertsimas and Popescu (2003) is, to our knowledge, the only tractable method to obtain upper

bounds on the expected total profit. However, this approach assumes that all random variables

take on their expected values and it does not consider the random nature of the demand and

show-ups. Our randomized linear program closes this gap by providing a tractable method to obtain

upper bounds on the optimal expected total profit, while considering the random nature of the demand

and show-ups. Finally, the method that we propose requires solving only linear programs, leveraging

the speed, robustness and parallelization of modern solvers. Therefore, our approach can be easily

implemented using commercially available solvers and modeling languages with minimal customized

coding, an attractive proposition for practicing revenue managers.

A control policy that is widely used in practice is a bid price control. In bid price control, we have

a bid price for each flight leg, which is essentially a proxy for the expected marginal value of capacity

for that flight leg. In this case, a bid price policy accepts a product request only if its fare exceeds

the sum of the bid prices of the flight legs used by it. Traditionally, bid prices are computed by using

the optimal values of the dual variables of the seat availability constraints in the deterministic linear

programming formulation. By using samples of the random variables, our randomized linear program is

able to obtain better estimates of the expected marginal value of capacity than the deterministic linear

program. Consequently, we expect better profit performance from our randomized linear program. This

is indeed the case in our computational experiments.

To summarize, we make the following research contributions in this paper. 1) We propose a new

method to jointly make the capacity control and overbooking decisions in network revenue management

problems with no-shows. Our method is sampling-based and thus flexible enough to model a wide

variety of probability distributions for the random demand arrival processes. 2) We show that our

method yields an upper bound on the optimal expected total profit and this upper bound is tighter

than that obtained by the deterministic linear program. 3) We show that the upper bound on the

expected total profit provided by our approach is asymptotically tight as we scale the capacities on the

flight legs and the expected amount of demand linearly with the same rate. Furthermore, our proof also

implies that the upper bound provided by the standard deterministic linear program is tight in the same

asymptotic regime, which is a result that has not been established within the overbooking context. 4)

Our computational experiments compare our randomized linear programming method with existing

methods for a range of demand scenarios to test the upper bounds and revenue performance. Overall,

3



our approach is fast, easy to implement, numerically robust and scalable even for industrial problems

and computational experiments indicate that the bid price policy obtained by our method can generate

significantly higher profits than standard benchmarks.

1 Related work

A commonly used method to make the capacity control decisions over an airline network

is the deterministic linear program; see Simpson (1989) and Williamson (1992) for a model

without overbooking and Bertsimas and Popescu (2003) for an extension to handle no-shows and

cancellations. The underlying assumptions of the deterministic linear program are that all random

quantities take on their expected values and the number of reservation requests accepted and the

number of denied boardings can be fractional. In this linear program, there is one constraint for each

flight leg, which ensures that the total number of passengers that are eventually boarded does not exceed

the capacity of the flight. The optimal values of the dual variables associated with the flight leg capacity

constraints are usually used as proxies for the expected marginal values of each unit of capacity. These

dual variables are used to control sales through a bid price policy. Erdelyi and Topaloglu (2009) show

that the optimal objective value of the deterministic linear program is an upper bound on the optimal

expected total profit.

Kleywegt (2001) develops a joint pricing and overbooking model over an airline network assuming

that the reservation requests are deterministic. He solves the model by using duality and decomposition

ideas. Karaesmen and van Ryzin (2004b) describe a capacity allocation and overbooking model that

is useful when dealing with multiple flight legs that can serve as substitutes of each other. Similar to

ours, their approach has a two stage stochastic programming flavor, but it is not clear how to extend

their approach to general airline networks. Karaesmen and van Ryzin (2004a) develop a joint capacity

allocation and overbooking model by using the deterministic linear program to estimate the revenue

from the accepted reservations. Their approach uses a sequence of approximating assumptions, where

the authors assume that the overbooking cost of a passenger can be prorated over the different flight

legs and a reservation for an itinerary shows up for each flight in the itinerary independently.

Kunnumkal and Topaloglu (2008) and Erdelyi and Topaloglu (2009) formulate the overbooking

problem over a network as a dynamic program with a high dimensional state vector. They approximate

the value functions by separable functions and use the separable approximations to obtain control

policies. Erdelyi and Topaloglu (2010) work with the same dynamic programming formulation and

propose a dynamic programming decomposition approach to decompose the network problem into a

number of single flight leg problems. However, since the single flight leg problem is intractable when

there are product-specific no-shows, they have to resort to heuristics to approximately solve the single

flight leg problems. Kunnumkal and Topaloglu (2011) propose a stochastic approximation algorithm to

obtain bid prices. Their approach visualizes the expected total profit as a function of the bid prices

and uses sample path-based gradients of the expected total profit function to search for a good set of

bid prices in a stochastic approximation algorithm. This stochastic approximation algorithm eventually
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computes high quality bid prices, but its run times can be long, it involves tuneable parameters that

need to be adjusted with trial and error and it does not have a well-defined stopping condition. We use

the approaches proposed by Karaesmen and van Ryzin (2004a) and Kunnumkal and Topaloglu (2011)

as benchmarks in our computational experiments. Finally, the book by Talluri and van Ryzin (2004)

contains background and details on revenue management, specifically the chapters on overbooking and

network revenue management.

The rest of the paper is organized as follows. Section 2 formulates the network revenue management

problem with no-shows as a dynamic program. Section 3 describes the deterministic linear program

proposed by Bertsimas and Popescu (2003). Section 4 builds on this linear program to develop our

randomized linear program. Section 5 establishes the asymptotic tightness of the upper bounds provided

by our randomized linear program. Section 6 presents our computational experiments.

2 Problem Formulation

An airline network consists of a set of m flights and n products (itinerary-fare class combinations). The

physically available capacity on flight i is ci. The booking horizon consists of time periods 1, 2, . . . , τ

and all flights depart at time period τ + 1. We make the standard assumption that the time periods

are fine enough so that there is at most one product request in each time period. The probability that

there is a request for product j in time period t is pjt. Product j has a revenue fj associated with it

and we denote the flights in the product by i ∈ j. Throughout, we index flights by i, products by j and

time by t. We have to decide, in an on-line fashion, whether to accept a request for product j to obtain

revenue fj or reject the request in anticipation of future higher revenue requests.

When we decide to accept a request, it becomes a reservation. Not all reservations show up at the

time of departure of the flight legs and we let qjt be the probability that a reservation for product j made

at time period t shows up at the time of departure. Knowing that only a portion of the reservations show

up at the departure time of the flight legs, the airline overbooks. That is, it accepts more reservations

than the capacity of the flight. If more reservations show up than the capacity of the flight, then the

airline has to decide which of these reservations to deny boarding.

Product j can potentially consume (if a reservation for it is allowed boarding) one unit of capacity

on all flights i ∈ j, and we let aij = 1 if i ∈ j and aij = 0 otherwise. On the other hand, if we deny

boarding to a reservation for product j, then we incur a denied-service penalty cost of θj . We have to

decide which of the product requests to accept during the booking period and which of the accepted

reservations to deny boarding at the time of departure of the flight legs, the goal being to maximize

expected total profits. The expected total profit is given by the difference between the expected revenue

obtained by accepting the product requests and the expected penalty cost of denied service.

We make the following assumptions in our model. We assume that the demands for the different

products and the show-up decisions of the different reservations are independent of each other and across

time periods. We assume that there are no cancellations (reservations that cancel prior to τ) and we

5



do not give refunds to the reservations that do not show up at the departure time. This is for ease of

notation and all the development in the paper goes through with minor modifications in the presence of

cancellations and refunds, provided that the cancellation decisions are independent across reservations

and time periods. Finally, we assume that fj ≤ θjqjt for each product j. This is again without loss of

generality since if we have fj > θjqjt, then we can always make a profit in expectation by accepting a

request for product j at time period t and denying it boarding at the time of departure.

The decision problem is to determine (online, without knowing future demands) the product

requests to accept, and at departure time, to determine which of the confirmed reservations to deny

boarding. We let xjt be a binary variable equal to 1 if we accept a request for product j at time

period t and 0 otherwise. Since a reservation for product j at time period t shows up with probability

qjt, the show-up decision for a product j request at time period t can be written as Sjtxjt, where Sjt

is a Bernoulli random variable with success probability qjt. Letting sjt be a realization of Sjt and

s = {sjt : ∀j, t} and x = {xjt : ∀j, t}, we represent the total denied-service cost as the solution to

Π(s, x) = min

n∑
j=1

τ∑
t=1

θjwjt (1)

subject to

n∑
j=1

τ∑
t=1

aij [sjtxjt − wjt] ≤ ci ∀i (2)

wjt ≤ sjtxjt ∀j, t (3)

wjt ∈ {0, 1} ∀j, t. (4)

In the above linear integer program, the decision variable wjt indicates whether or not we deny boarding

to the confirmed reservation for product j purchased at time period t. The first set of constraints

ensures that the total number of reservations that are eventually allowed to board does not exceed the

capacity of the flight. The second set of constraints ensures that we can deny boarding only if the

corresponding reservation shows up at the time of departure. Notice that we assume the airline has the

ability to first observe the show-up demand for all the reservations and then decide which reservations

to deny boarding. This is a somewhat stylized model of the actual deny-service process, where the

airline may have to make the deny-service decisions online with partial information and many more

restrictions. Nevertheless, following Bertsimas and Popescu (2003) and Erdelyi and Topaloglu (2009),

we use problem (1)-(4) to approximately capture the overall denied-service costs.

Let xt = {xjs : ∀j, s = 1, . . . , t− 1} denote the state of reservations in the system at the beginning

of time period t = 2, . . . , τ + 1 and let xt ⊕ ej denote the state of reservations in the system at the

beginning of time period t+1 given that we had xt reservations in the system at the beginning of time

period t and we accepted a request for product j at time period t. Similarly, let xt ⊕ 0 denote the state

of reservations in the system at the beginning of time period t+ 1 given that we had xt reservations in

the system at the beginning of time period t and we did not accept a request for any product at time

period t. The value functions {Vt(·) : ∀t} are given by the optimality equation

Vt(xt) =

n∑
j=1

pjtmax
{
fj + Vt+1(xt ⊕ ej), Vt+1(xt ⊕ 0)

}
+

[
1−

n∑
j=1

pjt
]
Vt+1(xt ⊕ 0) (5)
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with the boundary condition that Vτ+1(xτ+1) = −E{Π(S, xτ+1)}. In this case, V1(0̄) denotes the optimal

expected total profit at the beginning of the booking horizon, where 0̄ is an n-dimensional vector of

zeros representing the fact that we start with 0 reservations. If the state of reservations at the beginning

of time period t is xt, then it follows from (5) that it is optimal to accept a request for product j at

time period t provided fj + Vt+1(xt ⊕ ej) ≥ Vt+1(xt ⊕ 0).

In the optimality equation (5), the dimensionality of the state space increases exponentially with the

number of products and the number of time periods. Therefore, solving this optimality equation quickly

becomes computationally intractable. In the next two sections, we describe approximate methods that

can be used to jointly make the capacity control and overbooking decisions.

3 Deterministic Linear Program

The deterministic linear program with overbooking and no-shows, proposed by Bertsimas and Popescu

(2003), is given as

zDLP = max

n∑
j=1

τ∑
t=1

[fjyjt − θjwjt] (6)

subject to

n∑
j=1

τ∑
t=1

aij [qjtyjt − wjt] ≤ ci ∀i (7)

yjt ≤ pjt ∀j, t (8)

wjt ≤ qjtyjt ∀j, t (9)

yjt, wjt ≥ 0 ∀j, t, (10)

where yjt represents the number of requests accepted for product j at time period t and wjt represents

the number of these reservations that are denied boarding. The deterministic linear program assumes

that of the yjt requests accepted, exactly qjtyjt requests show up at the time of departure. The first set of

constraints ensures that the numbers of reservations that we allow boarding do not exceed the capacities

of the flight legs. The second set of constraints ensures that the number of requests for product j that

we accept at time period t does not exceed the expected number of product requests. The third set of

constraints ensures that the numbers of reservations that we deny boarding do not exceed the expected

numbers of reservations that show up at the time of departure. Thus, problem (6)-(10) assumes that

all random quantities take on their expected values.

There are two uses of problem (6)-(10). First, Erdelyi and Topaloglu (2009) show that the optimal

objective value of problem (6)-(10) provides an upper bound on the optimal expected total profit. That

is, we have V1(0̄) ≤ zDLP . Upper bounds are useful when assessing the optimality gap of suboptimal

policies. Second, we can use the optimal values of the dual variables corresponding to the flight leg

capacity constraints as the bid prices. That is, letting µ = {µi : ∀i} be the optimal values of the dual

variables corresponding to constraints (7), we accept a request for product j at time period t if

fj ≥ qjt

m∑
i=1

aijµi. (11)
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This is the bid price policy used by Bertsimas and Popescu (2003). Noting that µi is an estimate of the

marginal value of capacity on flight leg i and qjt is the show-up probability, we can interpret the decision

rule in (11) as accepting a product request only if its revenue exceeds the total expected marginal value

of the capacities that it uses.

4 A Randomized Linear Program

The randomized linear program proposed by Talluri and van Ryzin (1999) is a tractable and attractive

approach for making the capacity control decisions in the absence of no-shows. It is only natural that

we try to extend the approach for jointly making the capacity control and overbooking decisions when

we have no-shows. We propose solving the following optimization problem to obtain an upper bound on

the optimal expected total profit. Let Djt be the random variable that denotes the number of requests

for product j at time period t. Note that we have E{Djt} = pjt. As before, let Sjt be a Bernoulli(qjt)

random variable, sjt be a realization of Sjt and S = {Sjt : ∀j, t}, s = {sjt : ∀j, t}. To compute the

denied service cost as a function of the show-ups and accepted reservations, we let

Π̃(s, y) = min
n∑

j=1

τ∑
t=1

θjwjt (12)

subject to

n∑
j=1

τ∑
t=1

aij [sjtyjt − wjt] ≤ ci ∀i (13)

wjt ≤ sjtyjt ∀j, t (14)

wjt ≥ 0 ∀j, t, (15)

in which case, we approximate the expected total profit under a realization d of demand arrivals as

zRLP (d) = max

n∑
j=1

τ∑
t=1

fjyjt − E{Π̃(S, y)} (16)

subject to 0 ≤ yjt ≤ djt ∀j, t, (17)

where d = {djt : ∀j, t} is a realization of the random variables D = {Djt : ∀j, t}. Note that Π̃(·, ·)
is the linear programming relaxation of Π(·, ·) and constraints (13)-(15) have the same interpretation

as constraints (2)-(4). Note also that the optimal objective values of problems (12)-(15) and (16)-(17)

respectively depend on the realizations of the random variables S and D. Finally, we can interpret

zRLP (d) as being the optimal profit when we make the accept or reject decisions for the product

requests after observing a realization d of the demands over the whole booking horizon.

Letting zRLP = E{zRLP (D)}, we show below that zRLP is an upper bound on the optimal expected

total profit and this upper bound is tighter than that obtained from the deterministic linear program. We

begin with the following observations.

Lemma 1 1) Π̃(s, y) is a convex function of s for a fixed y.

2) Π̃(s, y) is a convex function of y for a fixed s.

3) Π̃(s, y) ≤ Π(s, y) for all s, y.
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Proof Parts (1) and (2) follow from standard linear programming theory as we can write Π̃(s, y)

with all sjtyjt terms on the right-hand side. Part (3) follows from the fact that Π̃(·, ·) is the linear

programming relaxation of Π(·, ·).
2

The next result shows that zRLP gives an upper bound on the optimal expected total profit.

Proposition 2 We have V1(0̄) ≤ zRLP .

Proof Let π̂ be an optimal policy to decide whether to accept or reject a product request at a time

period and let xπ̂(d) = {xπ̂jt(d) ∈ {0, 1} : ∀j, t} denote the number of product requests that this optimal

policy accepts along a sample path, where the argument d emphasizes that the number of accepted

product requests depends on the sample d = {djt : ∀j, t}. We have

V1(0̄) = E
{ n∑

j=1

τ∑
t=1

fjx
π̂
jt(D)− E{Π(S, xπ̂(D)) |D}

}
≤ E

{ n∑
j=1

τ∑
t=1

fjx
π̂
jt(D)− E{Π̃(S, xπ̂(D)) |D}

}
≤ E{zRLP (D)} = zRLP ,

where the first equality follows from the optimality of the policy π̂, the first inequality uses the third

part of Lemma 1 and the last inequality holds since xπ̂(d) is feasible but not necessarily optimal to

problem (16)-(17).

2

We next show that the upper bound obtained by the randomized linear program is tighter than that

obtained by the deterministic linear program. We need the following intermediate result. Let

ζ(d, s) = max

n∑
j=1

τ∑
t=1

fjyjt − Π̃(s, y)

subject to 0 ≤ yjt ≤ djt ∀j, t,

where d = {djt : ∀j, t} and s = {sjt : ∀j, t}. Note that we have ζ(p, q) = zDLP , where p = {pjt : ∀j, t}
and q = {qjt : ∀j, t} and we use the fact that −min{x} = max{−x}.

Lemma 3 For a fixed s, ζ(d, s) is a concave function of d.

Proof Let 0 ≤ α ≤ 1, and y1 and y2 be the optimal solutions to ζ(d1, s) and ζ(d2, s), respectively.

We have that αy1 + (1 − α)y2 is feasible to ζ(αd1 + (1 − α)d2, s). Moreover, by the second part of

Lemma 1, Π̃(s, αy1 + (1− α)y2) ≤ αΠ̃(s, y1) + (1− α)Π̃(s, y2). It follows that ζ(αd1 + (1− α)d2, s) ≥∑n
j=1

∑τ
t=1 fj [αy

1
jt + (1− α)y2jt]− Π̃(s, αy1 + (1− α)y2) ≥ αζ(d1, s) + (1− α)ζ(d2, s).

2

The following proposition shows that the randomized linear program obtains a tighter upper bound

than the deterministic linear program.

Proposition 4 We have zRLP ≤ zDLP .
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Proof The first part of Lemma 1 and Jensen’s inequality imply that we have that E{Π̃(S, y)} ≥
Π̃(E{S}, y) = Π̃(q, y), where q = {qjt : ∀j, t} and we use the fact that Sjt is Bernoulli(qjt). Therefore,

we have

ζ(d, q) ≥ max

n∑
j=1

τ∑
t=1

fjyjt − E{Π̃(S, y)} = zRLP (d)

subject to 0 ≤ yjt ≤ djt ∀j, t,

where the equality is by the definition of zRLP (d) in problem (16)-(17). It follows that

zRLP = E{zRLP (D)} ≤ E{ζ(D, q)} ≤ ζ(E{D}, q) = zDLP ,

where the second inequality uses Lemma 3 and Jensen’s inequality and the last equality holds since

E{Djt} = pjt.

2

As computing the upper bound E{zRLP (D)} analytically is difficult, we propose a simulation-based

optimization scheme to approximate E{zRLP (D)}. We generate K samples of the random variables

D = {Djt : ∀j, t} using Monte Carlo simulation. For each sample, we generate a further L samples of

the random variables S = {Sjt : ∀j, t}. That is, letting dk = {dkjt : ∀j, t} denote the kth sample of D,

we generate samples skl = {skljt : ∀j, t} for l = 1, . . . , L. We solve

zkRLP = max

n∑
j=1

τ∑
t=1

fjy
k
jt −

1

L

L∑
l=1

n∑
j=1

τ∑
t=1

θjw
kl
jt (18)

subject to
n∑

j=1

τ∑
t=1

aij [s
kl
jty

k
jt − wkl

jt ] ≤ ci ∀i, l (19)

wkl
jt ≤ skljty

k
jt ∀j, t, l (20)

ykjt ≤ dkjt ∀j, t (21)

ykjt ≥ 0 ∀j, t (22)

wkl
jt ≥ 0 ∀j, t, l (23)

for the kth demand sample and use
∑K

k=1 z
k
RLP /K as an estimate of zRLP . Furthermore, letting

{ρkli : ∀i, l} be the optimal values of the dual variables corresponding to constraints (19), we use

ρi =
∑K

k=1

∑L
l=1 ρ

kl
i /K as the bid price for flight leg i and we accept a request for product j at time

period t only if

fj ≥
m∑
i=1

aijρi. (24)

In Appendix A, we show that zRLP is a concave function of the flight leg capacities by showing that it

has a subgradient. Furthermore, we show that ρ = {ρi : ∀i} is an estimate of the subgradient that we

obtain from our sample. Therefore, we can interpret ρi as an estimate of the expected marginal value

of capacity on flight leg i.

Note that comparing our acceptance rule in (24) with the acceptance rule in (11) of Bertsimas

and Popescu (2003), (24) does not have the term qjt in it. This leads to increased robustness when the
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actual deny-service process does not have full knowledge of no-shows. The acceptance rule in (11) can

potentially accept very low fares which have low show-up probabilities. This is fine if we know that we

can reject them in case of excess reservations, but this can turn out to be dangerous if at departure

time we have to make deny decisions without knowing all the no-shows.

We close this section with two observations. First, since we have at most one product request

arriving at each time period, we have at most one of the {dkjt : ∀j} being nonzero for each time

period t. Consequently constraints (21) imply that at most τ of {ykjt : ∀j, t} are nonzero. Constraints

(20) then imply that for each l = 1, . . . , L, we have at most τ of {wkl
jt : ∀j, t} nonzero. Therefore,

problem (18)-(23) can be reduced to a linear program that has τ + τL variables and (m + τ)L + τ

constraints. Second, it is possible to come up with an equivalent formulation of problem (18)-(23) by

aggregating the denied boarding decisions for each product. In particular, we let wkl
j =

∑τ
t=1w

kl
jt

and replace constraints (19) with the constraints
∑n

j=1 aij [
∑τ

t=1 s
kl
jty

k
jt − wkl

j ] ≤ ci and constraints (20)

with the constraints wkl
j ≤

∑τ
t=1 s

kl
jty

k
jt. The resulting formulation has τ + nL decision variables and

(m+ n)L+ τ constraints. The alternative formulation is more attractive when n ≤ τ .

5 Asymptotic Optimality

In this section, we show that the upper bounds on the optimal expected total profit provided by

our randomized linear program is asymptotically tight as the capacities on the flight legs and the

expected demand scales linearly with the same rate. For models where all reservations show up at the

departure time and overbooking is not possible, similar results have been shown for the deterministic

linear program in Talluri and van Ryzin (1998) and for the randomized linear program in Topaloglu

(2009a). Our results in this section can be visualized as generalizations of those results to the overbooking

setting, but these generalizations are nontrivial due to the difficulties brought out by the possibility of

overbooking.

We define a family of network revenue management problems {Pκ : κ ∈ Z+} indexed by the

parameter κ with the following properties. (1) Problem Pκ has κτ time periods in the booking

horizon. (2) In problem Pκ, the probability that we get a request for product j at time period t is given

by pj⌈t/κ⌉, where ⌈·⌉ is the round up function. For notational brevity, we let pκjt = pj⌈t/κ⌉. (3) In problem

Pκ, a reservation for product j accepted at time period t shows up with probability qj⌈t/κ⌉. Similar to pκjt,

for notational brevity, we let qκjt = qj⌈t/κ⌉. As before, we assume that the arrivals and show-up decisions

are independent across time periods. Furthermore, the show-up decisions of different reservations are

independent. (4) In problem Pκ, the capacity on flight leg i is κci.

With this definition of problem Pκ, we observe that problem P1 corresponds to the original network

revenue management problem that we have been working with throughout the paper. The capacities on

the flight legs in problem Pκ are κ times the capacities on the flight legs in problem P1. Similarly, the

length of the booking horizon in problem Pκ is κ times the length of the booking horizon in problem

P1. In addition, the probability of getting a request for product j at time periods 1, 2, . . . , κ in problem

Pκ is the same as the probability of getting a request for product j at time period 1 in problem P1. A
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similar observation holds for blocks of successive κ time periods over the booking horizon of problem

Pκ. In particular, for a fixed ℓ = 1, . . . , τ , the probability of getting a request for product j at time

periods 1+(ℓ−1)κ, 2+(ℓ−1)κ, . . . , κ+(ℓ−1)κ in problem Pκ is the same as the probability of getting

a request for product j at time period ℓ in problem P1. Thus, the expected total demand for product

j in problem Pκ is

κτ∑
t=1

pκjt =

κτ∑
t=1

pj⌈t/κ⌉ = κ

τ∑
t=1

pjt,

which implies that the expected total demand for product j in problem Pκ is κ times the expected

total demand for product j in problem P1. Consequently, problem Pκ is a scaled version of problem

P1, where the leg capacities and the expected demand is scaled by the same factor κ. Intuitively, the

parameter κ is a measure of how large the problem is and our goal is to show that the upper bound

provided by our randomized linear program becomes tight as the problem gets larger.

We consider the deterministic linear program given by problem (6)-(10) for the network revenue

management problem Pκ. Letting zκDLP be the optimal objective value of the deterministic linear

program for problem Pκ, we have

zκDLP = max

n∑
j=1

κτ∑
t=1

[fjy
κ
jt − θjw

κ
jt] (25)

subject to
n∑

j=1

κτ∑
t=1

aij [q
κ
jty

κ
jt − wκ

jt] ≤ κci ∀i (26)

yκjt ≤ pκjt ∀j, t (27)

wκ
jt ≤ qκjty

κ
jt ∀j, t (28)

yκjt, w
κ
jt ≥ 0 ∀j, t. (29)

We let V κ
1 (0̄) denote the optimal expected total profit for problem Pκ that we obtain by solving

the corresponding dynamic program. Erdelyi and Topaloglu (2009) show that the optimal objective

value of the deterministic linear program provides an upper bound on the optimal expected total

profit. Therefore, we have zκDLP ≥ V κ
1 (0̄) ≥ 0, where the last inequality follows from the fact that the

optimal expected total profit is nonnegative since rejecting all requests is a feasible policy with an optimal

expected total profit of zero. This implies that if zκDLP = 0, then we also have V κ
1 (0̄) = 0. Otherwise,

V κ
1 (0̄)/z

κ
DLP ≤ 1. In the next proposition, we show that this ratio converges to 1 as κ goes to

infinity. In other words, as the problem size, measured by κ, increases, the optimal objective value

of the deterministic linear program becomes a sharper and sharper estimate of the optimal expected

total profit. We defer the proof of this result to Appendix B.

Proposition 5 We have limκ→∞ V κ
1 (0̄)/z

κ
DLP = 1.

It is interesting to observe that the proof of Proposition 5 in Appendix B also gives a policy to accept

or reject the product requests and the ratio between the expected total profits obtained by this policy
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and the optimal policy converges to 1. In particular, letting {ŷκjt : ∀j, t} be the optimal values of the

decision variables {yκjt : ∀j, t} in problem (25)-(29), we can accept a request for product j at time

period t with probability ŷκjt/p
κ
jt. Noting constraints (27), ŷκjt/p

κ
jt ∈ [0, 1] and we can indeed use ŷκjt/p

κ
jt

as a probability. After making the acceptance decisions, we decide which show-ups to deny boarding

at the departure time by a specially constructed coin flip given in Appendix B. In this case, letting

Profκ be the expected total profit obtained by this policy for problem Pκ, the proof of Proposition 5 in

Appendix B also shows that limκ→∞ Profκ/V κ
1 (0̄) = 1. Therefore, not only the upper bound provided

by the deterministic linear program is asymptotically tight, but one can also derive a policy from the

deterministic linear program whose performance becomes asymptotically optimal as κ increases.

By Proposition 4, the upper bounds provided by the randomized linear program are tighter than

those provided by the deterministic linear program. Therefore, using zκRLP to denote the optimal

objective value of the randomized linear program formulated for the network revenue management

problem Pκ, the previous proposition immediately implies the following result.

Corollary 6 We have limκ→∞ V κ
1 (0̄)/z

κ
RLP = 1.

6 Computational Experiments

In this section, we compare the upper bounds and the expected total profits obtained by the randomized

linear program with four benchmark strategies. We begin by describing the benchmark strategies and

the experimental setup.

6.1 Benchmark Strategies

Deterministic Linear Program (DLP) This is the solution method described in Section 3. In our

practical implementation, we divide the planning horizon into 10 equal segments and resolve problem

(6)-(10) at the beginning of each segment to obtain a fresh set of bid prices. In particular, if the state

of the system at the beginning of segment s is given by xτ(s−1)/10+1, then we solve problem (6)-(10)

after replacing the constraints (8) for t = 1, . . . , τ(s− 1)/10 with the constraints yjt = xjt to reflect the

fact that we have already made the acceptance decisions for the product requests up to time period

τ(s−1)/10. Letting µ = {µi : ∀i} be the optimal values of the dual variables associated with constraints

(7), we accept a request for product j at time period t according to the decision rule in (11). We continue

to use this decision rule until the beginning of the next segment where we resolve problem (6)-(10).

Randomized Linear Program (RLP) This is the solution method described in Section 4. Similar to

the deterministic linear program, we divide the planning horizon into 10 equal segments and resolve

problem (18)-(23) for K demand samples at the beginning of each segment to obtain a fresh set of bid

prices. In particular, if the state of the system at the beginning of segment s is given by xτ(s−1)/10+1,

we solve problem (18)-(23) after replacing constraints (21) for t = 1, . . . , τ(s − 1)/10 with ykjt = xjt.

This again reflects the fact that we have already made the acceptance decisions for the product requests
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up to time period τ(s − 1)/10. Using {ρkli : ∀i, l} to denote the optimal values of the dual variables

corresponding to constraints (19), we let ρi =
∑K

k=1

∑L
l=1 ρ

kl
i /K and accept a request for product j at

time period t according to the decision rule in (24). We continue to use the above decision rule until

the beginning of the next segment, at which point we resolve problem (18)-(23).

Partially Randomized Linear Program (PRLP) This solution method is similar to the randomized

linear program, but instead of simulating both the demands for the products and the show-ups, we

only simulate the demands for the products and assume that the numbers of show-ups take on their

expected values. The main motivation for this method is that its running time is significantly less than

RLP, striking a middle ground between DLP and RLP. PRLP generates K samples of the demands for

the products and solves the problem

zkPRLP = max
n∑

j=1

τ∑
t=1

fjy
k
jt −

n∑
j=1

τ∑
t=1

θjw
k
jt (30)

subject to

n∑
j=1

τ∑
t=1

aij [qjty
k
jt − wk

jt] ≤ ci ∀i (31)

wk
jt ≤ qjty

k
jt ∀j, t (32)

ykjt ≤ dkjt ∀j, t (33)

ykjt, w
k
jt ≥ 0 ∀j, t (34)

for each sample, where dk = {dkjt : ∀j, t} is the kth sample of the random variables {Djt : ∀j, t}. Note

that this approach has a lower computational burden than the randomized linear program. Using

the fact that there is at most one product request in each time period, the partially randomized

linear programming approach involves solving K linear programs, each having 2τ variables and m+2τ

constraints. It is possible to show that the partially randomized linear program yields an upper bound

on the optimal expected total profit that lies in between the upper bounds obtained by the randomized

and the deterministic linear programs. We use
∑K

k=1 z
k
PRLP /K as an estimate of this upper bound. We

obtain a bid price control policy by using the optimal values of the dual variables associated with

constraints (31) as the bid prices. As with DLP and RLP, PRLP divides the planning horizon into 10

equal segments. Letting xτ(s−1)/10+1 be the state of the system at the beginning of segment s, we solve

problem (30)-(34) for K demand samples after replacing constraints (33) for t = 1, . . . , τ(s−1)/10 with

ykjt = xjt. This reflects the fact that we have already made the acceptance decisions for the product

requests up to time period τ(s − 1)/10. Letting {λk
i : ∀i} be the optimal values of the dual variables

associated with constraints (31) and λi =
∑K

k=1 λ
k
i /K, we accept a request for product j at time period

t only if fj ≥ qjt
∑m

i=1 aijλi. We continue to use the above decision rule until the beginning of the next

segment, at which point we resolve problem (30)-(34).

Virtual Capacities with an Economic Model (VCE) VCE is proposed by Karaesmen and van Ryzin

(2004a). VCE chooses a virtual capacity ui for each flight leg i so that while accepting reservations we

pretend that the capacity of flight leg i is ui instead of ci. To get a tractable model, VCE makes the

following three assumptions. First, we can make the deny boarding decisions for a reservation that uses

multiple flight legs independently across each flight leg. That is, we can allow boarding to a reservation
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over one flight leg while denying it boarding over another flight leg. Second, the show-up probability

and the denied boarding penalty cost depends only on the flight leg and is the same for all products

using that flight leg. Third, VCE assumes that the number of seats sold on flight leg i is exactly equal

to its virtual capacity ui. In this case, letting Qi be the show-up probability and Γi be the denied

boarding penalty on flight leg i, the three assumptions imply that the number of show-ups on flight

leg i, Yi(ui), is a binomial (ui, Qi) random variable, while the expected denied boarding penalty cost

is ΓiE{[Yi(ui) − ci]
+}, where we use [a]+ = max{a, 0}. Using zj to denote the number of product j

requests that we accept over the booking horizon, VCE solves the problem

max

n∑
j=1

fjzj −
m∑
i=1

ΓiE{[Yi(ui)− ci]
+}

subject to
n∑

j=1

aijzj − ui = 0 ∀i

zj ≤
τ∑

t=1

pjt ∀j

zj ≥ 0 ∀j

ui ≥ 0 ∀i.

We use linear interpolations of E{[Yi(ui)− ci]
+} to compute the above objective function at noninteger

values of ui. VCE uses the optimal values of the dual variables associated with the first set of constraints

as the bid prices and accepts a request for product j at time period t according to the decision rule

in (11). In our computational experiments, we set Qi =
∑n

j=1 aij(
∑τ

t=1 qjt/τ)/
∑n

j=1 aij so that Qi is

the average of the show-up probabilities of the products that use flight leg i. We use the same logic in

setting Γi. In particular, we let θ̄j = θj/
∑m

l=1 alj to evenly distribute the penalty cost associated with

product j across the flight legs it uses and set Γi =
∑n

j=1 aij θ̄j/
∑n

j=1 aij . This is one of the several

choices for Qi and Γi that Karaesmen and van Ryzin (2004a) propose and all of their proposed choices

appeared to perform similarly. Finally, similar to the other solution methods, VCE divides the planning

horizon into 10 equal segments, recomputes the bid prices at the beginning of each segment and uses

these bid prices until the beginning of the next segment.

Stochastic Approximation Algorithm (SAA) This solution method is proposed by Kunnumkal and

Topaloglu (2011) and it is based on the observation that for a given set of bid prices, the decision rule

in (11) determines the numbers of requests that we accept for the different products. Thus, we can

express the expected total profit as a function of the bid prices and the idea behind SAA is to use a

stochastic approximation algorithm to find a set of bid prices that maximize the expected total profit. We

refer the reader to Kunnumkal and Topaloglu (2011) for further details of the stochastic approximation

algorithm. We use a step size of 5/(40+k) in the kth iteration of the stochastic approximation algorithm

and terminate the algorithm after 5000 iterations. We use the bid prices obtained by the stochastic

approximation algorithm at the end of 5000 iterations in the decision rule in (11) to decide whether to

accept a request for product j at time period t. Similar to the other solution methods, SAA divides the

planning horizon into 10 equal segments, recomputes the bid prices at the beginning of each segment

and uses these bid prices until the beginning of the next segment.
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6.2 Computational Results for the Network with a Single Hub

We test the performance of our benchmark solution methods on two types of networks. The first type

of network has a single hub serving multiple spokes. The second type has two hubs with half of the

spokes served by the first hub and the other half served by the second hub. We begin by describing our

results for the first type of network.

Computational Setup We have a hub-and-spoke network with a single hub serving N spokes. We have

one flight from the hub to each spoke and one flight from each spoke to the hub so that the total number

of flight legs is 2N . Figure 1 shows the structure of the network for the case where N = 8. The hub and

each of the spokes serve as both origins and destinations. We have a high-fare and a low-fare product

connecting each origin-destination pair. Therefore, we have 2N(N + 1) products, 4N of which include

one flight leg and 2N(N − 1) of which include two flight legs. The high-fare product is four times as

expensive as the low-fare product for each itinerary. The probability that a reservation shows up at the

time of flight departure depends on only whether it is a high-fare or a low-fare product, but not on the

origin-destination locations or on the reservation time. We let ql and qh be the show-up probabilities for

a low-fare and a high-fare product, respectively. The penalty cost of denying boarding to a reservation

for product j is set as γfj + σmaxj′=1,...,n{fj′}, where γ and σ are two parameters that we vary. We

can interpret γfj as the component of the penalty cost that is specific to the particular product while

σmaxj′=1,...,n{fj′} can be interpreted as the component of the penalty cost that is common across the

products. Noting that the total expected demand for the capacity on flight leg i is
∑τ

t=1

∑n
j=1 aijqjtpjt,

we measure the tightness of the leg capacities by

α =

∑m
i=1

∑τ
t=1

∑n
j=1 aijqjtpjt∑m

i=1 ci
.

We label our test problems by (γ, σ, ql, qh, α), where (γ, σ) ∈ {(4, 0), (8, 0), (1, 1)}, ql ∈ {0.7, 0.9},
qh ∈ {0.7, 0.9} and α ∈ {1.2, 1.6}. This provides 24 test problems in our experimental setup. In all of

our test problems, we have 8 spokes and 360 time periods in the planning horizon. We use K = 25 and

L = 200 for RLP and K = 25 for PRLP. We note that this set of test problems is based on that in

Erdelyi and Topaloglu (2009).

Comparison of Upper Bounds Table 1 gives the upper bounds obtained by DLP, RLP and PRLP. VCE

and SAA do not provide upper bounds on the optimal expected profit and these solution methods are

omitted in this table. The first column in Table 1 shows the problem characteristics. The second, third

and fourth columns, respectively, give the upper bounds obtained by DLP, RLP and PRLP. The next

two columns respectively give the percentage gap between the upper bounds obtained by RLP and DLP,

and RLP and PRLP. The “X” in the columns emphasize that the gaps are all significant at the 95%

level. The results in Table 1 indicate that RLP generates significantly tighter upper bounds than both

DLP and PRLP. The average percentage gap between the upper bounds obtained by DLP and RLP is

around 5%, while the average gap between the upper bounds obtained by PRLP and RLP is around

4%. While PRLP provides a slightly tighter upper bound than DLP, we can further tighten the upper
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bound quite significantly by using RLP. This may justify the extra computational effort in simulating

the show-ups in RLP as opposed to using just the expected number of show-ups in PRLP.

Comparison of Expected Total Profits Table 2 gives the expected total profits obtained by the five

solution methods. The columns have the same interpretation as in Table 1 except that they compare

the expected profits obtained by DLP, RLP, PRLP, VCE and SAA. The last four columns in Table 2 give

the percentage gap between the expected profits obtained by RLP and the other benchmarks. We obtain

the expected profits by simulating the bid price policies obtained by the different solution methods under

multiple realizations of the demand and show-up random variables. We use common random numbers

in our simulations; see Law and Kelton (2000). The last four columns in Table 2 include a “X” if RLP

does better than the respective solution method at the 95% significance level, a “×” otherwise and a

“⊙” if there does not exist a statistically significant difference between the two.

Comparing the expected profits in Table 2, we observe that RLP and SAA typically generate

the highest profits followed by DLP, VCE and PRLP without a consistent ordering between the latter

three solution methods. The performance gap between RLP and DLP is around 3% on average, but

we observe performance gaps as high as 8%. RLP performs better than DLP in 23 out of the 24 test

problems and the gaps are statistically significant in 21 test problems. We observe one instance where

DLP performs better than RLP, but the performance gap is less than half a percent. RLP performs

better than PRLP in all of the test problems and the average performance gap is around 6%. A similar

observation holds when we compare RLP with VCE and the average performance gap between these

two solution methods is around 5%. The profits generated by RLP and SAA are comparable with the

average performance gap being around -0.19%. In 20 out of the 24 test problems, there is no statistically

significant difference in the profits generated by RLP and SAA. SAA does better than RLP in three test

problems, while RLP does better than SAA in one test problem. To our knowledge, SAA is one of the

strongest methods to compute bid price policies for joint overbooking and capacity control problems

and it is quite encouraging that the performance of RLP is comparable to that of SAA.

Despite the fact that the performance of RLP and SAA are quite close to each other, there are a

number of reasons that may make RLP preferable to SAA from practical perspective. To begin with,

RLP provides an upper bound on the optimal expected total profits while SAA does not. In fact, DLP

is, to our knowledge, the only other computationally tractable method that can obtain upper bounds

on the optimal expected total profits when overbooking is allowed. RLP significantly improves the

upper bounds provided by DLP, yielding improvements up to about 8%. Tighter upper bounds on the

optimal expected profits can be quite valuable when assessing the optimality gap of approximate control

policies. Another attractive feature of RLP is that the implementation of SAA requires tuning a number

of parameters such as the step size rule and the stopping criterion of the stochastic approximation

algorithm, for which there are no hard and fast rules. The implementation of RLP tends to be easier

as it involves only selecting the sample sizes K and L. While doing a reasonably exhaustive search

over all step size rules and stopping criteria is virtually impossible, one can certainly test quite a few

different choices of K and L for RLP and settle on a choice. It is also worthwhile to point out that RLP

requires solving linear programs, minimizing the need for customized coding. Finally, an important
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advantage of RLP over SAA is the running time. Table 3 compares the CPU seconds to solve RLP

and SAA on networks with different numbers of spokes and booking horizons with different numbers

of time periods. After a few setup runs, we settle on K = 25 and L = 200 in our implementation of

RLP and run SAA for 5000 iterations. The left and right portions Table 3 respectively show the CPU

seconds for different numbers of spokes in the airline network and different numbers of time periods in

the booking horizon. All of the computational experiments are carried out on a desktop PC running

Windows XP with Intel Core 2 Duo 3 GHz CPU and 4 GB RAM. We use CPLEX 11.2 to solve all the

linear programs. The running times for RLP and SAA are generally comparable and are of the order

of minutes. The running time of SAA is independent of the number of time periods since SAA works

with an aggregate formulation, which requires only the total number of product requests but not the

sequence in which the requests arrive over time. However, the running time of SAA can grow quite

rapidly as the size of the airline network measured by the number of spokes increases. DLP, PRLP and

VCE take at most a few seconds to solve and we do not provide their running times in Table 3, but the

performance of these solution methods is not competitive to RLP or SAA.

Comparison of Service Levels While the benchmark solution methods are all designed to maximize the

expected profits, this may not necessarily be the only performance measure that is of interest to the

airline. In Table 4, we compare the solution methods on two other dimensions, namely the service levels

and the occupancy levels. The service level gives the fraction of the show-ups that are allowed boarding,

while the occupancy level is the fraction of seats that are occupied when the flights depart. The first

column in Table 4 shows the problem characteristics. The next five columns give the expected service

levels achieved by DLP, RLP, PRLP, VCE and SAA respectively, while the last five columns give the

corresponding occupancy levels.

We observe that PRLP has the highest service levels, followed closely by RLP and SAA. VCE

and DLP tend to have slightly lower service levels associated with them. On the other hand, when we

compare the occupancy levels, DLP and VCE tend to have the highest occupancy levels, followed by

RLP and SAA. PRLP tends to have a significantly lower occupancy level than the remaining solution

methods. The above observations suggest that PRLP tends to be conservative in accepting product

requests. As a result, it is able to provide service to almost all of the reservations that show up. Its

denied service cost tends to be low, but at the same time, its revenues also tend to be low because it

accepts only a smaller number of product requests. The net effect is lower profits. On the other hand,

DLP and VCE tend to be more aggressive in accepting product requests. As a result, their revenues

and occupancy levels tend to be higher. However, they may have to deny boarding to a greater fraction

of the reservations that show up, which leads to lower service levels. Therefore, although DLP and VCE

obtain higher revenues, they also tend to have higher denied service costs, resulting in lower overall

profits. RLP and SAA seem to achieve a good balance between the service and occupancy levels. The

service and occupancy levels of RLP and SAA lie in between the other solution methods. They tend

to be more selective, accepting fewer but higher-value product requests. Since they accept higher-value

product requests, their revenues are comparable to DLP and VCE. On the other hand, since they accept

fewer number of product requests, their denied service costs are comparable to PRLP. The net result is

that their overall profits tend to be higher than DLP, VCE and PRLP.
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Qualitative Behavior of RLP Figure 2 gives a feel for the problem parameters than boost the

performance of RLP relative to DLP. The horizontal axis gives the problem parameters. The test

problems are so arranged that two consecutive problems differ only in the tightness of the leg

capacities. Blocks of eight consecutive test problems have the same penalty costs of denied boarding and

the penalty costs get larger as we move from left to right. The figure indicates that the performance

gap between RLP and DLP generally increases as leg capacities get tighter. We also see that the

performance gap between RLP and DLP increases as the penalty costs of denied boarding increases.

Problems with tight leg capacities and large penalty costs tend to be more challenging to solve because

the consequences of accepting an “incorrect” product request tend to be more severe. It is encouraging

that RLP seems to be an attractive alternative to DLP in such settings.

Figure 3 shows how the upper bound obtained by RLP changes with the number of demand

simulations K and the number of show-up simulations L. We see that RLP is fairly robust to the

number of demand and show-up simulations and we obtain stable results for K ≥ 25 and L ≥ 100. To

be on the safe side, we use K = 25 and L = 200 in our computational experiments.

6.3 Computational Results for the Network with Two Hubs

Computational Setup We have a network with two hubs serving a total of N spokes. The first half of

the spokes are connected to the first hub and the second half of the spokes are connected to the second

hub. Each spoke has one flight to and one flight from the hub that it is connected to. In addition,

we have one flight from the first hub to the second and another flight in the reverse direction, so that

the total number of flights is 2N + 2. Figure 4 shows the structure of the network for the case where

N = 8. The hub and each of the spokes serve as both origins and destinations. We have a high-fare

and a low-fare product connecting each origin-destination pair. We randomly sample from the set of

all origin-destination pairs so that the total number of products is around 150. The remaining problem

parameters are set in the same manner as for the test problems with a single hub. In particular, a

high-fare product is four times as expensive as the corresponding low-fare product for each itinerary.

We label our test problems by (γ, σ, ql, qh, α), where the parameters have the same interpretation

as in the test problems with a single hub. We have (γ, σ) ∈ {(4, 0), (8, 0), (1, 1)}, ql ∈ {0.7, 0.9},
qh ∈ {0.7, 0.9} and α ∈ {1.2, 1.6}, which provides us with 24 test problems. In all of our test problems,

we have 8 spokes and 360 time periods in the booking horizon.

Comparison of Upper Bounds, Expected Total Profits and Service Levels Table 5 gives the upper bounds

obtained by DLP, RLP and PRLP. The columns in this table have the same interpretation as in Table

1. The results in Table 5 indicate that RLP continues to generate significantly tighter upper bounds

than DLP and PRLP. The average percentage gap between the upper bounds obtained by DLP and

RLP is around 6%, while that between PRLP and RLP is around 4%.

Table 6 gives the expected total profits obtained by the five solution methods. The columns in

this table have the same interpretation as in Table 2. The results generally follow the same pattern
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as for the test problems with a single hub. RLP and SAA generate the highest profits followed by

DLP, VCE and PRLP. The average performance gap between RLP and DLP is around 4%. The gaps

are statistically significant in 20 out of the 24 test problems. In the remaining four test problems, the

performance gaps between RLP and DLP are not statistically significant. The average performance gap

between RLP and PRLP is around 9%, while that between RLP and VCE is around 6%. The gaps are

statistically significant in all of the test problems. The profits generated by RLP and SAA are very

close. The average performance gap between RLP and SAA is around -0.15%. In 18 out of the 24 test

problems, there is no statistically significant gap in the profits generated by RLP and SAA. SAA does

better than RLP in four test problems, while RLP does better than SAA in two test problems.

Finally, Table 7 gives the service and occupancy levels achieved by the five solution methods. The

average service levels of DLP, RLP, PRLP, VCE and SAA are 0.96, 0.98, 1, 0.97 and 0.99 respectively. On

the other hand, the average occupancy levels of DLP, RLP, PRLP, VCE and SAA are 0.9, 0.84, 0.72,

0.89 and 0.81 respectively. We again observe that RLP and SAA seem to achieve a good balance between

the service and occupancy levels.

7 Conclusions

In this paper, we developed a randomized linear program to jointly make the capacity control and

overbooking decisions on an airline network. Our solution approach builds on a linear programming

based formulation of the network revenue management problem, where we make the capacity control

and overbooking decisions after observing a realization of the demands for the products. We establish

that this formulation yields a tighter upper bound on the optimal expected total profit than the

deterministic linear program. We show that the upper bound provided by the deterministic linear

program is asymptotically tight, which implies that the upper bound provided by the randomized linear

program is also tight. Furthermore, our proof technique for this result generates a policy from the

deterministic linear program whose expected total profit is asymptotically optimal.

As it is difficult to compute the expectation of the objective value of the randomized linear

program analytically, in our practical implementation, we use samples of the demand and show-ups

to approximate the expected values. We solve the resulting sample average approximation and use the

optimal values of the dual variables associated with the flight leg capacity constraints to get a bid price

control policy. Our computational experiments indicate that our approach can generate significantly

tighter upper bounds and higher profits compared to numerous standard benchmark methods.

A Appendix: Obtaining a subgradient of zRLP

In this section, we show that zRLP is a concave function of the capacities of the flight legs by showing

that it has a subgradient. Furthermore, the expression that we obtain for the subgradient of zRLP

motivates the bid price policy that we derive from the randomized linear program. To emphasize the

dependence on the flight leg capacities c = {ci : ∀i}, we write zRLP and zRLP (d) respectively as zRLP (c)
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and zRLP (d, c) throughout. Noting that S takes on only finitely many values and −min{x} = max{−x},
we can write problem (16)-(17) equivalently as

zRLP (d, c) = max
n∑

j=1

τ∑
t=1

fjyjt −
∑

s∈{0,1}nτ

Pr{S = s}
n∑

j=1

τ∑
t=1

θjw
s
jt (35)

subject to
n∑

j=1

τ∑
t=1

aij [sjtyjt − ws
jt] ≤ ci ∀i, s (36)

0 ≤ ws
jt ≤ sjtyjt ∀j, t, s (37)

0 ≤ yjt ≤ djt ∀j, t, (38)

where Pr{S = s} is the probability that S takes on a value s ∈ {0, 1}nτ and we use ws
jt to denote the

number of product j reservations that are denied boarding when S = s. Letting ρds(c) = {ρdsi (c) : ∀i}
denote the optimal values of the dual variables corresponding to constraints (36), it follows from the

linear programming duality theory that zRLP (d, ĉ) ≤ zRLP (d, c) +
∑m

i=1

∑
s∈{0,1}nτ ρdsi (c)[ĉi − ci]. Since

zRLP (c) = E{zRLP (d, c)} =
∑

d∈{0,1}nτ Pr{D = d}zRLP (d, c), we obtain

zRLP (ĉ) ≤ zRLP (c) +
m∑
i=1

[ĉi − ci]
∑

d∈{0,1}nτ

Pr{D = d}
∑

s∈{0,1}nτ

ρdsi (c).

This implies that, if we let ρi(c) =
∑

d∈{0,1}nτ Pr(D = d)
(∑

s∈{0,1}nτ ρdsi (c)
)
, then ρ(c) = {ρi(c) : ∀i}

is a subgradient of zRLP (c) with respect to c. In our Monte Carlo estimate of this subgradient, we use

ρi =
∑K

k=1
1
K

∑L
l=1 ρ

kl
i as an estimate of ρi(c), where K and L are respectively the number of demand

and show-up simulations. This is precisely the bid price that we use in the decision rule in (24).

B Appendix: Proof of Proposition 5 and Asymptotic Tightness

In this section, we give a proof for Proposition 5. In doing so, we also derive a policy from the

deterministic linear program whose performance is asymptotically optimal as the problem size, measured

by κ, gets large. Therefore, not only the upper bound on the optimal expected total profit provided

by the deterministic linear program is asymptotically tight, we can also derive a policy from the

deterministic linear program whose performance is asymptotically optimal.

Our first observation is that if (ŷ, ŵ) is an optimal solution to problem (6)-(10), then (ŷκ, ŵκ)

with ŷκjt = ŷj⌈t/κ⌉ and ŵκ
jt = ŵj⌈t/κ⌉ is an optimal solution to problem (25)-(29). Thus, noting that the

optimal objective values of problems (6)-(10) and (25)-(29) are respectively denoted by zDLP and zκDLP ,

it follows that zκDLP = κ zDLP .

Now, we consider the following policy π for problem Pκ. We solve problem (25)-(29) to obtain

the optimal solution (ŷκ, ŵκ). For accept and reject decisions, we accept a request for product j at

time period t with probability ŷκjt/p
κ
jt. At the departure time, if a reservation for product j made at

time period t shows up, then we allow it to board with probability 1 − ŵκ
jt/(q

κ
jtŷ

κ
jt), provided there is

sufficient remaining capacity on the flight legs used by that product. That is, we first flip a coin to
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decide whether to allow or deny boarding to that reservation. If the outcome is to allow boarding, then

we do so provided we do not violate the flight leg capacity constraints. Otherwise, we deny boarding

to the reservation. In making the coin flips, we order the products j and time periods t in a predefined

fashion and use the same ordering throughout. Policy π is clearly feasible.

Next, we consider another policy π̃ for problem Pκ. During the booking period, π̃ makes decisions

in the same manner as policy π. However, at the departure time, if a reservation for product j made

at time period t shows up, then we allow it boarding with probability 1 − ŵκ
jt/(q

κ
jtŷ

κ
jt), irrespective of

the remaining capacity on the flight legs. Thus, we deny boarding to the reservation in question with

probability ŵκ
jt/(q

κ
jtŷ

κ
jt), in which case we incur a denied boarding cost of θj . However, if policy π̃

allows boarding to a reservation that violates the capacity on a flight leg, then we incur a large penalty

cost of Θ > maxj θj for each unit of capacity consumed in excess of the available capacity on a flight

leg. Therefore, policy π̃ does not pay attention to the remaining capacities when making the boarding

decisions, but it pays a high cost for each unit of violated capacity. In making the coin flips for policy

π̃, we follow the same ordering between the products and time periods that we follow for policy π.

We use a standard coupling argument to establish that the profits generated on each sample path

by policy π̃ is a lower bound on the profits generated by policy π; see Talluri and van Ryzin (1998). Since

both policies generate the same revenues, it is sufficient to show that policy π̃ incurs higher deny costs

than policy π. Consider the first time that the coin flip for policy π states that we should allow boarding

to a reservation, but policy π has to deny boarding because of insufficient capacities on one or more flight

legs. In this case, since policy π̃ disregards the capacities, it allows boarding to the same reservation,

but since this boarding decision exceeds the capacities on the flight legs, policy π̃ incurs a penalty cost of

at least Θ > maxj θj . Therefore, policy π̃ incurs a higher cost and at the same time, has less remaining

capacity than policy π. Therefore, when we move to the next product and next time period, policy π̃

is more at risk to run over capacity than policy π. Repeating the above argument for the subsequent

deny boarding decisions, we conclude that costs incurred by policy π on each sample path are lower

than the costs incurred by policy π̃. Therefore, letting P π and P π̃ respectively denote the sample path

profits obtained by π and π̃, we have P π ≥ P π̃ on every sample path.

It is possible to construct an expression for the expected total profit obtained by policy π̃ and

to assess how much this expected profit deviates from the one obtained by policy π. To facilitate the

discussion, let Y κ
jt be the random variable taking value 1 if we sell product j at time period t under

policy π̃. Using our earlier notation, let Sκ
jt be the random variable taking value 1 if the product j

reservation made at time period t shows up at the departure time. Finally, let W κ
jt be the random

variable taking value 1 if the reservation made for product j at time period t is denied boarding at the

departure time under policy π̃. Note that W κ
jt is the result of a coin flip. Letting Jt denote the random

product request at time period t, we have

Pr(Y κ
jt = 1) = Pr(accept request for product j at time period t | Jt = j)× Pr(Jt = j) =

ŷκjt
pκjt

pκjt = ŷκjt.

On the other hand, noting that we can deny boarding to only those reservations which were accepted
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(that is, Y κ
jt = 1) and which show up at the time of departure (that is, Sκ

jt = 1), we have

Pr(W κ
jt = 1) = Pr(W κ

jt = 1|Y κ
jt = 1, Sκ

jt = 1)× Pr(Sκ
jt = 1|Y κ

jt = 1)× Pr(Y κ
jt = 1) =

ŵκ
jt

qκjtŷ
κ
jt

qκjt ŷ
κ
jt = ŵκ

jt.

In this case, the sample path profit from policy π̃ becomes

P π̃ =

n∑
j=1

κτ∑
t=1

fjY
κ
jt −

n∑
j=1

κτ∑
t=1

θjW
κ
jt −Θ

m∑
i=1

[ n∑
j=1

κτ∑
t=1

aij [S
κ
jtY

κ
jt −W κ

jt]− κci

]+
. (39)

In the above expression, the first term gives the total revenue, the second term gives the total cost of

denied service and the last term gives the penalty cost incurred from violating the capacity constraints

on the flight legs. Note that Sκ
jtY

κ
jt −W κ

jt indicates whether a reservation for itinerary j made at time

period t is allowed boarding. For the expected total revenue of policy π̃ in (39), we have

E
{ n∑

j=1

κτ∑
t=1

fjY
κ
jt

}
=

n∑
j=1

κτ∑
t=1

fj ŷ
κ
jt = κ

n∑
j=1

τ∑
t=1

fj ŷjt, (40)

where the first equality uses the fact that E{Y κ
jt} = ŷκjt and the second equality follows from the fact

that ŷκjt = ŷj⌈t/κ⌉. Similarly, for the expected total denied service cost in (39), we have

E
{ n∑

j=1

κτ∑
t=1

θjW
κ
jt

}
=

n∑
j=1

κτ∑
t=1

θj ŵ
κ
jt = κ

n∑
j=1

τ∑
t=1

θj ŵjt. (41)

In what follows, we concentrate on the expected penalty cost incurred from violating the capacity

constraints, which corresponds to the third term in (39) and we upper bound this cost component.

For notational brevity, let Zκ
it =

∑n
j=1 aij [S

κ
jtY

κ
jt −W κ

jt] and Zκ
i =

∑κτ
t=1 Z

κ
it. Noting that E{Zκ

it} =∑n
j=1 aij [q

κ
jtŷ

κ
jt − ŵκ

jt], we obtain

E{Zκ
i } =

n∑
j=1

κτ∑
t=1

aij [qjtŷ
κ
jt − ŵκ

jt] = κ

n∑
j=1

τ∑
t=1

aij [qjtŷjt − ŵjt] ≤ κci, (42)

where the inequality follows from the fact that (ŷ, ŵ) is an optimal solution to problem (6)-(10) so that

it satisfies constraints (7). Now, we show that the variance of Zκ
i scales linearly with κ. Observe that Y κ

jt

is a Bernoulli random variable with parameter ŷκjt and we have ŷκjt = ŷj⌈t/κ⌉. Fix some ℓ = 1, . . . , τ . In

this case, for t = κ(ℓ − 1) + 1, . . . , κ ℓ, we have ŷκjt = ŷjℓ, which implies that the random variables

{Y κ
jt : t = κ(ℓ − 1) + 1, . . . , κ ℓ} are identically distributed. Repeating the same argument, we observe

that the random variables {Sκ
jt : t = κ(ℓ − 1) + 1, . . . , κ ℓ} are identically distributed. Similarly, the

random variables {W κ
jt : t = κ(ℓ−1)+1, . . . , κ ℓ} are identically distributed as well. Noting the definition

of Zκ
it, it follows that the random variables {Zκ

it : t = κ(ℓ− 1)+1, . . . , κ ℓ} are identically distributed. In

addition, since the acceptance and deny decisions made by policy π̃ (that is, the coin flips) at different

time periods are independent, the random variables {Zκ
it : t = 1, . . . , κτ} are all independent of each

other. Therefore, we obtain

V ar(Zκ
i ) = V ar

( κτ∑
t=1

Zκ
it

)
= V ar

( τ∑
ℓ=1

κ∑
k=1

Zκ
i,κ(ℓ−1)+k

)
=

τ∑
ℓ=1

κ∑
k=1

V ar(Zκ
i,κ(ℓ−1)+k) =

τ∑
ℓ=1

κV ar(Zκ
i,κ(ℓ−1)+1), (43)
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where the second equality follows by reordering the elements of the sum, the third equality follows

from the fact that the random variables {Zκ
it : t = 1, . . . , κτ} are independent of each other and

the fourth equality follows by noting that for fixed ℓ = 1, . . . , τ , the random variables {Zκ
it : t =

κ(ℓ−1)+1, . . . , κ ℓ} are identically distributed. Lastly, we uniformly bound the random variable Zκ
it by

|Zκ
it| ≤

∑n
j=1 aij |Sκ

jtY
κ
jt −W κ

jt| ≤ n
∑n

j=1 aij ≤ A, where A is a finite upper bound on
∑n

j=1 aij and the

second inequality holds since Sκ
jtY

κ
jt and W κ

jt take values 0 or 1. Thus, V ar(Zκ
it) ≤ A2 and using this

bound on the chain of equalities above, we get V ar(Zk
i ) ≤ τκA2.

Gallego (1992) shows that for any random variable X and scalar x satisfying E{X} ≤ x, we have

E{[X − x]+} ≤ 1
2

√
V ar(X). By (42), we have E{Zκ

i } ≤ κci, in which case, we get

E
{[ κτ∑

t=1

n∑
j=1

aij [S
κ
jtY

κ
jt −W κ

jt]− κci

]+}
= E{[Zκ

i − κci]
+} ≤ 1

2

√
V ar(Zκ

i ) ≤
1

2
A
√
τκ,

where the second inequality uses the upper bound on V ar(Zκ
i ) that we obtain by using (43). Now, we

can bound the expected penalty cost incurred from violating the capacity constraints, corresponding to

the third term in (39). In particular, the last inequality above implies

m∑
i=1

E
{[ n∑

j=1

κτ∑
t=1

aij [S
κ
jtY

κ
jt −W κ

jt]− κci

]+}
≤ 1

2
Am

√
τκ.

Using the last inequality along with (40) and (41) in (39), we get

E{P π̃} ≥ κ

n∑
j=1

τ∑
t=1

fj ŷjt − κ

n∑
j=1

τ∑
t=1

θjŵjt −
Θ

2
Am

√
τκ = κ zDLP − Θ

2
Am

√
τκ = zκDLP − Θ

2
Am

√
τκ,

where the last equality uses the observation that zκDLP = κ zDLP , which we established at the beginning

of this section. Therefore we have

κ zDLP − Θ

2
Am

√
τκ ≤ E{P π̃} ≤ E{P π} ≤ V κ

1 (0̄) ≤ zκDLP = κ zDLP .

The second inequality follows by the coupling argument above that shows that the profits generated

on each sample path by policy π̃ form a lower bound on the profits generated by policy π, so that the

same ordering also holds in expectation. The third inequality is by the fact that E{P π} is the expected

total profit collected by policy π for problem Pκ, but V κ
1 (0̄) is the optimal expected total profit. The

fourth inequality follows by the fact that the optimal objective value of the deterministic linear program

provides an upper bound on the optimal expected total profit. Dividing by κzDLP and taking the limit

as κ goes to infinity in the chain of inequalities above, we get limκ→∞ V κ
1 (0̄)/z

κ
DLP = 1.

Since E{P π} is sandwiched between κ zDLP−Θ
2 Am

√
τκ and κ zDLP in the last chain of inequalities,

it follows that the ratio between the expected total profits collected by policy π and the optimal

policy also converges to 1 as κ goes to infinity. Therefore, not only the upper bound provided by

the deterministic linear program is asymptotically tight, but the performance of policy π that we derive

from the deterministic linear program is also asymptotically optimal.
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Figure 1: Structure of the network with a single hub for the case where N = 8.

Figure 2: Performance gap between DLP and RLP for the network with a single hub.
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Figure 3: Sensitivity of the upper bound obtained by RLP to the number of demand and show-up
simulations. The plot corresponds to the test problem on a network with a single hub with parameters
(4.0, 0.0, 0.7, 0.7, 1.2).

Figure 4: Structure of the network with two hubs for the case where N = 8.
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Percentage Gap
Problem Upper Bound obtained by with RLP

(γ, σ, ql, qh, α) DLP RLP PRLP DLP PRLP

(4.0,0.0,0.7,0.7,1.2) 22702 21406 22108 6.06 X 3.28 X
(4.0,0.0,0.7,0.7,1.6) 21623 20202 21188 7.04 X 4.88 X
(4.0,0.0,0.7,0.9,1.2) 38538 36286 37894 6.21 X 4.43 X
(4.0,0.0,0.7,0.9,1.6) 24886 23598 24505 5.46 X 3.84 X
(4.0,0.0,0.9,0.7,1.2) 27591 26201 26998 5.30 X 3.04 X
(4.0,0.0,0.9,0.7,1.6) 31987 30478 31735 4.95 X 4.12 X
(4.0,0.0,0.9,0.9,1.2) 30735 30033 30547 2.34 X 1.71 X
(4.0,0.0,0.9,0.9,1.6) 20518 20069 20351 2.24 X 1.41 X
(8.0,0.0,0.7,0.7,1.2) 29435 27539 28832 6.89 X 4.69 X
(8.0,0.0,0.7,0.7,1.6) 32649 30259 32390 7.90 X 7.04 X
(8.0,0.0,0.7,0.9,1.2) 28493 26547 27814 7.33 X 4.77 X
(8.0,0.0,0.7,0.9,1.6) 26712 25548 26273 4.56 X 2.84 X
(8.0,0.0,0.9,0.7,1.2) 28944 27599 28423 4.87 X 2.99 X
(8.0,0.0,0.9,0.7,1.6) 29991 28448 29876 5.43 X 5.02 X
(8.0,0.0,0.9,0.9,1.2) 29684 28691 29008 3.46 X 1.10 X
(8.0,0.0,0.9,0.9,1.6) 29124 27981 28915 4.08 X 3.34 X
(1.0,1.0,0.7,0.7,1.2) 33411 31376 32509 6.48 X 3.61 X
(1.0,1.0,0.7,0.7,1.6) 30265 28269 29972 7.06 X 6.03 X
(1.0,1.0,0.7,0.9,1.2) 36912 35084 36179 5.21 X 3.12 X
(1.0,1.0,0.7,0.9,1.6) 33660 31707 33300 6.16 X 5.02 X
(1.0,1.0,0.9,0.7,1.2) 37749 36359 36984 3.82 X 1.72 X
(1.0,1.0,0.9,0.7,1.6) 27103 25376 26746 6.81 X 5.40 X
(1.0,1.0,0.9,0.9,1.2) 30249 28945 29710 4.50 X 2.64 X
(1.0,1.0,0.9,0.9,1.6) 23820 23156 23775 2.87 X 2.67 X

Table 1: Comparison of upper bounds on the network with one hub.

Problem Exp. Profit obtained by Percentage Gap with RLP

(γ, σ, ql, qh, α) DLP RLP PRLP VCE SAA DLP PRLP VCE SAA

(4.0,0.0,0.7,0.7,1.2) 20777 20685 19384 20178 20788 -0.44 × 6.29 X 2.45 X -0.50 ⊙
(4.0,0.0,0.7,0.7,1.6) 19310 19322 18646 18433 19452 0.06 ⊙ 3.50 X 4.60 X -0.67 ×
(4.0,0.0,0.7,0.9,1.2) 34797 35096 32614 33297 35189 0.85 X 7.07 X 5.13 X -0.27 ⊙
(4.0,0.0,0.7,0.9,1.6) 21815 21862 21397 20673 21935 0.21 ⊙ 2.13 X 5.44 X -0.33 ⊙
(4.0,0.0,0.9,0.7,1.2) 25895 26125 23808 25231 26094 0.88 X 8.87 X 3.42 X 0.12 ⊙
(4.0,0.0,0.9,0.7,1.6) 28888 29433 27589 27840 29380 1.85 X 6.27 X 5.41 X 0.18 ⊙
(4.0,0.0,0.9,0.9,1.2) 28454 28728 25906 27811 28750 0.95 X 9.82 X 3.19 X -0.08 ⊙
(4.0,0.0,0.9,0.9,1.6) 18252 18533 17390 17758 18430 1.52 X 6.17 X 4.18 X 0.55 X
(8.0,0.0,0.7,0.7,1.2) 25207 26261 24644 25351 26172 4.01 X 6.16 X 3.47 X 0.34 ⊙
(8.0,0.0,0.7,0.7,1.6) 26120 27883 27312 26435 28011 6.32 X 2.05 X 5.19 X -0.46 ⊙
(8.0,0.0,0.7,0.9,1.2) 24611 25544 23880 24383 25410 3.65 X 6.52 X 4.55 X 0.52 ⊙
(8.0,0.0,0.7,0.9,1.6) 21823 23155 22433 21849 23089 5.75 X 3.12 X 5.64 X 0.28 ⊙
(8.0,0.0,0.9,0.7,1.2) 25400 26571 24373 25608 26704 4.41 X 8.27 X 3.62 X -0.50 ⊙
(8.0,0.0,0.9,0.7,1.6) 24650 26362 25149 25270 26397 6.49 X 4.60 X 4.14 X -0.13 ⊙
(8.0,0.0,0.9,0.9,1.2) 25968 26796 24427 26155 27009 3.09 X 8.84 X 2.39 X -0.79 ×
(8.0,0.0,0.9,0.9,1.6) 23977 25399 24168 24493 25382 5.60 X 4.85 X 3.57 X 0.07 ⊙
(1.0,1.0,0.7,0.7,1.2) 27002 29541 27595 27342 29500 8.59 X 6.59 X 7.44 X 0.14 ⊙
(1.0,1.0,0.7,0.7,1.6) 24378 25594 25098 23561 25912 4.75 X 1.94 X 7.94 X -1.24 ×
(1.0,1.0,0.7,0.9,1.2) 30816 32739 30380 31412 32831 5.87 X 7.20 X 4.05 X -0.28 ⊙
(1.0,1.0,0.7,0.9,1.6) 27751 28993 27500 27669 29060 4.28 X 5.15 X 4.57 X -0.23 ⊙
(1.0,1.0,0.9,0.7,1.2) 32469 34479 31596 31458 34497 5.83 X 8.36 X 8.76 X -0.05 ⊙
(1.0,1.0,0.9,0.7,1.6) 22731 24181 22549 22570 24093 6.00 X 6.75 X 6.66 X 0.36 ⊙
(1.0,1.0,0.9,0.9,1.2) 25650 26904 24836 25866 27091 4.66 X 7.69 X 3.86 X -0.70 ⊙
(1.0,1.0,0.9,0.9,1.6) 20036 21034 19978 19931 21206 4.74 X 5.02 X 5.24 X -0.82 ⊙

Table 2: Comparison of expected total profits on the network with one hub.
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No. of CPU secs. No. of time CPU secs.
spokes RLP SAA periods RLP SAA

4 63 83 180 54 500
8 209 528 360 209 528
12 317 1737 540 404 539
16 658 4143 720 683 539

Table 3: CPU seconds for RLP and SAA as a function of the number of spokes in the airline network
and the number of time periods in the booking horizon.

Problem Exp. Service Level Exp. Occupancy

(γ, σ, ql, qh, α) DLP RLP PRLP VCE SAA DLP RLP PRLP VCE SAA

(4.0,0.0,0.7,0.7,1.2) 0.95 0.98 0.99 0.96 0.95 0.90 0.84 0.73 0.90 0.89
(4.0,0.0,0.7,0.7,1.6) 0.92 0.97 0.98 0.94 0.95 0.90 0.81 0.76 0.89 0.85
(4.0,0.0,0.7,0.9,1.2) 0.94 0.98 0.99 0.98 0.97 0.92 0.85 0.75 0.87 0.87
(4.0,0.0,0.7,0.9,1.6) 0.93 0.96 0.98 0.97 0.94 0.91 0.83 0.79 0.88 0.86
(4.0,0.0,0.9,0.7,1.2) 0.96 0.98 1.00 0.96 0.98 0.92 0.89 0.71 0.93 0.88
(4.0,0.0,0.9,0.7,1.6) 0.94 0.97 0.99 0.95 0.98 0.93 0.88 0.73 0.94 0.85
(4.0,0.0,0.9,0.9,1.2) 0.95 0.97 1.00 0.98 0.98 0.92 0.89 0.70 0.91 0.88
(4.0,0.0,0.9,0.9,1.6) 0.95 0.97 0.99 0.97 0.97 0.91 0.89 0.74 0.91 0.86
(8.0,0.0,0.7,0.7,1.2) 0.96 0.99 1.00 0.98 0.99 0.90 0.82 0.71 0.86 0.81
(8.0,0.0,0.7,0.7,1.6) 0.95 0.98 0.99 0.96 0.99 0.90 0.80 0.75 0.87 0.76
(8.0,0.0,0.7,0.9,1.2) 0.96 0.98 1.00 0.99 0.98 0.90 0.84 0.74 0.85 0.82
(8.0,0.0,0.7,0.9,1.6) 0.95 0.98 0.99 0.98 0.99 0.90 0.83 0.77 0.86 0.78
(8.0,0.0,0.9,0.7,1.2) 0.97 0.99 1.00 0.97 0.99 0.91 0.88 0.69 0.92 0.84
(8.0,0.0,0.9,0.7,1.6) 0.96 0.98 1.00 0.97 0.99 0.92 0.87 0.73 0.91 0.79
(8.0,0.0,0.9,0.9,1.2) 0.97 0.98 1.00 0.99 0.99 0.92 0.89 0.69 0.90 0.83
(8.0,0.0,0.9,0.9,1.6) 0.97 0.98 1.00 0.98 0.99 0.92 0.88 0.72 0.90 0.79
(1.0,1.0,0.7,0.7,1.2) 0.96 0.99 1.00 0.96 0.99 0.90 0.81 0.71 0.90 0.79
(1.0,1.0,0.7,0.7,1.6) 0.96 0.98 0.99 0.95 0.99 0.90 0.78 0.75 0.90 0.76
(1.0,1.0,0.7,0.9,1.2) 0.96 0.98 1.00 0.98 0.99 0.91 0.83 0.72 0.87 0.81
(1.0,1.0,0.7,0.9,1.6) 0.96 0.98 0.99 0.97 0.98 0.90 0.83 0.74 0.89 0.80
(1.0,1.0,0.9,0.7,1.2) 0.97 0.99 1.00 0.96 0.99 0.92 0.86 0.68 0.94 0.81
(1.0,1.0,0.9,0.7,1.6) 0.97 0.98 0.99 0.96 0.99 0.92 0.86 0.74 0.93 0.79
(1.0,1.0,0.9,0.9,1.2) 0.98 0.99 1.00 0.99 1.00 0.91 0.88 0.69 0.91 0.80
(1.0,1.0,0.9,0.9,1.6) 0.97 0.98 1.00 0.98 0.99 0.92 0.87 0.72 0.92 0.79

Table 4: Comparison of additional performance measures on the network with one hub.
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Percentage Gap
Problem Upper Bound obtained by with RLP

(γ, σ, ql, qh, α) DLP RLP PRLP DLP PRLP

(4.0,0.0,0.7,0.7,1.2) 26014 24375 25235 6.73 X 3.53 X
(4.0,0.0,0.7,0.7,1.6) 21688 20038 21404 8.24 X 6.81 X
(4.0,0.0,0.7,0.9,1.2) 27751 26184 27513 5.98 X 5.08 X
(4.0,0.0,0.7,0.9,1.6) 29798 28464 29892 4.69 X 5.02 X
(4.0,0.0,0.9,0.7,1.2) 23977 23110 23766 3.75 X 2.84 X
(4.0,0.0,0.9,0.7,1.6) 25418 24496 24957 3.76 X 1.88 X
(4.0,0.0,0.9,0.9,1.2) 26027 25199 25401 3.29 X 0.80 ⊙
(4.0,0.0,0.9,0.9,1.6) 24554 23599 24188 4.05 X 2.49 ⊙
(8.0,0.0,0.7,0.7,1.2) 26332 24497 25830 7.49 X 5.44 ⊙
(8.0,0.0,0.7,0.7,1.6) 21766 20208 21721 7.71 X 7.48 X
(8.0,0.0,0.7,0.9,1.2) 23213 21551 22409 7.71 X 3.98 X
(8.0,0.0,0.7,0.9,1.6) 31292 29466 30649 6.19 X 4.01 X
(8.0,0.0,0.9,0.7,1.2) 25396 24364 25263 4.24 X 3.69 X
(8.0,0.0,0.9,0.7,1.6) 29750 27979 29276 6.33 X 4.63 X
(8.0,0.0,0.9,0.9,1.2) 31200 29691 30431 5.08 X 2.49 X
(8.0,0.0,0.9,0.9,1.6) 23116 22132 22423 4.45 X 1.31 ⊙
(1.0,1.0,0.7,0.7,1.2) 32805 30344 32204 8.11 X 6.13 X
(1.0,1.0,0.7,0.7,1.6) 23403 21980 23362 6.48 X 6.29 X
(1.0,1.0,0.7,0.9,1.2) 31309 28986 30521 8.01 X 5.30 X
(1.0,1.0,0.7,0.9,1.6) 22469 20807 22111 7.99 X 6.27 X
(1.0,1.0,0.9,0.7,1.2) 25073 24005 24733 4.45 X 3.04 X
(1.0,1.0,0.9,0.7,1.6) 25202 23861 25134 5.62 X 5.34 X
(1.0,1.0,0.9,0.9,1.2) 25124 23999 24579 4.69 X 2.42 X
(1.0,1.0,0.9,0.9,1.6) 21245 20340 20826 4.45 X 2.39 ⊙

Table 5: Comparison of upper bounds on the network with two hubs.

Problem Exp. Profit obtained by Percentage Gap with RLP

(γ, σ, ql, qh, α) DLP RLP PRLP VCE SAA DLP PRLP VCE SAA

(4.0,0.0,0.7,0.7,1.2) 23247 23203 21430 22562 23402 -0.19 ⊙ 7.64 X 2.76 X -0.86 ×
(4.0,0.0,0.7,0.7,1.6) 19285 19341 18234 18416 19540 0.29 ⊙ 5.72 X 4.78 X -1.03 ×
(4.0,0.0,0.7,0.9,1.2) 25440 25386 23580 23914 25550 -0.21 ⊙ 7.11 X 5.80 X -0.65 ×
(4.0,0.0,0.7,0.9,1.6) 26125 26320 25121 24643 26498 0.74 ⊙ 4.56 X 6.37 X -0.68 ×
(4.0,0.0,0.9,0.7,1.2) 22299 22483 19976 21640 22440 0.82 X 11.15 X 3.75 X 0.19 ⊙
(4.0,0.0,0.9,0.7,1.6) 22631 23094 21118 21697 23089 2.01 X 8.56 X 6.05 X 0.02 ⊙
(4.0,0.0,0.9,0.9,1.2) 23922 24341 21548 23576 24341 1.72 X 11.47 X 3.14 X 0.00 ⊙
(4.0,0.0,0.9,0.9,1.6) 21868 22199 20368 21223 22194 1.49 X 8.25 X 4.40 X 0.02 ⊙
(8.0,0.0,0.7,0.7,1.2) 21444 22723 21031 21903 22804 5.63 X 7.45 X 3.61 X -0.35 ⊙
(8.0,0.0,0.7,0.7,1.6) 17501 18652 17552 17621 18715 6.17 X 5.90 X 5.53 X -0.34 ⊙
(8.0,0.0,0.7,0.9,1.2) 19137 20206 18524 19211 20090 5.29 X 8.32 X 4.92 X 0.57 X
(8.0,0.0,0.7,0.9,1.6) 25439 26928 24785 25688 26644 5.53 X 7.96 X 4.61 X 1.05 X
(8.0,0.0,0.9,0.7,1.2) 22542 23359 20832 22208 23399 3.50 X 10.82 X 4.93 X -0.17 ⊙
(8.0,0.0,0.9,0.7,1.6) 24844 26324 23938 24477 26186 5.62 X 9.06 X 7.01 X 0.52 ⊙
(8.0,0.0,0.9,0.9,1.2) 27348 28117 24604 27444 27986 2.73 X 12.49 X 2.39 X 0.47 ⊙
(8.0,0.0,0.9,0.9,1.6) 18719 20171 18520 19008 20299 7.20 X 8.19 X 5.77 X -0.63 ⊙
(1.0,1.0,0.7,0.7,1.2) 26944 28969 26211 27116 28982 6.99 X 9.52 X 6.39 X -0.04 ⊙
(1.0,1.0,0.7,0.7,1.6) 18945 20248 18565 18229 20114 6.43 X 8.31 X 9.97 X 0.66 ⊙
(1.0,1.0,0.7,0.9,1.2) 25481 27418 24887 26033 27312 7.06 X 9.23 X 5.05 X 0.39 ⊙
(1.0,1.0,0.7,0.9,1.6) 17862 19527 18073 18014 19650 8.52 X 7.44 X 7.75 X -0.63 ⊙
(1.0,1.0,0.9,0.7,1.2) 21032 22479 19793 19183 22590 6.44 X 11.95 X 14.66 X -0.49 ⊙
(1.0,1.0,0.9,0.7,1.6) 20415 22210 20377 19149 22289 8.08 X 8.25 X 13.78 X -0.36 ⊙
(1.0,1.0,0.9,0.9,1.2) 20714 22072 19775 20802 22248 6.15 X 10.41 X 5.75 X -0.80 ⊙
(1.0,1.0,0.9,0.9,1.6) 17323 18652 16720 17178 18748 7.13 X 10.36 X 7.90 X -0.52 ⊙

Table 6: Comparison of expected total profits on the network with two hubs.
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Problem Exp. Service Level Exp. Occupancy

(γ, σ, ql, qh, α) DLP RLP PRLP VCE SAA DLP RLP PRLP VCE SAA

(4.0,0.0,0.7,0.7,1.2) 0.95 0.98 1.00 0.96 0.97 0.90 0.84 0.73 0.90 0.87
(4.0,0.0,0.7,0.7,1.6) 0.93 0.98 0.99 0.95 0.96 0.90 0.82 0.76 0.90 0.85
(4.0,0.0,0.7,0.9,1.2) 0.95 0.98 0.99 0.99 0.97 0.89 0.82 0.74 0.84 0.84
(4.0,0.0,0.7,0.9,1.6) 0.94 0.98 0.99 0.98 0.97 0.88 0.80 0.75 0.84 0.82
(4.0,0.0,0.9,0.7,1.2) 0.97 0.98 1.00 0.96 0.98 0.90 0.87 0.70 0.93 0.87
(4.0,0.0,0.9,0.7,1.6) 0.95 0.98 1.00 0.94 0.98 0.91 0.87 0.73 0.94 0.85
(4.0,0.0,0.9,0.9,1.2) 0.96 0.98 1.00 0.98 0.98 0.92 0.90 0.70 0.91 0.87
(4.0,0.0,0.9,0.9,1.6) 0.96 0.97 1.00 0.98 0.98 0.92 0.89 0.72 0.91 0.86
(8.0,0.0,0.7,0.7,1.2) 0.96 0.98 1.00 0.98 0.98 0.89 0.82 0.72 0.86 0.80
(8.0,0.0,0.7,0.7,1.6) 0.95 0.98 0.99 0.97 0.98 0.89 0.80 0.74 0.87 0.78
(8.0,0.0,0.7,0.9,1.2) 0.95 0.98 1.00 0.99 0.98 0.89 0.82 0.73 0.81 0.80
(8.0,0.0,0.7,0.9,1.6) 0.95 0.98 0.99 0.99 0.99 0.89 0.81 0.74 0.82 0.77
(8.0,0.0,0.9,0.7,1.2) 0.97 0.99 1.00 0.97 0.99 0.90 0.87 0.69 0.92 0.83
(8.0,0.0,0.9,0.7,1.6) 0.97 0.98 1.00 0.97 0.99 0.91 0.86 0.72 0.92 0.79
(8.0,0.0,0.9,0.9,1.2) 0.98 0.99 1.00 0.99 0.99 0.90 0.88 0.68 0.89 0.83
(8.0,0.0,0.9,0.9,1.6) 0.97 0.98 1.00 0.98 0.99 0.91 0.87 0.71 0.90 0.80
(1.0,1.0,0.7,0.7,1.2) 0.97 0.99 1.00 0.97 0.99 0.89 0.80 0.71 0.89 0.78
(1.0,1.0,0.7,0.7,1.6) 0.96 0.99 0.99 0.96 0.99 0.87 0.76 0.72 0.89 0.73
(1.0,1.0,0.7,0.9,1.2) 0.97 0.99 1.00 0.99 0.99 0.90 0.82 0.72 0.85 0.78
(1.0,1.0,0.7,0.9,1.6) 0.96 0.99 1.00 0.98 0.99 0.90 0.80 0.73 0.86 0.77
(1.0,1.0,0.9,0.7,1.2) 0.98 0.99 1.00 0.96 1.00 0.90 0.86 0.68 0.94 0.80
(1.0,1.0,0.9,0.7,1.6) 0.97 0.98 1.00 0.95 0.99 0.92 0.85 0.72 0.94 0.77
(1.0,1.0,0.9,0.9,1.2) 0.98 0.99 1.00 0.98 0.99 0.91 0.87 0.68 0.91 0.80
(1.0,1.0,0.9,0.9,1.6) 0.97 0.99 1.00 0.97 1.00 0.91 0.86 0.70 0.91 0.78

Table 7: Comparison of additional performance measures on the network with two hubs.
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