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Abstract

We consider two variants of a pricing problem under the nested logit model. In the first variant,
the set of products offered to customers is fixed and we want to determine the prices of the
products. In the second variant, we jointly determine the set of offered products and their
corresponding prices. In both variants, the price of each product has to be chosen within
given upper and lower bounds specific to the product, each customer chooses among the offered
products according to the nested logit model and the objective is to maximize the expected
revenue from each customer. We give approximation methods for both variants. For any ρ > 0,
our approximation methods obtain a solution with an expected revenue deviating from the
optimal expected revenue by no more than a factor of 1 + ρ. To obtain such a solution, our
approximation methods solve a linear program whose size grows at rate 1/ρ. In addition to our
approximation methods, we develop a linear program that we can use to obtain an upper bound
on the optimal expected revenue. In our computational experiments, we compare the expected
revenues from the solutions obtained by our approximation methods with the upper bounds on
the optimal expected revenues and show that we can obtain high quality solutions quite fast.



1 Introduction

When faced with product variety, most customers make their purchase decisions by comparing the

offered products through attributes such as price, richness of features and durability. In this type

of a situation, the demand for a certain product is determined not only by its own attributes but

also by the attributes of other products, creating interactions among the demands for different

products. Discrete choice models are particularly suitable to study such demand interactions, as

they model the demand for a certain product as a function of the attributes of all products offered

to customers. However, optimization models that try to find the right set of products to offer or

the right prices to charge may quickly become intractable when one works with complex discrete

choice models and tries to incorporate operational constraints.

In this paper, we consider pricing problems where the interactions between the demands for the

different products are captured through the nested logit model and there are bounds on the prices

that can be charged for the products. We consider two problem variants. In the first variant, the set

of products offered to customers is fixed and we want to determine the prices for these products. In

the second variant, we jointly determine the products that should be offered to customers and their

corresponding prices. Once the products to be offered and their prices are determined, customers

choose among the offered products according to the nested logit model. In both variants, the

objective is to maximize the expected revenue obtained from each customer. We give approximation

methods for both variants of the problem. In particular, for any ρ > 0, our approximation methods

obtain a solution with an expected revenue deviating from the optimal by at most a factor of

1 + ρ. To obtain this solution, the approximation methods solve linear programs whose sizes

grow linearly with 1/ log(1 + ρ). Noting that 1/ log(1 + ρ) grows at the same rate as 1/ρ for

small values of ρ, the computational work for our approximation methods grows polynomially

with the approximation factor. Our approximation methods give a performance guarantee over

all problem instances, but we also develop a linear program that we can use to quickly obtain

an upper bound on the optimal expected revenue for an individual problem instance. In our

computational experiments, we compare the expected revenues from the solutions obtained by our

approximation methods with the upper bounds on the optimal expected revenues and demonstrate

that our approximation methods can quickly obtain solutions whose expected revenues differ from

the optimal by less than a percent. Thus, our approximation methods have favorable theoretical

performance guarantees and they are useful to obtain high quality solutions in practice.

Main Results and Contributions. The first problem variant we consider is a pricing problem

where customers choose according to the nested logit model and there are bounds on the prices of

the offered products. For the first variant, assuming that there are m nests in the nested logit model

and each nest includes n products to offer, we show that for any ρ > 0, we can solve a linear program

with O(m) decision variables and O(mn + mn log(nσ)/ log(1 + ρ)) constraints to obtain a set of

prices with an expected revenue deviating from the optimal expected revenue by at most a factor

of 1+ρ. In this result, σ depends on the deviation between the upper and lower price bounds of the

2



products. The second problem variant we consider is a joint assortment offering and pricing problem,

where we need to choose the products to offer and their corresponding prices. For this variant, we

establish a useful property for the optimal subsets of products to offer. In particular, ordering the

products according to their price upper bounds, we show that it is optimal to offer a certain number

of products with the largest price upper bounds. Using this result, we show that for any ρ > 0,

we can solve a linear program with O(m) decision variables and O(mn2 +mn2 log(nσ)/ log(1 + ρ))

constraints to find a set of products to offer and their corresponding prices such that the expected

revenue obtained by this solution deviates from the optimal expected revenue by at most a factor

of 1 + ρ. Comparing our results for the two variants, we observe that the extra computational

burden of jointly finding a set of products to offer and pricing the offered products boils down to

increasing the number of constraints in the linear program by a factor of n.

Pricing under the nested logit model has recently received attention, starting with the work of

Li and Huh (2011) and Gallego and Wang (2011). Li and Huh (2011) consider pricing problems

without upper or lower bound constraints on the prices. Assuming that the products in the same

nest share the same price sensitivity parameter and the so called dissimilarity parameters of the

nested logit model are less than one, they cleanly show that the pricing problem can be reduced to

the problem of maximizing a scalar function. This scalar function turns out to be unimodal so that

maximizing it is tractable. Gallego and Wang (2011) also study pricing problems under the nested

logit model without price bounds, but they allow the products in the same nest to have different

price sensitivities and the dissimilarity parameters of the nested logit model to take on arbitrary

values. Surprisingly, their elegant argument shows that the optimal prices can still be found by

maximizing a scalar function, but this scalar function is not unimodal in general and evaluating

this scalar function at any point requires solving a separate high dimensional optimization problem

involving implicitly defined functions. Our paper fills a number of gaps in this area. The earlier work

shows that the problem of finding the optimal prices can be reduced to maximizing a scalar function,

but this function is not unimodal and maximizing it can be intractable for two reasons. First, a

natural approach to maximizing this scalar function is to evaluate it at a finite number of grid

points and pick the best solution, but it is not clear how to place these grid points to obtain

a performance guarantee. Second, given that computing the scalar function at any point requires

solving a nontrivial optimization problem, it is computationally prohibitive to simply follow a brute

force approach and use a large number of grid points. Thus, while the earlier work shows how to

reduce the pricing problem to a problem of maximizing a scalar function, as far as we can see,

it does not yet yield a computationally viable and theoretically sound algorithm to compute near

optimal prices in general. Our work provides practical algorithms that deliver a desired performance

guarantee of 1 + ρ for any ρ > 0. To obtain our approximation methods, we transform the pricing

problem into a knapsack problem with a separable and concave objective function, which ultimately

allows us to use different arguments from Li and Huh (2011) and Gallego and Wang (2011).

Beside providing computationally viable algorithms to find prices with a certain performance

guarantee, a unique feature of our work is that it allows imposing bounds on the prices that can be
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chosen by the decision maker. Such price bounds do not appear in the earlier pricing work under

the nested logit model and there are a number of theoretical and practical reasons for studying such

bounds. On the theoretical side, if we impose price bounds, then even in the simplest case when

the price sensitivities of all products are equal to each other, the scalar functions in the works of Li

and Huh (2011) and Gallego and Wang (2011) are no longer unimodal. In such cases, we emphasize

that the lack of unimodality is purely due to the presence of the price bounds, as the work of Li

and Huh (2011) shows that the scalar functions that they work are indeed unimodal when the

price sensitivities of the products are equal to each other. Thus, price bounds can significantly

complicate the structural properties of the pricing problem. Furthermore, naive approaches for

satisfying price bound constraints may yield poor results. For example, a first cut approach for

dealing with price bounds is to use the work of Li and Huh (2011) or Gallego and Wang (2011) to

find the optimal prices for the products under the assumption that there are no price bounds. If

these unconstrained prices are outside the price bound constraints, then we can round them up or

down to their corresponding lower or upper bounds. This naive approach does not perform well

and we can come up with problem instances where this naive approach can result in revenue losses

of over 20%, when compared with approaches that explicitly incorporate price bounds.

There are also practical reasons for studying price bounds. Customers may have expectations

for sensible price ranges and it is useful to incorporate these price ranges explicitly into the pricing

model. Furthermore, lack of data may prevent us from fitting an accurate choice model to capture

customer choices, in which case, we can guide the model by limiting the range of possible prices

through price bounds. When we solve the pricing model without price bounds, we essentially rely

on the choice model to find a set of reasonable prices for the products, but depending on the

parameters of the choice model, the prices may not come out to be practical. Thus, incorporating

price bounds into the pricing problem is a nontrivial task from a theoretical perspective and it has

important practical implications. It is also worth mentioning that if there are no price bounds,

then finding the right set of products to offer is not an issue as Gallego and Wang (2011) show that

it is always optimal to offer all products at some finite price level. This result does not hold in the

presence of price bounds and our second variant, which jointly determines the set of products to

offer and their corresponding prices, becomes particularly useful.

Our approximation methods allow us to obtain prices with a certain performance guarantee. In

addition to these approximation methods, we give a simple approach to compute an upper

bound on the optimal expected revenue. This upper bound is obtained by solving a linear

program and we can progressively refine the upper bound by increasing the number of constraints

in the linear program. By comparing the expected revenue from the solution obtained by our

approximation methods with the upper bound on the optimal expected revenue, we can bound the

optimality gap of the solutions obtained by our approximation methods for each individual problem

instance. Admittedly, our approximation methods provide a performance guarantee of 1 + ρ for a

given ρ > 0, but this is the worst case performance guarantee over all problem instances and it

turns out that we can use the linear program to obtain a tighter performance guarantee for an
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individual problem instance. The linear program we use to obtain an upper bound on the optimal

expected revenue can be useful even if we do not work with our approximation methods to obtain

a good solution to the pricing problem. In particular, we can use an arbitrary heuristic or an

approximation method to obtain a set of prices and check the gap between the expected revenue

obtained by charging these prices and the upper bound on the optimal expected revenue. If the

gap turns out to be small, then there is no need to look for better prices.

Related Literature. There is a long history on building discrete choice models to capture

customer preferences. Some of these models are based on axioms describing a sensible behavior

of customer choice, as in the basic attraction model of Luce (1959). On the other hand, some

others use a utility maximization principle, where an arriving customer associates random utilities

with the products and chooses the product providing the largest utility. Such a utility based

approach is followed by McFadden (1974), resulting in the celebrated multinomial logit model. The

nested logit model, which plays a central role in this paper, goes back to the work of Williams

(1977). Extensions for the nested logit model are provided by McFadden (1980) and Borsch-Supan

(1990). An important feature of the nested logit model is that it avoids the independence of

irrelevant alternatives property suffered by the multinomial logit model. The discussion of this

property can be found in Ben-Akiva and Lerman (1994).

There is a body of work on assortment optimization problems under various discrete choice

models. In the assortment optimization setting, the prices of the products are fixed and we choose

the set of products to offer given that customers choose among the offered products according

to a particular choice model. Talluri and van Ryzin (2004) study assortment problems when

customers choose under the multinomial logit model and show that the optimal assortment includes

a certain number of products with the largest revenues. As a result, the optimal assortment can

efficiently be found by checking the performance of every assortment that includes a certain number

of products with the largest revenues. Rusmevichientong et al. (2010) consider the same problem

with a constraint on the number of products in the offered assortment and show that the problem

can be solved in a tractable fashion. Wang (2012a) extends this work to more general versions of the

multinomial logit model. In Bront et al. (2009), Mendez-Diaz et al. (2010) and Rusmevichientong

et al. (2013), there are multiple types of customers, each choosing according to the multinomial

logit model with different parameters. The authors show that the assortment problem becomes

NP-hard in weak and strong sense, propose approximation methods and study integer programming

formulations. Jagabathula et al. (2011) work on how to obtain good assortments with only limited

computations of the expected revenue from different assortments. The work mentioned so far

in this paragraph uses the multinomial logit model, but there are extensions to the nested logit

model. Rusmevichientong et al. (2009) develop an approximation scheme for assortment problems

when customers choose under the nested logit model and there is a shelf space constraint for the

offered assortment. Davis et al. (2011) study the same problem without the shelf space constraint

and give a tractable method to obtain the optimal assortment under the nested logit model. Gallego

and Topaloglu (2012) show that it is tractable to obtain the optimal assortment when customers
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choose according to the nested logit model and there is a cardinality constraint on the number

of products offered in each nest. They extend their result to the situation where each product

can be offered at a finite number of price levels and one needs to jointly choose the assortment of

products to offer and their corresponding price levels. Their approach does not work when the set

of products to be offered is fixed and not under the control of the decision maker.

Pricing problems within the context of different discrete choice models is also an active research

area. Under the multinomial logit model, Hanson and Martin (1996) note that the expected

revenue function is not concave in prices. However, Song and Xue (2007) and Dong et al. (2009)

make progress by formulating the problem in terms of market shares, as this formulation yields a

concave expected revenue function. Li and Huh (2011) extend the concavity result to the nested

logit model by assuming that the price sensitivities of the products are constant within each nest

and the dissimilarity parameters are less than one. Gallego and Wang (2011) relax both of the

assumptions in Li and Huh (2011) and extend the analysis to more general forms of the nested

logit model. Wang (2012b) considers a joint assortment and price optimization problem to choose

the offered products and their prices. The author imposes cardinality constraints on the offered

assortment, but the customer choices are captured by using the multinomial logit model, which

is more restrictive than the nested logit model. Recently, there is interest in modeling large scale

revenue management problems by incorporating the fact that customers make a choice depending

on the assortment of available itinerary products and their prices. The main approach in these

models is to formulate deterministic approximations under the assumption that customer arrivals

and choices are deterministic. Such deterministic approximations have a large number of decision

variables and they are usually solved by using column generation. The assortment and pricing

problems described in this and the paragraph above become instrumental when solving the column

generation subproblems. Deterministic approximations for large scale revenue management can be

found in Gallego et al. (2004), Liu and van Ryzin (2008), Kunnumkal and Topaloglu (2008), Zhang

and Adelman (2009), Zhang and Lu (2011) and Meissner et al. (2012).

Organization. In Section 2, we formulate the first variant of the problem, where the set of

products to be offered is fixed and we choose the prices for these products. In Section 3, we show

that this problem can be visualized as finding the fixed point of a scalar function. In Section 4,

we develop an approximation framework by using the fixed point representation and computing

a scalar function at a finite number of grid points. In Section 5, we show how to construct an

appropriate grid with a performance guarantee and give our approximation method. In Section 6,

we extend the work in the earlier sections to the second variant of the problem, where we jointly

choose the products to offer and their corresponding prices. In Section 7, we show how to obtain

an upper bound on the optimal expected revenue and give computational experiments to compare

the performance of our approximation methods with the upper bounds on the optimal expected

revenues. In Section 8, we conclude. In Appendices A and B, we give the proofs that are omitted

in the paper. In Appendix C, we give a glossary to collect the crucial pieces of notation used

throughout the paper.
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2 Problem Formulation

In this section, we describe the nested logit model and formulate the pricing problem. There are

m nests indexed by M = {1, . . . ,m}. Depending on the application setting, nests may correspond

to different retail stores, different product categories or different sales channels. In each nest there

are n products and we index the products by N = {1, . . . , n}. We use pij to denote the price of

product j in nest i. The price of product j in nest i has to satisfy the price bound constraint

pij ∈ [lij , uij ], for the upper and lower bound parameters lij , uij ∈ [0,∞). We use wij to denote

the preference weight of product j in nest i. Under the nested logit model, if we choose the price

of product j in nest i as pij , then the preference weight of this product is wij = exp(αij − βij pij),

where αij ∈ (−∞,∞) and βij ∈ [0,∞) are parameters capturing the effect of the price on the

preference weight. Since there is a one to one correspondence between the price and preference

weight of a product, throughout the paper, we assume that we choose the preference weight of a

product, in which case, there is a price corresponding to the chosen preference weight. In particular,

if we choose the preference weight of product j in nest i as wij , then the corresponding price of

this product is pij = (αij − logwij)/βij , which is obtained by setting wij = exp(αij − βij pij) and

solving for pij . For brevity, we let κij = αij/βij and ηij = 1/βij and write the relationship between

price and preference weight as pij = κij − ηij logwij . Noting the upper and lower bound constraint

on prices, the preference weight of product j in nest i has to satisfy the constraint wij ∈ [Lij , Uij ]

with Lij = exp(αij − βij uij) and Uij = exp(αij − βij lij). We use wi = (wi1, . . . , win) to denote the

vector of preference weights of the products in nest i. Under the nested logit model, if we choose

the preference weights of the products in nest i as wi and a customer decides to make a purchase in

this nest, then this customer purchases product j in nest i with probability wij/
∑

k∈N wik. Thus,

if we choose the preference weights of the products in nest i as wi and a customer decides to make

a purchase in this nest, then we obtain an expected revenue of

Ri(wi) =
∑
j∈N

wij∑
k∈N wik

(κij − ηij logwij) =

∑
j∈N wij (κij − ηij logwij)∑

j∈N wij
,

where the term wij/
∑

k∈N wik on the left side above is the probability that a customer purchases

product j in nest i given this customer decides to make a purchase in this nest, whereas the term

κij − ηij logwij captures the revenue associated with product j in nest i.

Each nest i has a parameter γi ∈ (0, 1], characterizing the degree of dissimilarity between the

products in this nest. In this case, if we choose the preference weights of the products in all nests

as (w1, . . . ,wm), then a customer decides to make a purchase in nest i with probability

Qi(w1, . . . ,wm) =

(∑
j∈N wij

)γi
1 +

∑
l∈M

(∑
j∈N wlj

)γl .
Depending on the interpretation of a nest as a retail store, a product category or a sales channel,

the expression above computes the probability that a customer chooses a particular retail store,

product category or sales channel as a function of the preference weights of all products. With
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probability 1 −
∑

i∈M Qi(w1, . . . ,wm), a customer leaves without making a purchase. McFadden

(1984) demonstrates that the choice probabilities above can be derived from a utility maximization

principle, where a customer associates a random utility with each product and purchases the product

that provides the largest utility. Thus, if we choose the preference weights as (w1, . . . ,wm) over all

nests, then we obtain an expected revenue of

Π(w1, . . . ,wm) =
∑
i∈M

Qi(w1, . . . ,wm)Ri(wi)

=
1

1 +
∑

i∈M
(∑

j∈N wij

)γi ∑
i∈M

(∑
j∈N

wij

)γi
∑

j∈N wij (κij − ηij logwij)∑
j∈N wij

, (1)

where the second equality is by the definitions of Ri(wi) and Qi(w1, . . . ,wm). Our goal is to choose

the preference weights to maximize the expected revenue, yielding the problem

Z∗ = max
{
Π(w1, . . . ,wm) : wi ∈ [Li,Ui] ∀ i ∈ M

}
, (2)

where we use Li and Ui to respectively denote the vectors (Li1, . . . , Lin) and (Ui1, . . . , Uin) and

interpret the constraint wi ∈ [Li,Ui] componentwise as wij ∈ [Lij , Uij ] for all j ∈ N .

We close this section with a remark on our formulation of the nested logit model. In our

formulation of the nested logit model, if a customer chooses a particular nest, then this customer

must purchase one of the products offered in this nest. We can extend our model to allow the

possibility that a customer may leave without purchasing anything even after choosing a particular

nest. To make this extension, we use wi0 to denote the preference weight of the no purchase option

in nest i, in which case, if a customer decides to make a purchase in nest i, then this customer

leaves the nest without purchasing anything with probability wi0/(wi0+
∑

j∈N wij). The preference

weight wi0 is a constant, not depending on the prices of any of the products. It turns out that our

results continue to hold when we allow customers to leave a nest without purchasing anything. We

come back to this extension at appropriate places in the paper.

3 Fixed Point Representation

In this section, we show that problem (2) can alternatively be represented as the problem of

computing the fixed point of an appropriately defined scalar function. This alternative fixed point

representation allows us to work with a single decision variable for each nest i, rather than n

decision variables wi = (wi1, . . . , win) and it becomes crucial when developing our approximation

methods. To that end, assume that we compute the value of z that satisfies

z =
∑
i∈M

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi
∑

j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑

j∈N
wij

)γi
z

}
. (3)

Viewing the right side of (3) as a function of z, finding the value of z satisfying (3) is equivalent

to computing the fixed point of this scalar function. There always exists such a unique value of z
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since the left side above is strictly increasing and the right side above is decreasing in z. Letting ẑ

be the value of z satisfying (3), we claim that ẑ is the optimal objective value of problem (2). To

see this claim, note that if (w∗
1, . . . ,w

∗
m) is an optimal solution to problem (2), then we have

ẑ ≥
∑
i∈M

{(∑
j∈N

w∗
ij

)γi
∑

j∈N w∗
ij (κij − ηij logw

∗
ij)∑

j∈N w∗
ij

−
(∑

j∈N
w∗
ij

)γi
ẑ

}
,

where we use the fact that ẑ is the value of z satisfying (3) and w∗
i is a feasible but not necessarily

an optimal solution to the maximization problem on the right side of (3) when we solve this

problem with z = ẑ. In the inequality above, if we collect all terms that involve ẑ on the left

side of the inequality, solve for ẑ and use the definition of Π(w1, . . . ,wm) in (1), then it follows

that ẑ ≥ Π(w∗
1, . . . ,w

∗
m) = Z∗. On the other hand, if we let ŵi be an optimal solution to the

maximization problem on the right side of (3) when we solve this problem with z = ẑ, then we

observe that (ŵ1, . . . , ŵm) is a feasible solution to problem (2). Furthermore, since ẑ is the value

of z that satisfies (3), the definition of ŵi implies that

ẑ =
∑
i∈M

{(∑
j∈N

ŵij

)γi
∑

j∈N ŵij (κij − ηij log ŵij)∑
j∈N ŵij

−
(∑

j∈N
ŵij

)γi
ẑ

}
. (4)

If we solve for ẑ in the equality above and use the definition of Π(w1, . . . ,wm) in (1) once more,

then we get ẑ = Π(ŵ1, . . . , ŵm) ≤ Z∗, where the last inequality uses the fact that (ŵ1, . . . , ŵm) is a

feasible but not necessarily an optimal solution to problem (2). So, we obtain ẑ = Z∗, establishing

the claim. Thus, we can obtain the optimal objective value of problem (2) by finding the value of z

that satisfies (3). Furthermore, if we use ẑ to denote such a value of z and ŵi to denote an optimal

solution to the maximization problem on the right side of (3) when this problem is solved with

z = ẑ, then the discussion in this paragraph establishes that (ŵ1, . . . , ŵm) is an optimal solution

to problem (2). Since the left and right sides of (3) are respectively increasing and decreasing in

z, we can find the value of z satisfying (3) by using bisection search. However, one drawback of

using bisection search is that we need to solve the maximization problem on the right side of (3)

for each value of z visited during the course of the search. This maximization problem involves a

high dimensional objective function. Also, it is not difficult to generate counterexamples to show

that this objective is not necessarily concave.

To get around the necessity of dealing with high dimensional and nonconcave objective functions,

we give an alternative approach for finding the value of z satisfying (3). We define gi(yi) as the

optimal objective value of the nonlinear knapsack problem

gi(yi) = max

{∑
j∈N

wij (κij − ηij logwij) :
∑
j∈N

wij ≤ yi, wij ∈ [Lij , Uij ] ∀j ∈ N

}
. (5)

We make a number of observations regarding problem (5). We can verify that the objective function

of this problem is concave. Also, if we do not have the first constraint in the problem above, then

by using the first order condition for the objective function of this problem, we can check that the
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optimal value of the decision variable wij is given by min{max{exp(κij/ηij − 1), Lij}, Uij} for all

j ∈ N . Thus, letting Ūi =
∑

j∈N min{max{exp(κij/ηij − 1), Lij}, Uij}, if we have yi > Ūi, then

the first constraint in problem (5) is not tight at the optimal solution. On the other hand, letting

L̄i =
∑

j∈N Lij , if we have yi < L̄i, then problem (5) is infeasible. Finally, if we have yi ∈ [L̄i, Ūi],

then it follows that the first constraint in problem (5) is always tight at the optimal solution. Thus,

intuitively speaking, the interesting values for yi take values in the interval [L̄i, Ūi]. In this case,

noting that problem (5) finds the maximum value of the numerator of the fraction in (3) while

keeping the denominator of this fraction below yi, instead of finding the value of z satisfying (3),

we propose finding the value of z that satisfies

z =
∑
i∈M

max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}
. (6)

The value of z satisfying (6) is unique since the left side above is strictly increasing and the right

side above is decreasing in z. The maximization problem on the right side above involves a scalar

decision variable and the computation of gi(yi) requires solving a convex optimization problem. In

the next proposition, we show that (6) can be used to find the value of z satisfying (3).

Proposition 1 (Fixed Point Representation). The value of z that satisfies (3) and (6) are the

same, corresponding to the optimal objective value of problem (2).

Proof. The value of z that satisfies (3) or (6) has to be positive. Otherwise, the left sides of these

expressions evaluate to a negative number, but the right sides evaluate to a positive number. In

this case, comparing (3) and (6), if we can show that

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi
∑

j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑

j∈N
wij

)γi
z

}
= max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}
for any z > 0, then the value of z that satisfies (3) and (6) are the same. The equality above can

be established by showing that we can use the optimal solution to one of the problems above to

construct a feasible solution to the other. We defer the details to Appendix A.

The proposition above provides a tempting approach for solving problem (2). In particular, we

can find the value of z that satisfies (6) by using bisection search. We observe that the maximization

problem on the right side of (6) involves a scalar decision variable and the computation of gi(·)
requires solving a convex optimization problem. Thus, the optimization problems that we solve

during the course of the bisection search may be tractable. We use ẑ to denote the value of z that

satisfies (6) and ŷi to denote an optimal solution to the maximization problem on the right side of

(6) when we solve this problem with z = ẑ. In this case, we can solve problem (5) with yi = ŷi to

obtain an optimal solution ŵi. Once we solve problem (5) with yi = ŷi for all i ∈ M , it follows

that (ŵ1, . . . , ŵm) is an optimal solution to problem (2).

It is possible to check that all of the discussion in this section holds when we use the no purchase

preference weight wi0 to allow a customer to leave nest i without making a purchase. To make this

extension, all we need to do is to replace
∑

j∈N wij in (3) and (5) with wi0 +
∑

j∈N wij .

10



Figure 1: The function yγ11 (g1(y1)/y1)− yγ11 z as a function of y1.

4 Approximation Framework

As mentioned at the end of the previous section, the maximization problem on the right side of (6)

involves a scalar decision variable and it is tempting to try to solve problem (2) by finding the value

of z satisfying (6). Unfortunately, it turns out that the objective function of this maximization

problem is not unimodal and it can be intractable to solve the maximization problem on the right

side of (6). To give an example where the objective function of the maximization problem on the

right side of (6) is not unimodal, consider a case with a single nest and seven products. The

problem parameters are given by γ1 = 0.4, (α11, . . . , α17) = (2.1, 1.0, 1.7, 1.4, 1.0, 12.0, 13.0),

(β11, . . . , β17) = (0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07), (l11, . . . , l17) = (30, 30, 30, 30, 30, 251, 330)

and (u11, . . . , u17) = (200, 200, 200, 200, 200, 368, 383). For this problem instance, Figure 1 plots

the objective function of the maximization problem on the right side of (6) as a function of y1,

fixing z at 24.74 and shows that this objective function is not necessarily unimodal. We note that

the value of z that we use in this figure is sensible as the optimal objective value of problem (2)

is close to 24.74 for this problem instance. So, we do not have unimodality even with sensible

values of z. Interestingly, Gallego and Wang (2011) consider the case where there are no lower

or upper bounds on the prices. The authors show that if the dissimilarity parameters of the

nests satisfy γi ≥ 1 − minj∈N βij/maxj∈N βij for all i ∈ M , then the objective function of the

maximization problem on the right side of (6) is always unimodal. In the example above, we

indeed have γi ≥ 1 − minj∈N βij/maxj∈N βij for all i ∈ M , indicating that this example satisfies

the condition in Gallego and Wang (2011). However, due to the presence of the lower and upper

bounds on the prices, we lose the unimodality property.

The objective function of the maximization problem on the right side of (6) is not necessarily

unimodal, but since this objective function is scalar, a possible strategy is to construct a grid over

the interval [L̄i, Ūi] and check the values of the objective function only at the grid points. To

11



pursue this line of thought, we use {ỹti : t = 1, . . . , Ti} to denote a collection of grid points such that

ỹti ≤ ỹt+1
i for all t = 1, . . . , Ti − 1. Furthermore, the collection of grid points should satisfy ỹ1i = L̄i

and ỹTi
i = Ūi to make sure that the grid points cover the interval [L̄i, Ūi]. In this case, instead of

considering all values of yi over the interval [L̄i, Ūi] as we do in (6), we can focus only on the grid

points and find the value of z that satisfies

z =
∑
i∈M

max
yi∈{ỹti : t=1,...,Ti}

{
yγii

gi(yi)

yi
− yγii z

}
. (7)

The important question is that what properties the grid should possess so that the solution obtained

by limiting our attention only to the grid points has a quantifiable performance guarantee. In the

next theorem, we show that if the optimal objective value gi(yi) of the knapsack problem in (5) does

not change too much at the successive grid points, then we can build on the value of z satisfying

(7) to construct a solution to problem (2) with a certain performance guarantee.

Theorem 2 (Requirements for a Good Grid). For some ρ ≥ 0, assume that the collection of grid

points {ỹti : t = 1, . . . , Ti} satisfy gi(ỹ
t+1
i ) ≤ (1 + ρ) gi(ỹ

t
i) for all t = 1, . . . , Ti − 1, i ∈ M . If ẑ

denotes the value of z that satisfies (7) and Z∗ denotes the optimal objective value of problem (2),

then we have (1 + ρ) ẑ ≥ Z∗.

Proof. To get a contradiction, assume that (1 + ρ) ẑ < Z∗. For all i ∈ M , we let y∗i be an optimal

solution to the maximization problem on the right side of (6) when this problem is solved with

z = Z∗. Furthermore, we let ti ∈ {1, . . . , Ti − 1} be such that y∗i ∈ [ỹtit , ỹ
ti+1
i ]. We have

1

1 + ρ
Z∗ > ẑ ≥

∑
i∈M

{(
ỹtii

)γi gi(ỹtii )
ỹtii

−
(
ỹtii

)γi ẑ} ≥
∑
i∈M

{
1

1 + ρ

(
ỹtii

)γi gi(y∗i )
ỹtii

−
(
ỹtii

)γi ẑ},

where the second inequality follows from the fact that ẑ corresponds to the value of z that satisfies

(7) and ỹtii is a feasible but not necessarily an optimal solution to the maximization problem on the

right side of (7) when this problem is solved with z = ẑ. To see that the third inequality holds, we

observe that gi(·) is increasing, in which case, since y∗i ∈ [ỹtii , ỹ
ti+1
i ], we obtain gi(y

∗
i ) ≤ gi(ỹ

ti+1
i ) ≤

(1+ρ) gi(ỹ
ti
i ). In this case, noting that γi ≤ 1 and ỹtii ≤ y∗i so that (ỹtii )

1−γi ≤ (y∗i )
1−γi , we continue

the chain of inequalities above as

∑
i∈M

{
1

1 + ρ

(
ỹtii

)γi gi(y∗i )
ỹtii

−
(
ỹtii

)γi ẑ} ≥
∑
i∈M

{
1

1 + ρ

(
y∗i
)γi gi(y∗i )

y∗i
−

(
y∗i
)γi ẑ}

≥ 1

1 + ρ

∑
i∈M

{(
y∗i
)γi gi(y∗i )

y∗i
−

(
y∗i
)γi Z∗

}
,

where the second inequality uses the assumption that (1+ρ) ẑ < Z∗. By using the last two displayed

chains of inequalities and noting the definition of y∗i , it follows that

Z∗ >
∑
i∈M

{(
y∗i
)γi gi(y∗i )

y∗i
−

(
y∗i
)γi Z∗

}
=

∑
i∈M

max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii Z∗

}
.
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By Proposition 1, Z∗ corresponds to the value of z that satisfies (6), but the last chain of inequalities

above shows that Z∗ does not satisfy (6), which is a contradiction.

When we work with grid points that satisfy the assumption of Theorem 2, this theorem allows

us to obtain a (1 + ρ)-approximate solution to problem (2) in the following fashion. We find the

value of z that satisfies (7) and use ẑ to denote this value. We let ŷi be an optimal solution to

the maximization problem on the right side of (7) when this problem is solved with z = ẑ. For

all i ∈ M , we solve problem (5) with yi = ŷi and use ŵi to denote an optimal solution to this

problem. In this case, it is possible to show that the solution (ŵ1, . . . , ŵm) provides an expected

revenue that deviates from the optimal expected revenue by at most a factor of 1 + ρ, satisfying

(1 + ρ)Π(ŵ1, . . . , ŵm) ≥ Z∗. To see this result, we note that since ẑ is the value of z that satisfies

(7) and ŷi is an optimal solution to the maximization problem on the right side of (7) when this

problem is solved with z = ẑ, we have

ẑ =
∑
i∈M

{
ŷγii

gi(ŷi)

ŷi
− ŷγii ẑ

}
. (8)

Also, since ŷi ∈ [L̄i, Ūi], the discussion right after the formulation of problem (5) shows that the

first constraint in this problem must be tight at the optimal solution when this problem is solved

with yi = ŷi. Therefore, noting that ŵi is an optimal solution to problem (5) when we solve

this problem with yi = ŷi, we obtain ŷi =
∑

j∈N ŵij and gi(ŷi) =
∑

j∈N ŵij (κij − ηij log ŵij) for

all i ∈ M . Replacing ŷi and gi(ŷi) in (8) by their equivalents given by the last two equalities,

we observe that ẑ and (ŵ1, . . . , ŵm) satisfy the equality in (4). So, if we collect all terms that

involve ẑ on the left side of (4), solve for ẑ and use the definition of Π(w1, . . . ,wm), then we get

ẑ = Π(ŵ1, . . . , ŵm). When the grid points satisfy the assumption of Theorem 2, we also have

(1+ρ) ẑ ≥ Z∗. So, we obtain (1+ρ)Π(ŵ1, . . . , ŵm) ≥ Z∗, showing that the expected revenue from

the solution (ŵ1, . . . , ŵm) deviates from the optimal by at most a factor of 1 + ρ.

The preceding discussion, along with Theorem 2, gives a framework for obtaining approximate

solutions to problem (2) with a performance guarantee. The crucial point is that the collection

of grid points {ỹti : t = 1, . . . , Ti} has to satisfy the assumption of Theorem 2. Also, the number

of grid points in this collection should be reasonably small to be able to solve the maximization

problem on the right side of (7) quickly. In the next section, we show that it is indeed possible

to construct a reasonably small collection of grid points that satisfies the assumption of Theorem

2. Before doing so, however, we make a brief remark on how to find the value of z that satisfies

(7). Thus far, we propose bisection search as a possible method to obtain this value of z. One

shortcoming of bisection search is that it may not terminate in finite time. To get around the fact

that bisection search may not terminate in finite time, we demonstrate that it is possible to obtain

the value of z satisfying (7) by solving a linear program.

To formulate the linear program, we note that the left side of the equality in (7) is increasing

in z, whereas the right side is decreasing. Therefore, the value of z that satisfies (7) corresponds
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to the smallest value of z such that the left side of the equality in (7) is still greater than or equal

to the right side. This observation immediately implies that finding the value of z satisfying (7) is

equivalent to solving the problem

min

{
z : z ≥

∑
i∈M

max
yi∈{ỹti : t=1,...,Ti}

{
yγii

gi(yi)

yi
− yγii z

}}
.

If we define the additional decision variables (x1, . . . , xm) so that xi represents the optimal objective

value of the maximization problem in the ith term of the sum on the right side of the constraint

above, then the problem above can be written as

min

{
z : z ≥

∑
i∈M

xi, xi ≥ yγii
gi(yi)

yi
− yγii z ∀ yi ∈ {ỹti : t = 1, . . . , Ti}, i ∈ M

}
, (9)

where the decision variables are z and (x1, . . . , xm). The problem above is a linear program with

1 +m decision variables and 1 +
∑

i∈M Ti constraints. So, as long as the number of grid points is

not too large, we can solve a tractable linear program to obtain the value of z satisfying (7).

5 Grid Construction

In this section, our goal is to show how we can construct a reasonably small collection of grid

points {ỹti : t = 1, . . . , Ti} that satisfies the assumption of Theorem 2. By noting the discussion

that follows Theorem 2 in the previous section, such a collection of grid points allows us to obtain

a solution to problem (2) with a given approximation guarantee. To construct the collection of

grid points, we begin by giving a number of fundamental properties of the knapsack problem in

(5). After we give these properties, we proceed to showing how we can build on these properties to

construct the collection of grid points.

5.1 Properties of Knapsack Problems

The first property that we have for problem (5) is that the optimal values of the decision variables

in this problem are monotonically increasing in yi as long as yi ∈ [L̄i, Ūi]. To see this property,

we associate the Lagrange multiplier λi with the first constraint in problem (5) and write the

Lagrangian as Li(wi, λi) =
∑

j∈N wij (κij − ηij logwij − λi) + λi yi, which is a concave function of

wi. Maximizing the Lagrangian Li(wi, λi) subject to the constraints that wij ∈ [Lij , Uij ] for all

j ∈ N , the optimal solution to problem (5) can be obtained by setting

wij = min

{
max

{
exp

(
κij
ηij

− 1− λi

ηij

)
, Lij

}
, Uij

}
(10)

for all j ∈ N . We observe that the expression on the right side above is decreasing in λi,

showing that the optimal value of the decision variable wij is decreasing in the optimal value

of the Lagrange multiplier. On the other hand, since we have yi ∈ [L̄i, Ūi], by the discussion that
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follows the formulation of problem (5), the first constraint in this problem must be tight at the

optimal solution. Therefore, noting (10), the optimal value of the Lagrange multiplier λi satisfies the

equality
∑

j∈N min{max{exp(κij/ηij − 1− λi/ηij), Lij}, Uij} = yi. The expression on the left side

of this equality is decreasing in λi, which implies that the optimal value of the Lagrange multiplier

is decreasing in the right side of the first constraint in problem (5). To sum up, if we use λ∗
i (yi)

to denote the optimal value of the Lagrange multiplier for the first constraint in problem (5) as a

function of the right side of this constraint, then λ∗
i (yi) satisfies∑

j∈N
min

{
max

{
exp

(
κij
ηij

− 1− λ∗
i (yi)

ηij

)
, Lij

}
, Uij

}
= yi. (11)

Furthermore, λ∗
i (yi) is decreasing in yi. Since the optimal value of the decision variable wij in

problem (5) is decreasing in the optimal value of the Lagrange multiplier and λ∗
i (yi) is decreasing

in yi, it follows that the optimal value of the decision variable wij in problem (5) is increasing in

yi, as desired. Therefore, we can let ζij and ξij be such that

exp

(
κij
ηij

− 1− λ∗
i (ζij)

ηij

)
= Lij and exp

(
κij
ηij

− 1− λ∗
i (ξij)

ηij

)
= Uij , (12)

in which case, (10) implies that if yi = ζij , then we have wij = Lij in the optimal solution to

problem (5), whereas if yi = ξij , then we have wij = Uij . Also, since the optimal value of the

decision variable wij is increasing in yi, the optimal value of the decision variable wij in problem

(5) satisfies wij = Lij for all yi ≤ ζij , whereas wij = Uij for all yi ≥ ξij . In this way, ζij and ξij

correspond to the two threshold values of the right side of the first constraint in problem (5) such

that if yi ≤ ζij , then the optimal value of the decision variable wij is always Lij , whereas if yi ≥ ξij ,

then the optimal value of the decision variable wij is always Uij .

We note that there may not exist a value of ζij or ξij satisfying (12). If this is the case, then

we set ζij = −∞ or ξij = ∞. Building on the discussion above, we obtain the next lemma.

Lemma 3 (Intervals). For any j ∈ N , there exists an interval [ζij , ξij ] such that the optimal value

of the decision variable wij in problem (5) satisfies wij = Lij when we have yi ≤ ζij, whereas

wij = Uij when we have yi ≥ ξij. Furthermore, if yi ∈ [ζij , ξij ], then we can drop the constraint

wij ∈ [Lij , Uij ] in problem (5) without changing the optimal solution to this problem.

Proof. We let ζij and ξij be as defined in (12), in which case, the first part follows from the

discussion right before the lemma. To show the second part, we let w∗
i be the optimal solution

to problem (5) and λ∗
i (yi) be the corresponding Lagrange multiplier for the first constraint. Since

yi ∈ [ζij , ξij ] and λ∗
i (yi) is decreasing in yi, (12) implies that exp(κij/ηij − 1− λ∗

i (yi)/ηij) ≥ Lij and

exp(κij/ηij − 1− λ∗
i (yi)/ηij) ≤ Uij . By the last two inequalities and (10), the optimal value of the

decision variable wij in problem (5) is w∗
ij = min{max{exp(κij/ηij − 1− λ∗

i (yi)/ηij), Lij}, Uij} =

exp(κij/ηij − 1− λ∗
i (yi)/ηij). Also, the last two inequalities imply that the max and min operators

for product j can be dropped from the sum in (11) without disturbing the equality, showing that
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λ∗
i (yi) is still the optimal value of the Lagrange multiplier for the first constraint in problem (5)

when we drop the constraint wij ∈ [Lij , Uij ]. In this case, we let ŵi be the optimal solution

to problem (5) when we drop the constraint wij ∈ [Lij , Uij ], together with the corresponding

Lagrange multiplier λ∗
i (yi) for the first constraint. When we drop the constraint wij ∈ [Lij , Uij ],

setting Lij = −∞ and Uij = ∞ in (10) implies that the optimal value of the decision variable wij

is given by ŵij = exp(κij/ηij − 1− λ∗
i (yi)/ηij). Thus, it follows that w

∗
ij = ŵij , as desired.

The second property that we have for problem (5) is that we can partition the extended real

line [−∞,∞] into a number of intervals {[νki , ν
k+1
i ] : k = 1, . . . ,Ki} such that if we solve problem

(5) for any yi ∈ [νki , ν
k+1
i ], then we can immediately fix the values of some of the decision variables

at their upper or lower bounds and not impose the upper and lower bound constraints at all on the

remaining decision variables. To see this property, we note that if we plot the 2n points in the set

{ζij : j ∈ N} ∪ {ξij : j ∈ N} on the extended real line [−∞,∞], then they partition the extended

real line into at most 2n + 1 intervals. We denote these intervals by {[νki , ν
k+1
i ] : k = 1, . . . ,Ki}

with ν1i = −∞ and νKi+1
i = ∞. Since the intervals {[νki , ν

k+1
i ] : k = 1, . . . ,Ki} are obtained

by partitioning the real line with the points {ζij : j ∈ N} ∪ {ξij : j ∈ N}, it follows that for

any k = 1, . . . ,Ki and j ∈ N , we must have [νki , ν
k+1
i ] ⊂ [ζij , ξij ], or [νki , ν

k+1
i ] ⊂ [−∞, ζij ], or

[νki , ν
k+1
i ] ⊂ [ξij ,∞]. In this case, we define the sets of products Lk

i , Uk
i and Fk

i as

Lk
i = {j ∈ N : [νki , ν

k+1
i ] ⊂ [−∞, ζij ]} Uk

i = {j ∈ N : [νki , ν
k+1
i ] ⊂ [ξij ,∞]}

Fk
i = {j ∈ N : [νki , ν

k+1
i ] ⊂ [ζij , ξij ]}.

Consider problem (5) with a value of yi satisfying yi ∈ [νki , ν
k+1
i ] for some k = 1, . . . ,Ki. If product

j is in the set Lk
i , then we have [νki , ν

k+1
i ] ⊂ [−∞, ζij ]. Since yi ∈ [νki , ν

k+1
i ], we obtain yi ≤ ζij ,

in which case, Lemma 3 implies that the optimal value of the decision variable wij in problem

(5) is Lij . By following the same reasoning, if product j is in the set Uk
i , then the optimal value

of the decision variable wij in problem (5) is Uij . Finally, if product j is in the set Fk
i , then we

have [νki , ν
k+1
i ] ⊂ [ζij , ξij ], but since yi ∈ [νki , ν

k+1
i ], we obtain yi ∈ [ζij , ξij ], in which case, by

Lemma 3, we can drop the constraint wij ∈ [Lij , Uij ] in problem (5) without changing the optimal

solution. Therefore, whenever we solve problem (5) with a value of yi ∈ [νki , ν
k+1
i ], we can fix the

values of the decision variables in the sets Lk
i and Uk

i respectively at their lower and upper bounds

and not impose the upper and lower bound constraints on the decision variables in the set Fk
i . The

observations in this paragraph yield the next lemma.

Lemma 4 (Partition). There exist intervals {[νki , ν
k+1
i ] : k = 1, . . . ,Ki} partitioning [L̄i, Ūi] such

that for any yi ∈ [νki , ν
k+1
i ], the optimal solution to problem (5) can be obtained by solving

max

{∑
j∈N

wij (κij − ηij logwij) :
∑
j∈N

wij ≤ yi, wij = Lij ∀ j ∈ Lk
i , wij = Uij ∀ j ∈ Uk

i

}
(13)

for some subsets of products Lk
i , Uk

i ⊂ N that depend on the interval k containing yi but not on

the specific value of yi. Furthermore, we have Ki = O(n).
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Proof. Constructing the intervals {[νki , ν
k+1
i ] : k = 1, . . . ,Ki} as defined in the discussion right

before the lemma, the first part follows by this discussion, as long as we take the intersection

of each one of these intervals with [L̄i, Ūi]. To see that the second part holds, since the points

{ζij : j ∈ N}∪{ξij : j ∈ N} partition the extended real line into at most 2n+1 intervals and these

intervals correspond to {[νki , ν
k+1
i ] : k = 1, . . . ,Ki}, Ki is at most 2n+ 1 = O(n).

Lemma 4 becomes useful when constructing a collection of grid points that satisfies the

assumption of Theorem 2. We focus on this task in the next section.

5.2 Properties of Grid Points

In this section, we turn our attention to constructing a collection of grid points {ỹti : t = 1, . . . , Ti}
that satisfies the assumption of Theorem 2. To that end, we choose a fixed value of ρ > 0 and

consider the grid points that are obtained by

Ỹ kq
i =

∑
j∈Lk

i

Lij +
∑
j∈Uk

i

Uij + (1 + ρ)q (14)

for k = 1, . . . ,Ki and q = . . . ,−1, 0, 1, . . .. In the expression above, Lk
i , Uk

i andKi are such that they

satisfy Lemma 4. In problem (5), once we fix the decision variables in Lk
i at their lower bounds and

the decision variables in Uk
i at their upper bounds, the sum of the remaining decision variables is at

least
∑

j∈N\(Lk
i ∪Uk

i )
Lij and at most

∑
j∈N\(Lk

i ∪Uk
i )

Uij . Therefore, we choose the possible values for

q in (14) such that the smallest value of (1+ρ)q does not stay above
∑

j∈N\(Lk
i ∪Uk

i )
Lij and the largest

value of (1 + ρ)q does not stay below
∑

j∈N\(Lk
i ∪Uk

i )
Uij . If Lk

i ∪ Uk
i = N , then using a single value

of q = −∞ suffices. Otherwise, using ⌊·⌋ and ⌈·⌉ to denote the round down and round up functions,

we can choose the smallest value of q as qLi = ⌊log(minj∈N Lij)/ log(1 + ρ)⌋ and the largest value

of q as qUi = ⌈log(nmaxj∈N Uij)/ log(1 + ρ)⌉. In this case, letting σi = maxj∈N Uij/minj∈N Lij , we

have qUi − qLi = O(log(nσi)/ log(1 + ρ)).

To construct a collection of grid points that satisfies the assumption of Theorem 2, we

augment the set of points {Ỹ kq
i : k = 1, . . . ,Ki, q = qLi , . . . , q

U
i } defined above with the set of

points {νki : k = 1, . . . ,Ki + 1}, where the last set of points are obtained from the set of intervals

{[νki , ν
k+1
i ] : k = 1, . . . ,Ki} given in Lemma 4. We obtain our set of grid points {ỹti : t = 1, . . . , Ti}

by ordering the points in {Ỹ kq
i : k = 1, . . . ,Ki, q = qLi , . . . , q

U
i } ∪ {νki : k = 1, . . . ,Ki + 1} in

increasing order and dropping the ones that are not included in the interval [L̄i, Ūi]. Also, we

add the two points L̄i and Ūi into the collection of grid points to ensure that the smallest and

the largest one of the grid points {ỹti : t = 1, . . . , Ti} are respectively equal to L̄i and Ūi. Thus,

the collection of grid points constructed in this fashion satisfies ỹti ≤ ỹt+1
i for all t = 1, . . . , Ti − 1,

ỹ1i = L̄i and ỹTi
i = Ūi. Since |Ki| = O(n) and qUi − qLi = O(log(nσi)/ log(1 + ρ)), the number of

grid points in the collection is |Ti| = O(n+ n log(nσi)/ log(1 + ρ)).

There are two useful properties for the grid points {ỹti : t = 1, . . . , Ti} constructed by using

the approach above. The first property is that if ỹti and ỹt+1
i are two consecutive grid points, then
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they satisfy ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ] for some k = 1, . . . ,Ki. To see this property, if this property does

not hold, then we have ỹti ≤ νki ≤ ỹt+1
i for some k = 1, . . . ,Ki with one of the two inequalities

holding as a strict inequality. If this chain of inequalities holds, then since νki is a grid point itself,

we get a contradiction to the fact that ỹti and ỹt+1
i are two consecutive grid points, establishing the

first property. The second property is that if ỹti and ỹt+1
i are two consecutive grid points satisfying

ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ] for some k = 1, . . . ,Ki, then we have Ỹ kq

i ≤ ỹti ≤ ỹt+1
i ≤ Ỹ k,q+1

i for some

q = qLi , . . . , q
U
i − 1. The idea behind the second property is similar to the one used for the first

property. In particular, if the second property does not hold, then either we have ỹti ≤ Ỹ kq
i ≤ ỹt+1

i

for some q = qLi , . . . , q
U
i − 1 or we have ỹti ≤ Ỹ k,q+1

i ≤ ỹt+1
i for some q = qLi , . . . , q

U
i − 1 with one

of the last four inequalities holding as a strict inequality. If either one of the last two chains of

inequalities holds, then since Ỹ kq
i and Ỹ k,q+1

i are grid points themselves, we get a contradiction

to the fact that ỹti and ỹt+1
i are two consecutive grid points, establishing the second property. In

the next theorem, we use these properties along with Lemma 4 to show that the collection of grid

points {ỹti : t = 1, . . . , Ti} satisfies the assumption of Theorem 2.

Theorem 5 (Grid Construction). Assume that the collection of grid points {ỹti : t = 1, . . . , Ti} are

obtained by ordering the points in {Ỹ kq
i : k = 1, . . . ,Ki, q = qLi , . . . , q

U
i } ∪ {νki : k = 1, . . . ,Ki + 1}

in increasing order. In this case, we have gi(ỹ
t+1
i ) ≤ (1 + ρ) gi(ỹ

t
i) for all t = 1, . . . , Ti − 1.

Proof. If ỹti and ỹt+1
i are two consecutive grid points, then the first property right before the

statement of the theorem implies that there exists k = 1, . . . ,Ki such that ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ],

in which case, by the second property, it follows that there exists q = qLi , . . . , q
U
i − 1 such that

Ỹ kq
i ≤ ỹti ≤ ỹt+1

i ≤ Ỹ k,q+1
i . Subtracting

∑
j∈Lk

i
Lij +

∑
j∈Uk

i
Uij from the last chain of inequalities

and noting the definition of Ỹ kq
i in (14), we obtain

(1 + ρ)q ≤ ỹti −
∑
j∈Lk

i

Lij −
∑
j∈Uk

i

Uij ≤ ỹt+1
i −

∑
j∈Lk

i

Lij −
∑
j∈Uk

i

Uij ≤ (1 + ρ)q+1.

Using the chain of inequalities above, it follows that ỹt+1
i −

∑
j∈Lk

i
Lij −

∑
j∈Uk

i
Uij ≤ (1 + ρ)q+1 ≤

(1 + ρ) (ỹti −
∑

j∈Lk
i
Lij −

∑
j∈Uk

i
Uij). Since ỹti , ỹ

t+1
i ∈ [νki , ν

k+1
i ], Lemma 4 implies that the

optimal solution to problem (5) with yi = ỹti or yi = ỹt+1
i can be obtained by solving problem

(13) respectively with yi = ỹti or yi = ỹt+1
i . We let w∗

i be the optimal solution to problem (13)

when we solve this problem with yi = ỹt+1
i . Note that w∗

ij = Lij for all j ∈ Lk
i and w∗

ij = Uij for

all j ∈ Uk
i . We define the solution ŵi as ŵij = w∗

ij/(1 + ρ) for all j ∈ N \ (Lk
i ∪ Uk

i ), ŵij = Lij for

all j ∈ Lk
i and ŵij = Uij for all j ∈ Uk

i . In this case, we have

∑
j∈N\(Lk

i ∪Uk
i )

ŵij =
1

1 + ρ

∑
j∈N\(Lk

i ∪Uk
i )

w∗
ij ≤

1

1 + ρ

{
ỹt+1
i −

∑
j∈Lk

i

Lij −
∑
j∈Uk

i

Uij

}
≤ ỹti −

∑
j∈Lk

i

Lij −
∑
j∈Uk

i

Uij ,

where the first inequality is by the fact that w∗
i is a feasible solution to problem (13) when we

solve this problem with yi = ỹt+1
i and the second inequality follows from the fact that ỹt+1

i −∑
j∈Lk

i
Lij −

∑
j∈Uk

i
Uij ≤ (1+ ρ) (ỹti −

∑
j∈Lk

i
Lij −

∑
j∈Uk

i
Uij), which is shown at the beginning of
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the proof. Therefore, the chain of equalities above shows that ŵi is a feasible solution to problem

(13) when we solve this problem with yi = ỹti , in which case, we obtain

gi(ỹ
t
i) ≥

∑
j∈N

ŵij (κij − ηij log ŵij) =
∑

j∈N\(Lk
i ∪Uk

i )

w∗
ij

1 + ρ
(κij − ηij logw

∗
ij + ηij log(1 + ρ))

+
∑
j∈Lk

i

(κij − ηij logLij)Lij +
∑
j∈Uk

i

(κij − ηij logUij)Uij

≥ 1

1 + ρ

{ ∑
j∈N\(Lk

i ∪Uk
i )

w∗
ij (κij − ηij logw

∗
ij) +

∑
j∈Lk

i

(κij − ηij logLij)Lij +
∑
j∈Uk

i

(κij − ηij logUij)Uij

}

=
1

1 + ρ
gi(ỹ

t+1
i ),

where the first inequality uses the fact that ŵi is a feasible solution to problem (13) when solved

with yi = ỹti and this problem yields the optimal solution to problem (5) with yi = ỹti and the

second equality follows from the fact that w∗
i is the optimal solution to problem (13) when solved

with yi = ỹt+1
i . The chain of inequalities above establishes the desired result.

Therefore, the theorem above shows that the grid that we construct by using the set of points

{Ỹ kq
i : k = 1, . . . ,Ki, q = qLi , . . . , q

U
i } ∪ {νki : k = 1, . . . ,Ki + 1} satisfies the assumption of

Theorem 2. It is also useful to note that all of the discussion in this section continues to hold when

we use the no purchase preference weight wi0 to allow a customer to leave nest i without purchasing

anything. To accommodate this extension, all we need to do is to add wi0 to the left side of (11)

when defining λ∗
i (yi) and add wi0 to the right side of (14) when defining Ỹ kq

i .

5.3 Approximation Method

In this section, we put together all of our results so far to give the following algorithm that finds a

(1 + ρ)-approximate solution to problem (2).

Step 1. For all i ∈ M , j ∈ N , we compute ζij and ξij such that exp(κij/ηij−1−λ∗
i (ζij)/ηij) = Lij

and exp(κij/ηij − 1 − λ∗
i (ξij)/ηij) = Uij , where λ∗

i (yi) is as defined in (11). For each i ∈ M ,

the collection of points {ζij : j ∈ N} ∪ {ξij : j ∈ N} partition the extended real line into O(n)

intervals. We denote these intervals by {[νki , ν
k+1
i ] : k = 1, . . . ,Ki}.

Step 2. For all i ∈ M , k = 1, . . . ,Ki, we compute the sets Lk
i = {j ∈ N : [νki , ν

k+1
i ] ⊂ [−∞, ζij ]}

and Uk
i = {j ∈ N : [νki , ν

k+1
i ] ⊂ [ξij ,∞]}. We choose a fixed value of ρ > 0 and compute the

points Ỹ kq
i =

∑
j∈Lk

i
Lij +

∑
j∈Uk

i
Uij + (1 + ρ)q for all i ∈ M , k = 1, . . . ,Ki, q = qLi , . . . , q

U
i , where

qLi = ⌊log(minj∈N Lij)/ log(1 + ρ)⌋ and qUi = ⌈log(nmaxj∈N Uij)/ log(1 + ρ)⌉.

Step 3. For each i ∈ M , we order the points in the set {Ỹ kq
i : k = 1, . . . ,Ki, q = qLi , . . . , q

U
i } ∪

{νki : k = 1, . . . ,Ki + 1} in increasing order to obtain a collection of grid points. We drop the points

that are outside the interval [L̄i, Ūi] and add the points L̄i and Ūi so that the smallest and the
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largest one of the grid points are respectively equal to L̄i and Ūi. We use {ỹti : t = 1, . . . , Ti} to

denote the collection of grid points obtained in this fashion.

Step 4. By using the grid points {ỹti : t = 1, . . . , Ti} for all i ∈ M , we solve the linear program

in (9) and use ẑ to denote its optimal objective value. For all i ∈ M , we solve the maximization

problem on the right side of (7) with z = ẑ and use ŷi to denote its optimal solution.

Step 5. For all i ∈ M , we solve the knapsack problem in (5) with yi = ŷi and use ŵi to denote its

optimal solution. We return (ŵ1, . . . , ŵm) as a (1 + ρ)-approximate solution to problem (2).

In Steps 1, 2 and 3, we compute the collection of grid points {ỹti : t = 1, . . . , Ti}. Noting

Theorem 5, it follows that this collection of grid points satisfies the assumption of Theorem

2. In Step 4, the value of ẑ that we compute by solving the linear program in (9) corresponds

to the value of z satisfying (7). In Step 5, we compute the solution (ŵ1, . . . , ŵm) to problem

(2). By the discussion that follows the proof of Theorem 2, the expected revenue provided by

the solution (ŵ1, . . . , ŵm) deviates from the optimal expected revenue by at most a factor of

1 + ρ, satisfying (1 + ρ)Π(ŵ1, . . . , ŵm) ≥ Z∗. Letting σ = max{maxj∈N Uij/minj∈N Lij : i ∈ M},
we observe that there are O(n + n log(nσ)/ log(1 + ρ)) points in the collection of grid points

{ỹti : t = 1, . . . , Ti}. Therefore, noting the linear program in (9), the main computational effort

in obtaining a (1 + ρ)-approximate solution to problem (2) involves solving a linear program with

1 +m decision variables and O(mn+mn log(nσ)/ log(1 + ρ)) constraints.

6 Joint Assortment Offering and Pricing

Our development so far assumes that the choice of the products offered to customers are beyond

our control and all n products have to be offered in all m nests. In this section, we consider a

model that jointly decides which set of products to offer in each nest, along with the prices of the

offered products. Similar to our problem formulation in Section 2, we assume that the price of

each product has to satisfy the constraint pij ∈ [lij , uij ] with lij , uij ∈ [0,∞). If we set the price

of product j in nest i as pij , then its preference weight is given by wij = exp(αij − βij pij). We

continue viewing the preference weights as decision variables, so that the preference weight wij of

product j in nest i has to satisfy the constraint wij ∈ [Lij , Uij ] with Lij = exp(αij − βij uij) and

Uij = exp(αij − βij lij). In this case, using Si ⊂ N to denote the set of products that we offer in

nest i, if we offer the assortments, or subsets of products, (S1, . . . , Sm) over all nests and choose

the preference weights over all nests as (w1, . . . ,wm), then we obtain an expected revenue of

Θ(S1, . . . , Sm,w1, . . . ,wm)

=
1

1 +
∑

i∈M
(∑

j∈Si
wij

)γi ∑
i∈M

( ∑
j∈Si

wij

)γi
∑

j∈Si
wij (κij − ηij logwij)∑

j∈Si
wij

. (15)

The definition of the expected revenue function Θ(S1, . . . , Sm,w1, . . . ,wm) is similar to the

definition of Π(w1, . . . ,wm) in (1) and it can be derived by using an argument similar to the
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one in Section 2, but the expected revenue function above only uses the preference weights of the

products in the offered assortment. The second fraction above evaluates to 0/0 when Si = ∅ and

we treat 0/0 as zero throughout this section. Our goal is to solve the problem

ζ∗ = max
{
Θ(S1, . . . , Sm,w1, . . . ,wm) : Si ⊂ N ∀ i ∈ M, wi ∈ [Li,Ui] ∀ i ∈ M

}
. (16)

The idea that we use to solve the joint assortment offering and pricing problem above is similar to

the one used for solving our earlier pricing problem. We view the problem above as computing the

fixed point of an appropriately defined scalar function and this visualization allows us to relate our

problem to a knapsack problem. However, one crucial difference is that we need to characterize the

structure of the subsets of products to be offered in the optimal solution to problem (16).

Similar to the expected revenue function Π(w1, . . . ,wm) in (1), the expected revenue function

Θ(S1, . . . , Sm,w1, . . . ,wm) above assumes that if a customer decides to make a purchase in a

particular nest, then this customer must purchase one of the products offered in this nest. To

extend our model to allow a customer to leave a nest without purchasing anything, one possibility

is to use wi0 to denote the preference weight of the no purchase option in nest i, which is a constant

that does not depend on the prices of any of the products. In this case, if we offer the assortment

of products Si in nest i and a customer chooses this nest, then this customer leaves nest i without

purchasing anything with probability wi0/(wi0 +
∑

j∈Si
wij). If we use this approach to model

the possibility that a customer can leave a nest without making a purchase, then Davis et al.

(2011) show that the problem of finding the optimal assortment of products to offer in each nest

is NP-hard even when the prices of the products are fixed. To model the no purchase option in a

nest in a more tractable fashion, letting 1(·) be the indicator function, we propose associating the

preference weight 1(Si ̸= ∅)wi0 with the no purchase option in nest i. This way of modeling the

no purchase option is likely to be more appealing from a practical perspective since if we offer the

empty assortment in a nest, then customers are not attracted to this nest at all. All of our results

continue to hold when we use 1(Si ̸= ∅)wi0 to capture the preference weight of the no purchase

option in nest i. We elaborate on this extension at appropriate places in the paper.

6.1 Fixed Point Representation

We begin by giving a fixed point representation of problem (16). Our discussion closely follows the

one for our earlier pricing problem. So, while we present our discussion in full, we omit the proofs

whenever they resemble the earlier ones. Assume that we compute the value of z satisfying

z =
∑
i∈M

max
Si⊂N,wi∈[Li,Ui]

{( ∑
j∈Si

wij

)γi
∑

j∈Si
wij (κij − ηij logwij)∑

j∈Si
wij

−
( ∑

j∈Si

wij

)γi
z

}
. (17)

Following the same argument at the beginning of Section 3, one can check that if the value of z

satisfying (17) is given by ẑ, then we have ẑ = ζ∗, where ζ∗ is the optimal objective value of problem

(16). Furthermore, if the value of z satisfying (17) is ẑ and we use (Ŝi, ŵi) to denote an optimal
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solution to the maximization problem on the right side of (17) when we solve this problem with

z = ẑ, then it follows that (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) is an optimal solution to problem (16). One

crucial difficulty associated with solving the maximization problem on the right side of (17) is that

the decision variable Si in this problem can take 2n possible values, which can be too many to

enumerate when we have a reasonably large number of products. However, it turns out that we

can limit the number of possible values for Si in the optimal solution to only 1 + n. In this case,

we can enumerate all possible 1 + n values for the decision variable Si.

To limit the possible values for the decision variable Si, we assume that the products in each

nest are indexed in the order of decreasing price upper bounds so that ui1 ≥ ui2 ≥ . . . ≥ uin. We

use Nij to denote the subset of products that includes the first j products with the largest price

upper bounds in nest i. That is, Nij = {1, . . . , j}. We refer to such a subset as a nested by price

bound assortment. Using the convention that Ni0 = ∅, we let Ni = {Nij : j ∈ N ∪ {0}} to capture

all nested by price bound assortments in nest i. In the next theorem, we show that a nested by

price bound assortment solves the maximization problem on the right side of (17).

Theorem 6 (Optimal Assortments). For any z > 0, there exists an assortment S∗
i ∈ Ni that solves

the maximization problem on the right side of (17).

Proof. For notational brevity, we let Ri(Si,wi) =
∑

j∈Si
wij (κij − ηij logwij)/

∑
j∈Si

wij and

Wi(Si,wi) =
∑

j∈Si
wij , in which case, we can write the objective function of the maximization

problem on the right side of (17) as Wi(Si,wi)
γi(Ri(Si,wi) − z). To get a contradiction, we let

(S∗
i ,w

∗
i ) be an optimal solution to the maximization problem on the right side of (17) and assume

that there exist products k and l such that k < l, k ̸∈ S∗
i and l ∈ S∗

i . We show that if we

add product k into the assortment S∗
i with price uik, then we obtain a better solution for the

maximization problem on the right side of (17), establishing the desired result. In particular,

consider the solution (Ŝi, ŵi) obtained by setting Ŝi = S∗
i ∪ {k}, ŵik = exp(αik − βik uik) and

ŵij = w∗
ij for all j ∈ N \ {k}, which is equivalent to setting the price of product k as uik and not

changing the prices of the other products in the solution w∗
i . In this case, we have

Wi(Ŝi, ŵi)
γi(Ri(Ŝi, ŵi)− z) =

∑
j∈Ŝi

ŵij (κij − ηij log ŵij − z)

Wi(Ŝi, ŵi)1−γi

=

∑
j∈S∗

i
w∗
ij (κij − ηij logw

∗
ij − z) + ŵik (κik − ηik log ŵik − z)

Wi(Ŝi, ŵi)1−γi
, (18)

where the first equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi) and rearranging

the terms and the second equality uses the fact that Ŝi = S∗
i ∪ {k} and the products in S∗

i have

the same preference weights in solutions w∗
i and ŵi.

We proceed to lower bounding the last fraction above. It is possible to show that if product l

is included in the optimal solution to the maximization problem on the right side of (17), then the

preference weight of product l must satisfy κil − ηil logw
∗
il ≥ (1 − γi)Ri(S

∗
i ,w

∗
i ) + γi z. We defer
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the proof of this fact to Lemma 8 in Appendix A. Since (S∗
i ,w

∗
i ) is feasible to the maximization

problem on the right side of (17), we have w∗
il ≥ Lil = exp(αil − βil uil). Taking logarithms in this

inequality and noting κij = αij/βij and ηij = 1/βij , we get κil−ηil logw
∗
il ≤ uil. In this case, noting

k < l so that uik ≥ uil, we obtain κik − ηik log ŵik = κik − ηik log(exp(αik − βik uik)) = uik ≥ uil ≥
κil−ηil logw

∗
il ≥ (1−γi)Ri(S

∗
i ,w

∗
i )+γi z. To lower bound to numerator of the last fraction in (18),

we use the last chain of inequalities to get κik − ηik log ŵik − z ≥ (1 − γi)(Ri(S
∗
i ,w

∗
i ) − z). Thus,

we can lower bound the numerator of the right side of (18) by the expression∑
j∈S∗

i

w∗
ij (κij − ηij logw

∗
ij − z) + ŵik (1− γi)(Ri(S

∗
i ,w

∗
i )− z)

= (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i ) + ŵik (1− γi)),

where the equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi). To upper bound

the denominator of the last fraction in (18), we note that u1−γi is a concave function of u, satisfying

the subgradient inequality û1−γi ≤ (u∗)1−γi +(1−γi) (u
∗)−γi (û−u∗) for two points û and u∗. Thus,

we get Wi(Ŝi, ŵi)
1−γi ≤ Wi(S

∗
i ,w

∗
i )

1−γi + (1− γi)Wi(S
∗
i ,w

∗
i )

−γi (Wi(Ŝi, ŵi)−Wi(S
∗
i ,w

∗
i )). Using

these lower and upper bounds in (18), it follows that∑
j∈S∗

i
w∗
ij (κij − ηij logw

∗
ij − z) + ŵik (κik − ηik log ŵik − z)

Wi(Ŝi, ŵi)1−γi

≥ (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i ) + ŵik (1− γi))

Wi(S∗
i ,w

∗
i )

1−γi + (1− γi)Wi(S∗
i ,w

∗
i )

−γi (Wi(Ŝi, ŵi)−Wi(S∗
i ,w

∗
i ))

. (19)

Noting that Wi(Ŝi, ŵi) − Wi(S
∗
i ,w

∗
i ) = ŵik and factoring out Wi(S

∗
i ,w

∗
i )

−γi in the denominator

of the last fraction in (19), the last fraction above is equal to Wi(S
∗
i ,w

∗
i )

γi(Ri(S
∗
i ,w

∗
i )− z). Thus,

(18) and (19) show that Wi(Ŝi,w
∗
i )

γi(Ri(Ŝi, ŵi)− z) ≥ Wi(S
∗
i ,w

∗
i )

γi(Ri(S
∗
i ,w

∗
i )− z), establishing

that the solution (Ŝi, ŵi) provides an objective value for the maximization problem on the right

side of (17) that is at least as large as the one provided by the solution (S∗
i ,w

∗
i ).

The theorem above shows that we can replace the constraint Si ⊂ N on the right side of

(17) with Si ∈ Ni. Noting that |Ni| = O(n), we can deal with the decision variable Si in the

maximization problem on the right side of (17) simply by enumerating all of its possible values in

a brute force fashion. To deal with the high dimensionality of the decision variable wi, we define

gi(Si, yi) as the optimal objective value of the knapsack problem

gi(Si, yi) = max

{ ∑
j∈Si

wij (κij − ηij logwij) :
∑
j∈Si

wij ≤ yi, wij ∈ [Lij , Uij ] ∀j ∈ N

}
, (20)

which is the analogue of problem (5), but we focus only on the products in Si. Similar to the

discussion that follows problem (5), letting Ūi(Si) =
∑

j∈Si
min{max{exp(κij/ηij − 1), Lij}, Uij},

if we have yi > Ūi(Si), then the first constraint in the problem above is not tight at the optimal

solution. On the other hand, letting L̄i(Si) =
∑

j∈Si
Lij , if we have yi < L̄i(Si), then the problem

above is infeasible. Finally, if yi ∈ [L̄i(Si), Ūi(Si)], then the first constraint above is tight at the
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optimal solution. Therefore, the solution to the problem above can potentially change only as yi

takes values in the interval [L̄i(Si), Ūi(Si)]. So, instead of finding the value of z satisfying (17), we

propose finding the value of z satisfying

z =
∑
i∈M

max
Si∈Ni, yi∈[L̄i(Si),Ūi(Si)]

{
yγii

gi(Si, yi)

yi
− yγii z

}
. (21)

By following the outline of the proof of Proposition 1, it is possible to show that the values of z

that satisfy (17) and (21) are identical to each other and this common value corresponds to the

optimal objective value of problem (16).

The decision variable Si on the right side of (21) does not create a complication since |Ni| = O(n)

and we can simply check each possible value of this decision variable one by one. However, the

decision variable yi on the right side of (21) can be problematic since the objective function of the

maximization problem is not necessarily a unimodal function of yi for a fixed Si. As described in

the next section, we deal with this complication by constructing a grid.

We can make several extensions to the results in this section. Although our focus is particularly

on pricing problems with price bounds, we can extend the structural property in Theorem 6 to

cover the case where we do not have price bounds on some of the products. In particular, we

can show that if a product does not have a price upper bound, then it is always optimal to offer

this product in the maximization problem on the right side of (17). One way to see this result

is to assume that product k in nest i does not have a price upper bound and this product is

not offered in the optimal solution (S∗
i ,w

∗
i ), in which case, it is possible to check that we get

a contradiction. To see the contradiction, we note that the optimal solution (S∗
i ,w

∗
i ) satisfies∑

j∈S∗
i
w∗
ij (κij − ηij logw

∗
ij)/

∑
j∈S∗

i
w∗
ij − z ≥ 0. Otherwise, the optimal objective value of the

maximization problem on the right side of (17) is negative, but we can set Si = ∅ and obtain

a better objective value of zero. Also, the expression
∑

j∈S∗
i
w∗
ij (κij − ηij logw

∗
ij)/

∑
j∈S∗

i
w∗
ij is

a weighted average of the prices of the products in the assortment S∗
i . Thus, we can make this

expression larger if we add product k in nest i to the assortment S∗
i at a price that is larger than

the prices of all of the products in S∗
i . In other words, we can choose the price of product k in nest i

as p∗ik such that the corresponding preference weight w∗
ik satisfies κik−ηik logw

∗
ik ≥ κij − ηij logw

∗
ij

for all j ∈ S∗
i , in which case, we obtain

∑
j∈S∗

i ∪{k}
w∗
ij (κij − ηij logw

∗
ij)/

∑
j∈S∗

i ∪{k}
w∗
ij − z ≥∑

j∈S∗
i
w∗
ij (κij − ηij logw

∗
ij)/

∑
j∈S∗

i
w∗
ij − z ≥ 0. Since we also have

∑
j∈S∗

i ∪{k}
w∗
ij ≥

∑
j∈S∗

i
wij ,

the last two inequalities indicate that adding product k in nest i to the assortment S∗
i improves

the optimal objective value of the maximization problem on the right side of (17), which is a

contradiction. Thus, it is optimal to offer all of the products without price upper bounds. For the

remaining products with price upper bounds, we can follow the proof of Theorem 6 to show that

it is enough to consider nested by price bound assortments for these products.

In certain application settings, it may be desirable to limit the number of products offered in

each nest. If we have a constraint on the number of products offered in each nest, then it is not

necessarily true that a nested by price bound assortment is optimal for the maximization problem
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on the right side of (17). However, by using a significantly more involved argument, we can show

that if we have a constraint on the number of products offered in each nest, then the optimal value

of the decision variable Si is one of O(n2) possible values and we can identify each one of these

O(n2) possible values in a tractable fashion. Therefore, we can check all possible O(n2) values for

the decision variable Si when solving the maximization problem on the right side of (17). We defer

the details of this argument to Appendix B.

It is possible to check that all of the discussion in this section holds when we use the no purchase

preference weight 1(Si ̸= ∅)wi0 to capture the possibility that a customer may leave nest i without

making a purchase. To make this extension, all we need to do is to replace
∑

j∈Si
wij in (17) and

(20) with 1(Si ̸= ∅)wi0+
∑

j∈Si
wij and note that the optimal objective values of the maximization

problem on the right side of (17) and the knapsack problem in (20) are zero when Si = ∅. The proof
of Lemma 8 in Appendix A, which is used in the proof of Theorem 6, requires that

∑
j∈Si

wij = 0

when Si = ∅, but we still have 1(Si ̸= ∅)wi0 +
∑

j∈N wij = 0 when Si = ∅. Thus, Theorem 6

continues to hold when customers can leave a nest without making a purchase.

6.2 Approximation Framework and Grid Construction

In this section, we construct a grid to deal with the nonunimodal nature of the objective function

of the maximization problem on the right side of (21) and show that we can obtain solutions with

a certain performance guarantee by using this grid. For each Si ∈ Ni, we propose constructing

a separate grid {ỹti(Si) : t = 1, . . . , Ti(Si)}. These grid points are in increasing order such that

ỹti(Si) ≤ ỹt+1
i (Si) for all t = 1, . . . , Ti(Si)− 1. Also, we ensure that the smallest and the largest one

of the grid points satisfy ỹ1i (Si) = L̄i(Si) and ỹ
Ti(Si)
i (Si) = Ūi(Si) so that the grid points cover the

interval [L̄i(Si), Ūi(Si)]. In this case, instead of finding the value of z satisfying (21), we propose

checking the values of yi only at the grid points and finding the value of z satisfying

z =
∑
i∈M

max
Si∈Ni, yi∈{ỹti(Si) : t=1,...,Ti(Si)}

{
yγii

gi(Si, yi)

yi
− yγii z

}
. (22)

There are
∑

Si∈Ni
Ti(Si) possible values for the decision variable (Si, yi) in the maximization

problem on the right side above. Thus, solving this maximization problem is not too difficult

when the number of grid points is not large. The next theorem gives a sufficient condition under

which we can use the value of z satisfying (22) to obtain a good solution for problem (16).

Theorem 7 (Requirements for a Good Grid). For some ρ ≥ 0, assume that the collection of

grid points {ỹti(Si) : t = 1, . . . , Ti(Si)} satisfy gi(Si, ỹ
t+1
i (Si)) ≤ (1 + ρ) gi(Si, ỹ

t
i(Si)) for all t =

1, . . . , Ti(Si)− 1, Si ∈ Ni. If ẑ denotes the value of z that satisfies (22) and ζ∗ denotes the optimal

objective value of problem (16), then we have (1 + ρ) ẑ ≥ ζ∗.

The theorem above is analogous to Theorem 2 and it can be shown by following the same

reasoning in the proof of Theorem 2. By building on this theorem, we can construct an approximate
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solution to problem (16) with a certain performance guarantee. In particular, we find the value of z

satisfying (22) and denote this value by ẑ. We let (Ŝi, ŷi) be an optimal solution to the maximization

problem on the right side of (22) when this problem is solved with z = ẑ. For all i ∈ M , we solve

the knapsack problem in (20) with (Si, yi) = (Ŝi, ŷi) and let ŵi be an optimal solution to this

knapsack problem. In this case, it is possible to show that the solution (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) is

a (1+ρ)-approximate solution to problem (16). To see this result, since ẑ is the value of z satisfying

(22) and (Ŝi, ŷi) is an optimal solution to the maximization problem on the right side of (22) when

this problem is solved with z = ẑ, we have

ẑ =
∑
i∈M

{
ŷγii

gi(Ŝi, ŷi)

ŷi
− ŷγii ẑ

}
. (23)

Furthermore, since ŵi is an optimal solution to problem (20) when this problem is solved with

(Si, yi) = (Ŝi, ŷi), we have gi(Ŝi, ŷi) =
∑

j∈Ŝi
ŵij (κij − ηij log ŵij). Also, by the discussion that

follows the formulation of problem (20), since ŷi ∈ [L̄i(Ŝi), Ūi(Ŝi)], the first constraint in problem

(20) is tight at the optimal solution, yielding
∑

j∈Ŝi
ŵij = ŷi. In this case, using the last two

equalities in (23), we obtain

ẑ =
∑
i∈M

{( ∑
j∈Ŝi

ŵij

)γi
∑

j∈Ŝi
ŵij (κij − ηij log ŵij)∑

j∈Ŝi
ŵij

−
( ∑

j∈Ŝi

ŵij

)γi
ẑ

}
.

If we collect all terms that involve ẑ in the equality above on the left side, solve for ẑ and use the

definition of Θ(S1, . . . , Sm,w1, . . . ,wm) in (15), then we obtain ẑ = Θ(Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm). As

long as the grid points satisfy the assumption of Theorem 7, we also have (1 + ρ) ẑ ≥ ζ∗, in which

case, we obtain (1+ ρ)Θ(Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) = (1+ ρ) ẑ ≥ ζ∗. Therefore, it follows that if the

collection of grid points satisfies the assumption of Theorem 7, then the expected revenue provided

by the solution (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) deviates from the optimal expected revenue ζ∗ by no more

than a factor of 1 + ρ, as desired.

The key question is how we can construct a collection of grid points {ỹti(Si) : t = 1, . . . , Ti(Si)}
that satisfies gi(Si, ỹ

t+1
i (Si)) ≤ (1 + ρ) gi(Si, ỹ

t
i(Si)) for all t = 1, . . . , Ti(Si) − 1 so that the

assumption of Theorem 7 is satisfied. It turns out that the answer to this question is already

given in Section 5. In particular, the only difference between problems (5) and (20) is that

the former problem focuses on the full set of products N , whereas the latter problem focuses

on the products that are in Si. Therefore, for a fixed set of products Si, we can repeat the

same argument in Section 5, but restrict our attention only to the products in the set Si to

construct the collection of grid points {ỹti(Si) : t = 1, . . . , Ti(Si)} that satisfies gi(Si, ỹ
t+1
i (Si)) ≤

(1 + ρ) gi(Si, ỹ
t
i(Si)) for all t = 1, . . . , Ti(Si). In this case, the number of grid points in this

collection is Ti(Si) = O(n + n log(nσi(Si))/ log(1 + ρ)) = O(n + n log(nσ)/ log(1 + ρ)), where we

let σi(Si) = maxj∈Si Uij/minj∈Si Lij and σ = max{maxj∈N Uij/minj∈N Lij : i ∈ M}.

Finally, we note that we can find the value of z satisfying (22) by solving a linear program similar

to the one in (9). The only difference is that the second set of constraints in this linear program
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has to be replaced with xi ≥ yγii gi(Si, yi)/yi− yγii z for all Si ∈ Ni, yi ∈ {ỹti(Si) : t = 1, . . . , Ti(Si)},
i ∈ M . Noting that |Ni| = O(n) and Ti(Si) = O(n+n log(nσ)/ log(1+ ρ)), this linear program has

1+m decision variables and O(mn2 +mn2 log(nσ)/ log(1+ ρ)) constraints. The optimal objective

value of the linear program provides the value of z that satisfies (22). Once we have the value

of z that satisfies (22), we can follow the approach described right after Theorem 7 to find a

(1 + ρ)-approximate solution to problem (16).

7 Computational Experiments

In this section, we test the quality of the solutions obtained by the approximation method that we

propose in this paper. For economy of space, we present computational results for the first problem

variant where the set of products offered to customers is fixed and we determine the prices for

these products. The qualitative findings from our computational experiments do not change when

we consider the second problem variant, where we jointly determine the products that should be

offered to customers and their corresponding prices.

7.1 Experimental Setup

Throughout this section, we refer to our approximation method as APP. In particular, APP uses the

algorithm in Section 5.3 to find a (1+ρ)-approximate solution to problem (2). In our computational

experiments, we set ρ = 0.005 so that APP obtains a solution to problem (2) whose expected

revenue deviates from the optimal expected revenue by at most a factor of 1.005, corresponding

to a worst case optimality gap of 0.5%. We emphasize that APP ensures a performance guarantee

of 1 + ρ, but this performance guarantee is in worst case sense and the solution obtained by APP

for a particular problem instance can perform significantly better than what is predicted by the

worst case performance guarantee of 1 + ρ. So, a natural question is whether we can come up

with a more refined approach to assess the performance of the solution obtained by APP for a

particular problem instance. It turns out that we can solve a linear program to obtain an upper

bound on the optimal expected revenue in problem (2). To formulate this linear program, we let

{ȳti : t = 1, . . . , τi} be any collection of grid points such that ȳti ≤ ȳt+1
i for all t = 1, . . . , τi− 1. Also,

we assume that ȳ1i = L̄i and ȳτii = Ūi so that the grid points cover the interval [L̄i, Ūi]. In this

case, it is possible to show that the optimal objective value of the linear program

min

{
z : z ≥

∑
i∈M

xi, xi ≥
(
ȳti
)γi gi(ȳt+1

i )

ȳti
−

(
ȳti
)γi z ∀ t = 1, . . . , τi − 1, i ∈ M

}
(24)

provides an upper bound on the optimal expected revenue Z∗ in problem (2). In the linear program

above, the decision variables are z and (x1, . . . , xm). Theorem 9 in Appendix A shows that the

optimal objective value of the linear program above is indeed an upper bound on the optimal

expected revenue Z∗. It is worthwhile to note that the optimal objective value of problem (24) is

always an upper bound on the optimal expected revenue, irrespective of the number and placement
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of the grid points. However, if the grid points satisfy gi(ȳ
t+1
i ) ≤ (1+ρ) gi(ȳ

t
i) for all t = 1, . . . , τi−1

and i ∈ M , then Theorem 9 also shows that the upper bound provided the linear program above

deviates from the optimal expected revenue Z∗ by at most a factor of 1 + ρ. Thus, if we choose

the grid points in the linear program above carefully, then this linear program approximates the

optimal expected revenue with a factor of 1+ρ accuracy. For example, we can plug the grid points

given in Theorem 5 into problem (24) to approximate the optimal expected revenue with a factor

of 1+ ρ accuracy. Once we solve problem (24) with a particular set of grid points, we can compare

the optimal objective value of this linear program with the expected revenue from the solution

obtained by APP to get a feel for the optimality gap of the solution obtained by APP.

In our computational experiments, we generate a large number of problem instances. For each

problem instance, we compute the solution obtained by APP. Also, we solve the linear program in

(24) to obtain an upper bound on the optimal expected revenue. By comparing the expected revenue

from the solution obtained by APP with the upper bound on the optimal expected revenue, we assess

the optimality gap of APP. We use the following strategy to generate our problem instances. In all

of our test problems, the number of nests is equal to the number of products in each nest so that

m = n. To come up with the dissimilarity parameters of the nests, we generate γi from the uniform

distribution over [γL, γU ] for all i ∈ M . We use [γL, γU ] = [0.05, 0.35], [γL, γU ] = [0.35, 0.65] or

[γL, γU ] = [0.65, 1]. For all i ∈ M , j ∈ N , we generate αij from the uniform distribution over [−2, 2]

and βij from the uniform distribution over [0.5, 1.5]. To come up with the bounds on the prices,

after generating the parameters γi, αij and βij for all i ∈ M , j ∈ N , we solve problem (2) under

the assumption that there are no bounds on the prices of the products. We use p∗ij to denote the

optimal price of product j in nest i when there are no price bounds. In this case, we generate

the bounds lij and uij on the price of product j in nest i such that we either have p∗ij < lij or

p∗ij > uij . In this way, if we solve problem (2) without any price bounds, then the unconstrained

price of product j in nest i does not lie in the interval [lij , uij ]. Our hope is that this approach allows

us to generate problem instances where the price bounds are binding at the optimal solution. To be

specific, after computing p∗ij for all i ∈ M , j ∈ N , we set either [lij , uij ] = [p∗ij +∆, 1.75× p∗ij +∆]

or [lij , uij ] = [0.25 × p∗ij − ∆, p∗ij − ∆], each case occurring with equal probability. If one of the

end points of the interval [0.25 × p∗ij −∆, p∗ij −∆] turns out to be negative, then we round it up

to zero. When we generate the price bounds in this fashion, the unconstrained price p∗ij of product

j in nest i violates one of the price bounds lij or uij by about ∆. Furthermore, the width of the

interval [lij , uij ] is about 75% of the unconstrained price of product j in nest i. Thus, products

that tend to have larger prices also tend to have wider price bound intervals.

In our computational experiments, we vary the common value of m and n over {5, 10, 15},
corresponding to three different numbers of nests and numbers of products in each nest. We can

view the common value of m and n as the scale of the problem instance, measuring the number of

decision variables. We vary [γL, γU ] over {[0.05, 0.35], [0.35, 0.65], [0.65, 1]}, yielding low, medium

and high levels of dissimilarity parameters. Finally, we vary ∆ over {1, 2, 3}, corresponding to

three different levels of violation of the price upper and lower bounds when we solve problem (2)
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without any price bounds. Varying three parameters over three levels, we obtain 27 parameter

combinations. For each parameter combination, we generate 100 individual problem instances by

using the approach described in the paragraph above. For each individual problem instance, we

compute the solution obtained by APP. Also, we solve the linear program in (24) to obtain an upper

bound on the optimal expected revenue. The grid points {ȳti : t = 1, . . . , τi} that we use in this linear

program are identical to the grid points {ỹti : t = 1, . . . , Ti} that we use for APP. Thus, by Theorem

5, the grid points {ȳti : t = 1, . . . , τi} satisfy gi(ȳ
t+1
i ) ≤ (1+ρ) gi(ȳ

t
i) for all t = 1, . . . , τi−1, in which

case, Theorem 9 implies that the upper bound provided by the linear program in (24) approximates

the optimal expected revenue with a factor of 1 + ρ accuracy. By comparing the expected revenue

from the solution obtained by APP with the upper bound on the optimal expected revenue, we

assess the optimality gap of the solution obtained by APP.

7.2 Computational Results

We give our main computational results in Table 1. In this table, the first three columns show

the parameter combination for our test problems by using the tuple (m, [γL, γU ],∆), where the

first component gives the common value for the number of nests and the number of products

in each nest, the second component corresponds to the interval over which we generate the

dissimilarity parameters and the third component characterizes how much the unconstrained prices

violate the price bounds. The fourth and fifth columns respectively show the average lower and

upper price bounds when we generate our test problems by using the approach described in the

previous section. The average is computed over all products in all nests and over all problem

instances in a particular parameter combination. We recall that we generate 100 individual problem

instances in each parameter combination. Our goal in these two columns is to give a feel for the

magnitude of the prices and their bounds. The sixth column shows the percent gap between

the upper bound on the optimal expected revenue and the expected revenue from the solution

obtained by APP, averaged over all problem instances in a particular parameter combination. In

particular, for problem instance k, we let UBk be the upper bound on the optimal expected

revenue provided by the optimal objective value of the linear program in (24) and RAPPk be

the expected revenue from the solution obtained by APP. In this case, the sixth column shows
1

100

∑100
k=1 100 × (UBk − RAPPk)/UBk. The seventh column shows the maximum percent gap

between the upper bound on the optimal expected revenue and the expected revenue from the

solution obtained by APP over all problem instances in a parameter combination. That is, the

seventh column shows max{100× (UBk − RAPPk)/UBk : k = 1, . . . , 100}. The eighth column

shows the average CPU seconds for APP to obtain a solution for one problem instance. Finally,

the ninth column shows the average number of points in the grid used by APP, where the average

is computed over all nests and over all problem instances in a parameter combination.

Our results indicate that the solutions obtained by APP perform remarkably well. Over all of

our test problems, the average optimality gap of these solutions is no larger than 0.117%, which
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Avg. Price % Gap with No. of
Param. Comb. Bounds Upp. Bnd. CPU Grid

m [γL, γU ] ∆ Low. Upp. Avg. Max. Secs. Points

5 [0.05, 0.35] 1 6.83 15.09 0.289% 0.430% 14.79 3,550
5 [0.05, 0.35] 2 7.05 15.08 0.254% 0.402% 14.88 3,550
5 [0.05, 0.35] 3 7.64 16.04 0.232% 0.412% 15.71 3,694

5 [0.35, 0.65] 1 1.92 3.85 0.114% 0.213% 1.67 500
5 [0.35, 0.65] 2 2.32 3.74 0.032% 0.142% 1.44 396
5 [0.35, 0.65] 3 2.92 4.07 0.022% 0.200% 1.39 367

5 [0.65, 1.00] 1 2.03 4.17 0.153% 0.214% 1.94 583
5 [0.65, 1.00] 2 2.50 4.16 0.029% 0.126% 1.59 430
5 [0.65, 1.00] 3 3.01 4.27 0.008% 0.101% 1.57 409

10 [0.05, 0.35] 1 8.38 18.59 0.224% 0.375% 41.17 4,762
10 [0.05, 0.35] 2 8.11 17.66 0.185% 0.367% 40.03 4,668
10 [0.05, 0.35] 3 8.87 18.92 0.173% 0.370% 43.95 5,072

10 [0.35, 0.65] 1 2.22 4.66 0.133% 0.180% 4.74 701
10 [0.35, 0.65] 2 2.71 4.63 0.030% 0.062% 3.83 515
10 [0.35, 0.65] 3 3.21 4.73 0.007% 0.052% 3.51 444

10 [0.65, 1.00] 1 2.60 5.78 0.191% 0.258% 6.80 996
10 [0.65, 1.00] 2 3.15 5.91 0.123% 0.203% 5.89 821
10 [0.65, 1.00] 3 3.61 5.82 0.014% 0.060% 4.72 596

15 [0.05, 0.35] 1 8.77 19.26 0.186% 0.342% 64.73 4,926
15 [0.05, 0.35] 2 8.93 19.40 0.157% 0.335% 67.03 5,116
15 [0.05, 0.35] 3 9.37 19.97 0.150% 0.305% 72.82 5,544

15 [0.35, 0.65] 1 2.48 5.38 0.148% 0.210% 8.88 866
15 [0.35, 0.65] 2 2.97 5.41 0.045% 0.086% 7.45 676
15 [0.35, 0.65] 3 3.48 5.40 0.009% 0.038% 6.29 528

15 [0.65, 1.00] 1 3.21 7.08 0.125% 0.209% 15.43 1,425
15 [0.65, 1.00] 2 3.59 7.11 0.083% 0.183% 14.21 1,293
15 [0.65, 1.00] 3 4.08 7.11 0.041% 0.075% 12.96 1,140

Average 0.117%

Table 1: Performance of APP.

is significantly better than the worst case optimality gap of 0.5% that we ensure by choosing

ρ = 0.005. The optimality gaps are particularly small when [γL, γU ] is close to one so that the

dissimilarity parameters of the nests tend to be close to one. For example, if we focus only on

the problem instances with [γL, γU ] = [0.65, 1], then the average optimality gap comes out to be

0.085%, whereas the average optimality gap comes out to be 0.206% when we focus only on the

problem instances with [γL, γU ] = [0.05, 0.35]. If the dissimilarity parameters are all equal to one,

then the objective function of the maximization problem on the right side of (6) is gi(yi)− yi z, in

which case, noting that gi(yi) is a concave function of yi, the objective value of this maximization

problem is a concave function of yi as well. Thus, intuitively speaking, the objective function of

the maximization problem on the right side of (6) behaves well when we have γi = 1, avoiding

the pathological cases such as the one shown in Figure 1. When [γL, γU ] = [0.65, 1] so that the

dissimilarity parameters of the nests take on values closer to one, the performance of APP also turns

out to be substantially better than what is predicted by the worst case performance guarantee of

0.5%. Nevertheless, even when [γL, γU ] = [0.05, 0.35] so that the dissimilarity parameters can be far

from one, APP can effectively find solutions with the desired performance guarantee. Over all of our

test problems, the maximum optimality gap of the solutions obtained by APP is 0.43%. Similar to
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Param. Comb.
(5, [0.65, 1], 1)

CPU
ρ Secs.

0.01 0.93
0.005 2.13
0.001 8.78

0.0005 19.40

Param. Comb.
(15, [0.05, 0.35], 3)

CPU
ρ Secs.

0.01 12.81
0.005 60.76
0.001 124.58

0.0005 398.21

Table 2: CPU seconds for APP as a function of the performance guarantee ρ.

our observations for the average optimality gaps, the parameter combinations for which we obtain

maximum optimality gaps that are close to 0.5% correspond to the parameter combinations with

[γL, γU ] = [0.05, 0.35], yielding dissimilarity parameters further from one.

The CPU seconds for APP are reasonable for practical implementation. In our largest problem

instances with m = 15, noting that n = m, there are a total of 225 products and we can obtain

solutions for these problem instances in about one minute. Furthermore, the CPU seconds for APP

scale in a graceful fashion. For example, if we double m, then the total number of products increases

by a factor of four and the CPU seconds increase by no more than a factor of four. In Table 2, we

show the CPU seconds for APP as a function of the performance guarantee ρ. The left portion of

the table focuses on a problem instance with m = n = 5, [γL, γU ] = [0.65, 1] and ∆ = 1, whereas

the right portion focuses on a problem instance with m = n = 15, [γL, γU ] = [0.05, 0.35] and

∆ = 3. The parameter combination for the second problem instance corresponds to the parameter

combination with the largest CPU seconds in Table 1. In each portion of Table 2, the first column

shows the performance guarantee ρ and the second column shows the CPU seconds for APP. The

results indicate that we can obtain a solution with a worst case optimality gap of 0.05% in about

six minutes, even for a problem instance with 225 products. If we are content with a worst case

optimality gap of 1%, then we can obtain solutions in about 10 seconds.

It is useful to note that naive approaches for finding solutions to problem (2) can yield poor

results. For example, a first cut approach for finding a solution to problem (2) is to solve this

problem under the assumption that there are no bounds on the prices of the products. If the

unconstrained prices obtained in this fashion are outside the price bound constraints, then we can

round them up or down to their corresponding lower or upper bounds. In Table 3, we show the

performance of this approach for the test problems in our experimental setup. The first three

columns in this table show the parameter combination for our test problems. The fourth column

shows the average percent gap between the upper bound on the optimal expected revenue and the

expected revenue from the solution that we obtain by rounding the unconstrained prices up or

down to the price bounds, whereas the fifth column shows the maximum percent gap between the

upper bound on the optimal expected revenue and the expected revenue obtained by rounding the

unconstrained prices. The average and maximum percent gaps are computed over the same 100

problem instances in Table 1. The results in Table 3 indicate that rounding the unconstrained prices

up or down to the price bounds can perform poorly. There are parameter combinations where this
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% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

5 [0.05, 0.35] 1 0.658% 3.798%
5 [0.05, 0.35] 2 0.645% 4.285%
5 [0.05, 0.35] 3 1.154% 7.765%

5 [0.35, 0.65] 1 0.114% 0.213%
5 [0.35, 0.65] 2 1.930% 14.749%
5 [0.35, 0.65] 3 8.267% 32.248%

5 [0.65, 1.00] 1 0.153% 0.214%
5 [0.65, 1.00] 2 6.928% 37.986%
5 [0.65, 1.00] 3 39.667% 83.798%

Average 6.613%

% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

10 [0.05, 0.35] 1 1.373% 7.347%
10 [0.05, 0.35] 2 1.587% 6.777%
10 [0.05, 0.35] 3 2.569% 7.360%

10 [0.35, 0.65] 1 0.133% 0.180%
10 [0.35, 0.65] 2 1.126% 15.492%
10 [0.35, 0.65] 3 17.466% 42.090%

10 [0.65, 1.00] 1 0.213% 0.845%
10 [0.65, 1.00] 2 0.445% 8.797%
10 [0.65, 1.00] 3 10.869% 64.471%

Average 3.978%

% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

15 [0.05, 0.35] 1 1.483% 3.613%
15 [0.05, 0.35] 2 2.069% 4.575%
15 [0.05, 0.35] 3 3.439% 9.326%

15 [0.35, 0.65] 1 0.148% 0.210%
15 [0.35, 0.65] 2 0.050% 0.512%
15 [0.35, 0.65] 3 14.519% 34.727%

15 [0.65, 1.00] 1 0.630% 38.811%
15 [0.65, 1.00] 2 0.337% 2.133%
15 [0.65, 1.00] 3 2.402% 20.070%

Average 2.768%

Table 3: Performance of the prices obtained by rounding the unconstrained prices up or down to
the price bounds.

approach results in average optimality gaps of about 40%. Over all parameter combinations, the

average optimality gap of this approach is over 4%. The dramatically high maximum optimality

gaps also indicate that we can generate test problems where the unconstrained prices give essentially

no indication of the optimal prices under price bounds.

If the parameters {βij : j ∈ N} are identical to each other within each nest i and there are no

bounds on the prices, then Li and Huh (2011) show that the optimal solution to problem (2) can

be obtained by finding the maximizer of a scalar concave function. The computational complexity

of APP remains the same when we work with test problems where the parameters {βij : j ∈ N}
are identical to each other within each nest i and there are bounds on the prices. Although APP

does not enjoy further efficiencies, it is worthwhile to check whether this approximation method

provides noticeably better performance when working with such test problems. Table 4 shows the

performance of APP on test problems where the parameters {βij : j ∈ N} are identical to each

other within each nest i and there are bounds on the prices. We generate these test problems by

using the same approach described in the previous section. The only difference is that we generate

β̄i for each nest i from the uniform distribution over [0.5, 1.5] and set βij = β̄i for all j ∈ N . In this

way, we ensure that the parameters {βij : j ∈ N} are identical to each other within each nest i. The

first three columns in Table 4 show the parameter combination for our test problems. The fourth

column shows the percent gap between the upper bound on the optimal expected revenue and the

expected revenue from the solution obtained by APP, averaged over all problem instances in a

particular parameter configuration. The fifth column shows the average percent gap between the

upper bound on the optimal expected revenue and the expected revenue from the solution obtained

by rounding the unconstrained prices up or down to the price bounds. Comparing the results in

Table 4 to those in Table 1 indicates that the performance of APP does not change noticeably when

we work with test problems where the parameters {βij : j ∈ N} are identical to each other within

each nest i. Although we do not report the maximum optimality gaps in Table 4, the maximum

optimality gap for APP over all test problems is 0.403%. We do not report the average price bounds,

CPU seconds and numbers of grid points either for economy of space, but these values have the
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Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

5 [0.05, 0.35] 1 0.252% 0.604%
5 [0.05, 0.35] 2 0.242% 0.596%
5 [0.05, 0.35] 3 0.236% 1.238%

5 [0.35, 0.65] 1 0.101% 0.101%
5 [0.35, 0.65] 2 0.042% 7.371%
5 [0.35, 0.65] 3 0.028% 11.375%

5 [0.65, 1.00] 1 0.151% 0.152%
5 [0.65, 1.00] 2 0.032% 18.595%
5 [0.65, 1.00] 3 0.010% 52.444%

Average 0.122% 10.275%

Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

10 [0.05, 0.35] 1 0.184% 0.619%
10 [0.05, 0.35] 2 0.166% 0.726%
10 [0.05, 0.35] 3 0.168% 2.494%

10 [0.35, 0.65] 1 0.135% 0.135%
10 [0.35, 0.65] 2 0.038% 8.420%
10 [0.35, 0.65] 3 0.010% 31.322%

10 [0.65, 1.00] 1 0.210% 0.220%
10 [0.65, 1.00] 2 0.143% 3.725%
10 [0.65, 1.00] 3 0.027% 29.164%

Average 0.120% 8.536%

Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

15 [0.05, 0.35] 1 0.151% 0.687%
15 [0.05, 0.35] 2 0.142% 0.749%
15 [0.05, 0.35] 3 0.147% 3.910%

15 [0.35, 0.65] 1 0.165% 0.165%
15 [0.35, 0.65] 2 0.058% 4.441%
15 [0.35, 0.65] 3 0.012% 37.764%

15 [0.65, 1.00] 1 0.176% 4.105%
15 [0.65, 1.00] 2 0.131% 1.958%
15 [0.65, 1.00] 3 0.049% 13.065%

Average 0.115% 7.427%

Table 4: Computational results for the test problems where the parameters {βij : j ∈ N} are
identical within each nest i.

same magnitudes as those in Table 1. In particular, the largest CPU seconds for APP over all test

problems is about 40 seconds. Finally, the prices obtained by rounding the unconstrained prices

up or down to the price bounds can provide poor performance, yielding average optimality gaps of

about 50% for certain parameter combinations.

At appropriate places in the paper, we describe how we can use the no purchase preference

weight wi0 to allow a customer to leave nest i without making a purchase. Table 5 shows the

performance of APP when customers can leave a nest without making a purchase. The test problems

that we consider in this table are generated by using the same approach described in the previous

section. The only difference is that to come up with the no purchase preference weights, we generate

wi0 from the uniform distribution over [0, 1] for all i ∈ M . These no purchase preference weights are

comparable to the value of one that we use for the no purchase preference weight in the definition

of Qi(w1, . . . ,wm). The structure of Table 5 is identical to that of Table 4. The results in Table 5

indicate that APP continues to perform remarkably well when customers can leave a nest without

making a purchase. Over all test problems, the average optimality gap of APP is 0.04%, which

is significantly better than the worst case optimality gap of 0.5% that we ensure by choosing

ρ = 0.005. In contrast, the prices obtained by rounding the unconstrained prices up or down to

the price bounds can have average optimality gaps exceeding 40%.

8 Conclusions

We developed approximation methods for pricing problems where customers choose under the

nested logit model and there are bounds on the prices that can be charged for the products. We

considered two problem variants. In the first variant, the set of products offered to customers is

fixed and we want to determine the prices for these products. In the second variant, we jointly

determine the products to be offered and their corresponding prices. For both problem variants,

given any ρ > 0, we showed how to obtain a solution whose expected revenue deviates from the
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Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

5 [0.05, 0.35] 1 0.074% 0.074%
5 [0.05, 0.35] 2 0.070% 0.125%
5 [0.05, 0.35] 3 0.006% 0.435%

5 [0.35, 0.65] 1 0.046% 0.046%
5 [0.35, 0.65] 2 0.020% 2.034%
5 [0.35, 0.65] 3 0.004% 4.369%

5 [0.65, 1.00] 1 0.057% 1.064%
5 [0.65, 1.00] 2 0.018% 28.855%
5 [0.65, 1.00] 3 0.004% 43.697%

Average 0.033% 8.966%

Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

10 [0.05, 0.35] 1 0.101% 0.101%
10 [0.05, 0.35] 2 0.049% 0.049%
10 [0.05, 0.35] 3 0.002% 0.304%

10 [0.35, 0.65] 1 0.055% 0.055%
10 [0.35, 0.65] 2 0.006% 7.616%
10 [0.35, 0.65] 3 0.000% 12.640%

10 [0.65, 1.00] 1 0.154% 6.638%
10 [0.65, 1.00] 2 0.015% 7.283%
10 [0.65, 1.00] 3 0.000% 44.135%

Average 0.042% 8.758%

Avg. %
Gap with

Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ APP Rnd.

15 [0.05, 0.35] 1 0.102% 0.102%
15 [0.05, 0.35] 2 0.040% 0.062%
15 [0.05, 0.35] 3 0.002% 0.143%

15 [0.35, 0.65] 1 0.092% 0.092%
15 [0.35, 0.65] 2 0.006% 3.775%
15 [0.35, 0.65] 3 0.000% 22.574%

15 [0.65, 1.00] 1 0.129% 5.474%
15 [0.65, 1.00] 2 0.030% 10.702%
15 [0.65, 1.00] 3 0.000% 41.336%

Average 0.045% 9.362%

Table 5: Computational results for the test problems where customers can leave a nest without
making a purchase.

optimal expected revenue by no more than a factor of 1 + ρ. To obtain this solution, we solved

a linear program and the number of constraints in this linear program grew at rate 1/ρ. Our

computational experiments demonstrated that our approximation methods can obtain solutions to

practical problems within reasonable computation time.

There are a number of research directions to pursue. In this paper, we showed how to address

upper and lower bound constraints on the prices and it is tempting to see whether one can work

with other types of price constraints. Furthermore, when we need to jointly determine the products

to be offered to customers and their corresponding prices, certain settings may call for imposing

constraints on the set of offered products. We were able to impose constraints on the number of

products offered in each nest and it would be interesting to explore other types of constraints. For

example, products may have dependencies on each other and it may be possible to offer a particular

product only when certain other products are also offered. Finally, our approach can be used to

obtain the optimal prices under the multinomial logit model and we can investigate generalizations

based on this observation. The multinomial logit model corresponds to a special case of the nested

logit model with γi = 1 for all i ∈ M . If γi = 1 for all i ∈ M , then the objective function of

the maximization problem on the right side of (6) becomes gi(yi)− yi z. Since gi(yi) is the optimal

objective value of problem (5) as a function of the right side of the first constraint, it is concave

in yi, in which case, the objective function of the maximization problem on the right of (6) is also

concave in yi. So, we can find the value of z satisfying (6) by using bisection search. During the

course of the search, we solve the maximization problem on the right side of (6), but this problem

can be solved efficiently since its objective function is concave. Thus, we can obtain the optimal

prices when γi = 1 for all i ∈ M . It would be useful to characterize the performance of this

approach as the dissimilarity parameters (γ1, . . . , γm) deviate from one.
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A Appendix: Omitted Results

A.1 Proof of Proposition 1

In this section, we complete the proof of Proposition 1. As mentioned in the proof of Proposition

1 in the main text, the result follows if we can show that

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi
∑

j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑

j∈N
wij

)γi
z

}
= max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}
.

We let ζ∗L and ζ∗R respectively be the optimal objective values of the problems on the left and right

side above. First, we show that ζ∗L ≤ ζ∗R. We let w∗
i be an optimal solution to the problem on the

left side above. Since w∗
i ∈ [Li,Ui], we have

∑
j∈N w∗

ij ≥
∑

j∈N Lij = L̄i. We proceed under the

assumption that we also have
∑

j∈N w∗
ij ≤ Ūi and we carefully address this assumption later on. The

solution w∗
i is feasible to problem (5) when this problem is solved with yi =

∑
j∈N w∗

ij . Thus, letting

ŷi =
∑

j∈N w∗
ij , we have gi(ŷi) ≥

∑
j∈N w∗

ij (κij − ηij logw
∗
ij). Furthermore, since

∑
j∈N w∗

ij ∈
[L̄i, Ūi], the solution ŷi is feasible to the problem on the right side above. In this case, noting

the last inequality and the fact that ŷi =
∑

j∈N w∗
ij , the solution ŷi is feasible to the problem

on the right side above providing an objective value for this problem that is larger than the one

provided by the solution w∗
i for the problem on the left side. So, we get ζ∗R ≥ ζ∗L. To address

the assumption that
∑

j∈N w∗
ij ≤ Ūi, assume on the contrary that

∑
j∈N w∗

ij > Ūi. In this case,

if we solve problem (5) with yi =
∑

j∈N w∗
ij > Ūi and use ŵi to denote an optimal solution, then

the discussion right after problem (5) implies that the first constraint in this problem is not tight

at the optimal solution, yielding
∑

j∈N ŵij < yi =
∑

j∈N w∗
ij . Furthermore, if we solve problem

(5) with yi =
∑

j∈N w∗
ij , then w∗

i is a feasible solution to this problem, indicating that we have∑
j∈N w∗

ij (κij − ηij logw
∗
ij) ≤

∑
j∈N ŵij (κij − ηij log ŵij). Therefore, we obtain

(∑
j∈N

w∗
ij

)γi
∑

j∈N w∗
ij (κij − ηij logw

∗
ij)∑

j∈N w∗
ij

−
(∑

j∈N
w∗
ij

)γi
z

<
(∑

j∈N
ŵij

)γi
∑

j∈N ŵij (κij − ηij log ŵij)∑
j∈N ŵij

−
(∑

j∈N
ŵij

)γi
z,

where we use the fact that
∑

j∈N w∗
ij (κij − ηij logw

∗
ij) ≤

∑
j∈N ŵij (κij − ηij log ŵij), γi ≤ 1,∑

j∈N ŵij <
∑

j∈N w∗
ij and z > 0. The inequality above contradicts the fact that w∗

i is an optimal

solution to the problem on the left side above. So, we must have
∑

j∈N w∗
ij ≤ Ūi.

Second, we show that ζ∗L ≥ ζ∗R. Using y∗i to denote an optimal solution to the problem on

the right side above, we let ŵi be an optimal solution to problem (5) when this problem is solved

with yi = y∗i , in which case, gi(y
∗
i ) =

∑
j∈N ŵij (κij − ηij log ŵij). Furthermore, since y∗i ∈ [L̄i, Ūi],

the discussion right after problem (5) indicates that the first constraint in problem (5) has to be

satisfied as equality, yielding
∑

j∈N ŵij = y∗i . Thus, the last two equalities imply that ŵi is a

feasible solution to the problem on the left side above yielding the same objective value provided

by the solution y∗i for the problem on the right side. So, we get ζ∗L ≥ ζ∗R.
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A.2 Lemma 8

Lemma 8 (Optimal Assortments). Letting (S∗
i ,w

∗
i ) be an optimal solution to the maximization

problem on the right side of (17), if l ∈ S∗
i , then we have κil−ηil logw

∗
il ≥ (1−γi)Ri(S

∗
i ,w

∗
i )+γi z.

Proof. To get a contradiction, assume that κil − ηil logw
∗
il < (1 − γi)Ri(S

∗
i ,w

∗
i ) + γi z. We let Ŝi

be the assortment obtained by taking product l out of S∗
i . In this case, we get

Wi(Ŝi,w
∗
i )

γi(Ri(Ŝi,w
∗
i )− z) =

∑
j∈Ŝi

w∗
ij (κij − ηij logw

∗
ij − z)

Wi(Ŝi,w∗
i )

1−γi

=

∑
j∈S∗

i
w∗
ij (κij − ηij logw

∗
ij − z)− w∗

il (κil − ηil logw
∗
il − z)

Wi(Ŝi,w∗
i )

1−γi
, (25)

where the first equality uses the definitions of Ri(Si,wi) and Wi(Si,wi) and the second equality

uses the fact that S∗
i = Ŝi ∪ {l}. To lower bound to numerator of the last fraction in (25), we note

that κil − ηil logw
∗
il − z < (1− γi)(Ri(S

∗
i ,w

∗
i )− z). In this case, we can lower bound the numerator

of the last fraction in (25) by∑
j∈S∗

i

w∗
ij (κij − ηij logw

∗
ij − z)− (1− γi)w

∗
il (Ri(S

∗
i ,w

∗
i )− z)

= (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i )− (1− γi)w

∗
il) ≥ 0,

where the equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi) and rearranging the

terms. To see that the inequality above holds, we observe that we must have Ri(S
∗
i ,w

∗
i ) − z ≥ 0,

otherwise the optimal objective value of the maximization problem on the right side of (17) is

negative and we can set S∗
i = ∅ to get a better objective value of zero. Furthermore, Wi(S

∗
i ,w

∗
i ) ≥

w∗
il and γi ≤ 1 so that Wi(S

∗
i ,w

∗
i ) − (1 − γi)w

∗
il ≥ 0, in which case, the inequality above indeed

holds. We can upper bound the denominator of the last fraction in (25) by observing the fact that

Wi(Ŝi,w
∗
i )

1−γi ≤ Wi(S
∗
i ,w

∗
i )

1−γi +(1−γi)Wi(S
∗
i ,w

∗
i )

−γi (Wi(Ŝi,w
∗
i )−Wi(S

∗
i ,w

∗
i )), which follows

by recalling u1−γi is a concave function of u and using the subgradient inequality. Therefore, we

can lower bound the last fraction in (25) as∑
j∈S∗

i
w∗
ij (κij − ηij logw

∗
ij − z)− w∗

il (κil − ηil logw
∗
il − z)

Wi(Ŝi,w∗
i )

1−γi

>
(Ri(S

∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i )− (1− γi)w

∗
il)

Wi(S∗
i ,w

∗
i )

1−γi + (1− γi)Wi(S∗
i ,w

∗
i )

−γi (Wi(Ŝi,w∗
i )−Wi(S∗

i ,w
∗
i ))

. (26)

Noting that Wi(Ŝi,w
∗
i ) − Wi(S

∗
i ,w

∗
i ) = −w∗

il and rearranging the terms in the last fraction, we

observe that the last fraction is equal toWi(S
∗
i ,w

∗
i )

γi(Ri(S
∗
i ,w

∗
i )−z). Thus, (25) and (26) show that

Wi(Ŝi,w
∗
i )

γi(Ri(Ŝi,w
∗
i )− z) > Wi(S

∗
i ,w

∗
i )

γi(Ri(S
∗
i ,w

∗
i )− z), contradicting the fact that (S∗

i ,w
∗
i )

is an optimal solution to the maximization problem on the right side of (17). So, our claim holds

and we must have κil − ηil logw
∗
il ≥ (1− γi)Ri(S

∗
i ,w

∗
i ) + γi z.
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A.3 Theorem 9

Theorem 9 (Upper Bound). Letting Z∗ and ẑ respectively be the optimal objective values of

problems (2) and (24), we have ẑ ≥ Z∗. Furthermore, for some ρ ≥ 0, if the grid points in problem

(24) satisfy gi(ȳ
t+1
i ) ≤ (1 + ρ) gi(ȳ

t
i) for all t = 1, . . . , τi − 1, i ∈ M , then we have (1 + ρ)Z∗ ≥ ẑ.

Proof. First, we show that ẑ ≥ Z∗. To get a contradiction, assume that ẑ < Z∗. Noting that

ẑ is the optimal objective value of problem (24), we use ẑ and (x̂1, . . . , x̂m) to denote an optimal

solution to this problem. By Proposition 1, Z∗ corresponds to the value of z that satisfies (6), in

which case, if we let x∗i be the optimal objective value of the maximization problem on the right

side of (6) when this problem is solved with z = Z∗, then we get Z∗ =
∑

i∈M x∗i . For all i ∈ M ,

we let y∗i be an optimal solution to the maximization problem on the right side of (6) when this

problem is solved with z = Z∗. We let ti ∈ {1, . . . , τi − 1} be such that y∗i ∈ [ȳtit , ȳ
ti+1
i ], where

the points {ȳti : t = 1, . . . , τi} are the collection of grid points in problem (24). Since gi(·) is

increasing and y∗i ≤ ȳti+1
i , we have gi(y

∗
i ) ≤ gi(ȳ

ti+1
i ). Also, since γi ≤ 1 and y∗i ≥ ȳtii , we have

(y∗i )
1−γi ≥ (ȳtii )

1−γi . In this case, using the last two observations, we obtain

x̂i ≥ (ȳtii )
γi

gi(ȳ
ti+1
i )

ȳtii
− (ȳtii )

γi ẑ ≥ (y∗i )
γi

gi(y
∗
i )

y∗i
− (y∗i )

γi ẑ ≥ (y∗i )
γi

gi(y
∗
i )

y∗i
− (y∗i )

γi Z∗ = x∗i ,

where the first inequality is by the fact that ẑ and (x̂1, . . . , x̂m) form a feasible solution to problem

(24), the third inequality follows from the fact that ẑ < Z∗ and the equality follows from the

definitions of x∗i and y∗i . Since ẑ and (x̂1, . . . , x̂m) form a feasible solution to problem (24), we

have ẑ ≥
∑

i∈M x̂i, whereas we have Z∗ =
∑

i∈M x∗i by the discussion at the beginning of the

proof. In this case, adding the chain of inequalities above over all i ∈ M , we obtain ẑ ≥
∑

i∈M x̂i ≥∑
i∈M x∗i = Z∗, which contradicts the fact that ẑ < Z∗. Therefore, we must have ẑ ≥ Z∗.

Second, we show that (1 + ρ)Z∗ ≥ ẑ. If we let x∗i be as defined in the paragraph above, then

we can follow the same line of reasoning that we follow above to see that Z∗ =
∑

i∈M x∗i . For

any t = 1, . . . , τi − 1, we note that ȳti is a feasible but not necessarily an optimal solution to the

maximization problem on the right side of (6) when this problem is solved with z = Z∗. Therefore,

it follows that x∗i ≥ (ȳti)
γi gi(ȳ

t
i)/ȳ

t
i − (ȳti)

γi Z∗ for all t = 1, . . . , τi − 1. If we multiply the last

inequality by 1 + ρ, then we obtain

(1 + ρ)x∗i ≥ (ȳti)
γi
(1 + ρ) gi(ȳ

t
i)

ȳti
− (ȳti)

γi (1 + ρ)Z∗ ≥ (ȳti)
γi
gi(ȳ

t+1
i )

ȳti
− (ȳti)

γi (1 + ρ)Z∗,

where the second inequality follows by noting the fact that gi(ȳ
t+1
i ) ≤ (1 + ρ) gi(ȳ

t
i) for all t =

1, . . . , τi−1. Focusing on the first and last expressions in the chain of inequalities above and noting

that Z∗ =
∑

i∈M x∗i , the solution (1 + ρ)Z∗ and ((1 + ρ)x∗1, . . . , (1 + ρ)x∗m) is feasible to problem

(24). Thus, the objective value provided by this solution for problem (24) is at least as large as the

optimal objective value. Since the solution (1 + ρ)Z∗ and ((1 + ρ)x∗1, . . . , (1 + ρ)x∗m) provides an

objective value of (1 + ρ)Z∗ for problem (24), we get (1 + ρ)Z∗ ≥ ẑ.
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B Appendix: Optimal Assortments with Cardinality Constraints

In this section, we show that if there is a constraint on the number of products that we can offer

in each nest, then the optimal value of the decision variable Si in the maximization problem on

the right side of (17) is one of O(n2) possible values, irrespective of the value of z. To show this

result, we let Ri(Si,wi) =
∑

j∈Si
wij (κij − ηij logwij)/

∑
j∈Si

wij and Wi(Si,wi) =
∑

j∈Si
wij for

notational brevity. In this case, assuming that we can offer at most ci products in nest i, we write

the maximization problem on the right side of (17) as

max
Si ⊂ N,wi ∈ [Li,Ui]

|Si| ≤ ci

{
Wi(Si,wi)

γi (Ri(Si,wi)− z)
}
. (27)

Our goal is to show that the optimal value of the decision variable Si in the problem above is one

of O(n2) possible values, irrespective of the value of z. In the next lemma, we give an alternative

characterization of the optimal solution to the problem above. The proof of this lemma uses

an argument that closely follows the proof of Lemma 3 in Gallego and Topaloglu (2012). For

completeness, we also provide a proof but defer it to the end of this section.

Lemma 10 (Optimal Assortments). As a function of z, we use (S∗
i (z),w

∗
i (z)) to denote an optimal

solution to problem (27) and let u∗i (z) = max{γi z + (1 − γi)Ri(S
∗
i (z),w

∗
i (z)), z}. In this case, if

(Ŝi, ŵi) is an optimal solution to the problem

max
Si ⊂ N,wi ∈ [Li,Ui]

|Si| ≤ ci

{
Wi(Si,wi) (Ri(Si,wi)− u∗i (z))

}
, (28)

then (Ŝi, ŵi) is also an optimal solution to problem (27).

The lemma above shows that we can obtain an optimal solution to problem (27) alternatively

by solving problem (28). To characterize an optimal solution to problem (27), as a function of u,

we use (Ŝi(u), ŵi(u)) to denote an optimal solution to the problem

max
Si ⊂ N,wi ∈ [Li,Ui]

|Si| ≤ ci

{
Wi(Si,wi) (Ri(Si,wi)− u)

}
. (29)

In this case, the crucial observation is that the set of solutions {(Ŝi(u), ŵi(u)) : u ∈ [0,∞)}
always includes an optimal solution to problem (27), irrespective of the value of z. To see this

result, we note that problem (29) with u = u∗i (z) is identical to problem (28). Thus, the solution

(Ŝi(u
∗
i (z)), ŵi(u

∗
i (z)) is an optimal solution to problem (28), but if (Ŝi(u

∗
i (z)), ŵi(u

∗
i (z))) is an

optimal solution to problem (28), then Lemma 10 implies that (Ŝi(u
∗
i (z)), ŵi(u

∗
i (z))) is an optimal

solution to problem (27) as well. Since (Ŝi(u
∗
i (z)), ŵi(u

∗
i (z))) ∈ {(Ŝi(u), ŵi(u)) : u ∈ [0,∞)}, it

follows that the set of solutions {(Ŝi(u), ŵi(u)) : u ∈ [0,∞)} includes an optimal solution to problem

(27), irrespective of the value of z. The preceding discussion shows that the set {Ŝi(u) : u ∈ [0,∞)}
includes an optimal value of the decision variable Si in problem (27), irrespective of the value of

z. Using this observation, we obtain the next lemma.
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Lemma 11 (Generation of Optimal Assortments). For any u ≥ 0, assume that the set

{Sq
i : q = 1, . . . , Qi} includes an optimal value of the decision variable Si in problem (29). In this

case, for any z ≥ 0, the set {Sq
i : q = 1, . . . , Qi} also includes an optimal value of the decision

variable Si in problem (27).

Proof. We fix an arbitrary value of z ≥ 0. For the fixed value of z, we let (S∗
i (z),w

∗
i (z)) be

an optimal solution to problem (27) and u∗i (z) = max{γi z + (1 − γi)Ri(S
∗
i (z),w

∗
i (z)), z}. We

consider solving problem (29) with u = u∗i (z). Since {Sq
i : q = 1, . . . , Qi} includes an optimal value

of the decision variable Si in problem (29) when this problem is solved with any u ≥ 0, there

exists an optimal solution (Ŝi, ŵi) to problem (28) such that Ŝi ∈ {Sq
i : q = 1, . . . , Qi}. In this

case, Lemma 10 implies that (Ŝi, ŵi) is also an optimal solution to problem (27). Noting that

Ŝi ∈ {Sq
i : q = 1, . . . , Qi} and the choice of z is arbitrary, it follows that for any z ≥ 0, the set

{Sq
i : q = 1, . . . , Qi} includes an optimal value of the decision variable Si in problem (27).

By the lemma above, if we can come up with a set {Sq
i : q = 1, . . . , Qi} that includes an optimal

value of the decision variable Si in problem (29) for any u ≥ 0, then this set also includes an optimal

value of the decision variable Si in problem (27) for any z ≥ 0. Furthermore, if Qi = O(n2), then

the optimal value of the decision variable Si in problem (27) is always one of O(n2) possible values,

as desired. To come up with a set {Sq
i : q = 1, . . . , Qi} that includes an optimal value of the decision

variable Si in problem (29) for any u ≥ 0, we use the definitions of Ri(Si,wi) and Wi(Si,wi) to

write this problem as

max
Si ⊂ N,wi ∈ [Li,Ui]

|Si| ≤ ci

{ ∑
j∈Si

wij (κij − ηij logwij − u)

}
. (30)

Using the first order condition for the objective function of the problem above, we can check that the

optimal value of the decision variable wij is given by min{max{exp((κij − u)/ηij − 1), Lij}, Uij},
which implies that this decision variable takes value Lij in the optimal solution to the problem

above when u ≥ κij − ηij − ηij logLij , takes value Uij when u ≤ κij − ηij − ηij logUij and takes

value exp((κij − u)/ηij − 1) when κij − ηij − ηij logUij ≤ u ≤ κij − ηij − ηij logLij . Thus, letting

L̃ij = κij − ηij − ηij logUij and Ũij = κij − ηij − ηij logLij , the decision variable wij respectively

takes values Lij , Uij and exp((κij − u)/ηij − 1) when u ≥ Ũij , u ≤ L̃ij and L̃ij ≤ u ≤ Ũij .

Thus, noting the objective function of problem (30) and the discussion in the paragraph

above, if we have u ∈ [Ũij ,∞), then the decision variable wij makes an objective function

contribution of Lij (κij − ηij logLij − u) in the optimal solution to problem (30). Similarly, if

we have u ∈ [0, L̃ij ], then the decision variable wij makes an objective function contribution of

Uij (κij − ηij logUij − u). Finally, if we have u ∈ [L̃ij , Ũij ], then the decision variable wij makes an

objective function contribution of exp((κij − u)/ηij − 1) (κij − ηij log(exp((κij − u)/ηij − 1))− u),

which can be simplified to ηij exp((κij − u)/ηij − 1) through a straightforward algebraic

manipulation. In this case, to capture the objective function contribution of the decision variable

wij in the optimal solution to problem (30), we define the function fij(·) as follows. If
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u ∈ [Ũij ,∞), then we have fij(u) = Lij (κij − ηij logLij − u), whereas if u ∈ [0, L̃ij ], then

we have fij(u) = Uij (κij − ηij logUij − u). Finally, if u ∈ [L̃ij , Ũij ], then we have fij(u) =

ηij exp((κij − u)/ηij − 1). We observe that fij(·) is a linear function over the intervals [0, L̃ij ]

and [Ũij ,∞), whereas it is an exponential function over the interval [L̃ij , Ũij ]. Replacing

wij (κij − ηij logwij − u) in problem (30) with the objective function contribution of wij in the

optimal solution, problem (30) is equivalent to the problem

max
Si⊂N, |Si|≤ci

{ ∑
j∈Si

fij(u)

}
. (31)

We can solve the problem above by ordering the values of {fij(u) : j ∈ N} in decreasing order

and choosing ci products with the largest corresponding values of {fij(u) : j ∈ N}, as long as

these values are positive. Thus, letting fi0(u) = 0 for notational brevity, the optimal value of

the decision variable Si in the problem above depends only on the ordering between the values of

{fij(u) : j ∈ N ∪ {0}}. We proceed to showing that as u takes values over [0,∞), we obtain only

O(n2) different orderings between the values of {fij(u) : j ∈ N ∪ {0}}.

Consider two functions fij(·) and fik(·) for j, k ∈ N ∪ {0}. If we plot fij(u) and fik(u) as a

function of u on the two dimensional plane, then a simple counting argument shows that these two

functions can have at most seven intersection points. We shortly give the details of this counting

argument. Therefore, the functions {fij(·) : j ∈ N ∪ {0}} have at most 7n(n + 1)/2 intersection

points. The crucial observation is that the intersection points of the functions {fij(·) : j ∈ N}
computed in this fashion correspond to the only values of u where the ordering between the values

of {fij(u) : j ∈ N ∪ {0}} changes. Therefore, there are at most 7n(n + 1)/2 = O(n2) different

orderings between the values of {fij(u) : j ∈ N ∪ {0}} as u takes values over [0,∞). In Figure 2,

we show a possible case with n = 3. The bold lines show the functions {fij(·) : j ∈ N ∪ {0}} and

the white circles show the intersection points of these functions. Each one of the intervals between

the intersection points is associated with a particular ordering. As long as u takes values between

two consecutive intersection points, the ordering between the values of {fij(u) : j ∈ N} does not

change. In Figure 2, for example, for any u ∈ [ua, ub], we have fi2(u) ≥ fi1(u) ≥ fi3(u) ≥ fi0(u),

whereas for any u ∈ [ub, uc], we have fi2(u) ≥ fi3(u) ≥ fi1(u) ≥ fi0(u).

The discussion in the paragraph above shows that as u takes values over [0,∞), there are

O(n2) possible orderings between the values of {fij(u) : j ∈ N ∪ {0}}. Since the optimal value

of the decision variable in problem (31) depends only on the ordering between the values of

{fij(u) : j ∈ N ∪ {0}}, as u takes values over [0,∞), there are O(n2) possible values for the decision

variable Si in an optimal solution to problem (31). Noting that problem (31) is equivalent to

problem (29), as u takes values over [0,∞), there are O(n2) possible values for the decision variable

Si in an optimal solution to problem (29). In other words, there exists a set {Sq
i : q = 1, . . . , Qi}

with Qi = O(n2) such that for any u ≥ 0, this set includes an optimal value of the decision variable

Si in problem (29). In this case, Lemma 11 implies that the set {Sq
i : q = 1, . . . , Qi} with Qi = O(n2)

includes an optimal solution to problem (27) for any z ≥ 0, establishing the desired result. In the
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Figure 2: The functions {fij(·) : j ∈ N ∪ {0}} for a possible case with n = 3. For clarity, any two
of the functions {fij(·) : j ∈ N ∪ {0}} in the figure have one point of intersection, but they can
have more than one point of intersection in general.

remainder of this section, we show that two functions fij(·) and fik(·) for j, k ∈ N ∪ {0} can have

at most seven intersection points and provide a proof for Lemma 10.

B.1 Intersection Points

To see that two functions fij(·) and fik(·) can have at most seven intersection points, we let L̃ij

and Ũij be such that the function fij(·) is linear outside the interval [L̃ij , Ũij ] and exponential in

the interval [L̃ij , Ũij ]. We note that if j = 0, then we can set L̃ij = Ũij = 0 so that fi0(u) = 0 is

a linear function of u for all u ∈ [0,∞). Similarly, we let L̃ik and Ũik be such that the function

fik(·) is linear outside the interval [L̃ik, Ũik] and exponential in the interval [L̃ik, Ũik]. If k = 0,

then we can set L̃ik = Ũik = 0. For brevity, we only consider the case where the intervals

[L̃ij , Ũij ] and [L̃ik, Ũik] satisfy L̃ij ≤ L̃ik ≤ Ũij ≤ Ũik. The analyses of the other cases are

identical. Over the interval [0, L̃ij ], both of the functions fij(·) and fik(·) are linear. Two linear

functions can have at most one intersection point. Over the interval [L̃ij , L̃ik], the function fij(·)
is exponential and the function fik(·) is linear. An exponential and a linear function can have at

most two intersection points. Over the interval [L̃ik, Ũij ], both of the functions fij(·) and fik(·)
are exponential. These two exponential functions can have at most one intersection point given by

1
1/ηij−1/ηik

(log ηij + κij/ηij − log ηik − κik/ηik). Using a similar argument, we can check that the

functions fij(·) and fik(·) can have at most two intersection points over the interval [Ũij , Ũik] and at

most one intersection point over the interval [Ũik,∞). Thus, we obtain a total of seven intersection

points. We note that the analysis in this paragraph is not necessarily tight. In particular, the

functions fij(·) and fik(·) may intersect at fewer than seven points and it may be possible to

eliminate some of the potential intersection points further. Nevertheless, a constant upper bound

of seven on the number of intersection points is sufficient to obtain the desired result.
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B.2 Proof of Lemma 10

In this section, we give a proof for Lemma 10. We fix an arbitrary value of z ≥ 0. For the fixed

value of z, we let (S∗
i ,w

∗
i ) = (S∗

i (z),wi(z)), R
∗
i = Ri(S

∗
i ,w

∗
i ), W

∗
i = Wi(S

∗
i ,w

∗
i ), R̂i = Ri(Ŝi, ŵi)

and Ŵi = Wi(Ŝi, ŵi) for notational brevity. We show that Ŵ γi
i (R̂i − z) ≥ (W ∗

i )
γi (R∗

i − z),

establishing that the solution (Ŝi, ŵi) provides an objective value for problem (27) that is at least

as large as the objective value provided by the optimal solution. Therefore, (Ŝi, ŵi) is an optimal

solution to problem (27) and the desired result follows. We consider two cases. First, we assume

that z ≥ R∗
i . In this case, we have u∗i (z) = z by the definition of u∗i (z). Since (Ŝi, ŵi) is an

optimal solution to problem (28), we observe that Ŵi (R̂i − u∗i (z)) ≥ 0. Otherwise, we can set

Si = ∅ and obtain a better objective value of zero for problem (28). Since z ≥ R∗
i , we obtain

(Ŵi)
γi (R̂i − z) = (Ŵi)

γi (R̂i − u∗i (z)) ≥ 0 ≥ (W ∗
i )

γi (R∗
i − z), as desired.

Second, we assume that z < R∗
i . In this case, we have u∗i (z) = γi z + (1 − γi)R

∗
i by the

definition of u∗i (z). We observe that W ∗
i = Wi(S

∗
i ,w

∗
i ) > 0. Otherwise, we have either w∗

ij = 0

for all j ∈ S∗
i or S∗

i = ∅, both of which imply that R∗
i = Ri(S

∗
i ,w

∗
i ) = 0, contradicting the fact

that R∗
i > z ≥ 0. On the other hand, (Ŝi, ŵi) is an optimal solution to problem (28), whereas

(S∗
i ,w

∗
i ) is a feasible but not necessarily an optimal solution to this problem. Therefore, it follows

that Ŵi (R̂i − u∗i (z)) ≥ W ∗
i (R∗

i − u∗i (z)). Using the definition of u∗i (z), we write this inequality as

Ŵi (R̂i − z)− (1− γi) Ŵi (R
∗
i − z) ≥ γiW

∗
i (R∗

i − z) and rearranging the terms we obtain

Ŵi (R̂i − z) ≥ (γiW
∗
i + (1− γi) Ŵi) (R

∗
i − z).

Since R∗
i > z and W ∗

i > 0, the right side of the inequality above is strictly positive, which implies

that Ŵi > 0. Since γi ≤ 1, xγi is a concave function of x satisfying the subgradient inequality

(x∗)γi ≤ x̂γi + γi x̂
γi−1 (x∗ − x̂) = x̂γi−1 (γi x

∗ + (1 − γi) x̂) for all x∗, x̂ > 0. Using this inequality

with x∗ = W ∗
i and x̂ = Ŵi, we obtain (W ∗

i )
γi ≤ Ŵ γi−1

i (γiW
∗
i + (1 − γi) Ŵi). Thus, we can use

(W ∗
i )

γi/Ŵ γi−1
i to lower bound the expression γiW

∗
i +(1−γi) Ŵi on the right side of the inequality

above, in which case, we obtain Ŵi (R̂i − z) ≥ (W ∗
i )

γi (R∗
i − z)/Ŵ γi−1

i . Rearranging the terms in

the last inequality, we have Ŵ γi
i (R̂i − z) ≥ (W ∗

i )
γi (R∗

i − z), as desired.

C Appendix: Glossary of Notation

In this section, we provide a list of notation used throughout the paper. We accompany each piece

of notation with its description and the place where it is introduced in the paper.

lij , uij Lower and upper bounds on the price of product j in nest i. Section 2

αij , βij Parameters connecting the price of product j in nest i to the preference
weight of this product. Using pij and wij to respectively denote the price
and preference weight of product j in nest i, we have wij = exp(αij−βij pij).

Section 2

Lij , Uij Lower and upper bounds on the preference weight of product j in nest i. We
have Lij = exp(αij − βij uij) and Uij = exp(αij − βij lij).

Section 2
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κij , ηij Parameters connecting the preference weight of product j in nest i to the
price of this product. Using wij and pij to respectively denote the preference
weight and price of product j in nest i, we have pij = κij − ηij logwij .

Section 2

Li,Ui Vectors Li = (Li1, . . . , Lin) and Ui = (Ui1, . . . , Uin) of lower and upper
bounds on the preference weights of the products in nest i.

Section 2

Z∗ Optimal objective value of problem (2). Section 2

gi(yi) Optimal objective value of problem (5) as a function of the right side of the
first constraint in this problem.

Section 3

L̄i, Ūi Smallest and largest values of the right side of the first constraint in problem
(5) that ensure that the first constraint is tight at the optimal solution.

Section 3

ỹti Each one of the grid points {ỹti : t = 1, . . . , Ti} that we use for nest i in
problem (7).

Section 4

λ∗
i (yi) Optimal value of the Lagrange multiplier associated with the first constraint

in problem (5) as a function of the right side of this constraint.
Section 5.1

ζij , ξij Two threshold values of the right side of the first constraint in problem (5)
such that if yi ≤ ζij , then the optimal value of the decision variable wij

in this problem is Lij , whereas if yi ≥ ξij , then the optimal value of the
decision variable wij is Uij .

Section 5.1

[νki , ν
k+1
i ] Set of possible values for the right side of the first constraint in problem (5)

such that if yi ∈ [νki , ν
k+1
i ], then we can fix the values of a certain set of

decision variables at their upper or lower bounds and not impose the upper
and lower bound constraints at all on the remaining decision variables.

Section 5.1

Ki Largest index for the set of intervals {[νki , ν
k+1
i ] : k = 1, . . . ,Ki}. Section 5.1

Lk
i ,Uk

i Two sets of decision variables in problem (5) such that if yi ∈ [νki , ν
k+1
i ], then

we can fix the values of the decision variables in Lk
i at their lower bounds

and the values of the decision variables in Uk
i at their upper bounds.

Section 5.1

Ỹ kq
i A grid point that we obtain by using (14). Section 5.2

qLi , q
U
i Smallest and largest indices for the set of grid points {Ỹ kq

i : q = qLi , . . . , q
U
i }. Section 5.2

ζ∗ Optimal objective value of problem (16). Section 6

gi(Si, yi) Optimal objective value of problem (20) as a function of the products
included in this problem and the right side of the first constraint.

Section 6.1

L̄i(Si),
Ūi(Si)

Smallest and largest values of the right side of the first constraint in problem
(20) that ensure that the first constraint is tight at the optimal solution.

Section 6.1

ỹti(Si) Each one of the grid points {ỹti(Si) : t = 1, . . . , Ti(Si)} that we use for nest
i in problem (22).

Section 6.2
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