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Abstract

We propose two approximate dynamic programming methods to optimize the distribution oper-
ations of a company manufacturing a certain product at multiple production plants and shipping
it to different customer locations for sale. We begin by formulating the problem as a dynamic
program. Our first approximate dynamic programming method uses a linear approximation of
the value function and computes the parameters of this approximation by using the linear pro-
gramming representation of the dynamic program. Our second method relaxes the constraints
that link the decisions for different production plants. Consequently, the dynamic program de-
composes by the production plants. Computational experiments show that the proposed methods
are computationally attractive, and in particular, the second method performs significantly better
than standard benchmarks.
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Supply chain systems with multiple production plants provide protection against demand uncertainty

and opportunities for production smoothing by allowing the demand at a particular customer location

to be satisfied by different production plants. However, managing these types of supply chains

requires careful planning. When planning the distribution of products to the customer locations,

one has to consider many factors, such as the current inventory levels, forecasts of future production

quantities and forecasts of customer demands. The decisions for different production plants interact

and a decision that maximizes the immediate benefit is not necessarily the “best” decision.

In this paper, we consider the distribution operations of a company manufacturing a certain prod-

uct at multiple production plants and shipping it to different customer locations for sale. A certain

amount of production, which is not a decision, occurs at the production plants at the beginning of

each time period. Before observing the realization of the demand, the company decides how much

product should be shipped to the customer locations. Once a certain amount of product is shipped

to a particular customer location, revenue is earned on the sales and shortage cost is incurred on

the unsatisfied demand. The product cannot be stored at the customer locations and the left over

product at the customer locations is disposed, possibly at a salvage value. The left over product at

the production plants is stored until the next time period.

Our work is motivated by the distribution operations of a company processing fresh produce that

will eventually be sold at local markets. These markets are set up outdoors for short periods of time,

prohibiting the storage of the perishable fresh produce. However, the processing plants are equipped

with storage facilities. Depending on the yield of fresh produce, the production quantities at the

processing plants fluctuate over time and are not necessarily deterministic.

In this paper, we formulate the problem as a dynamic program and propose two approximate

dynamic programming methods. The first method uses a linear approximation of the value function

whose parameters are computed by using the linear programming representation of the dynamic pro-

gram. The second method uses Lagrangian relaxation to relax the constraints that link the decisions

for different production plants. As a result of this relaxation, the dynamic program decomposes by

the production plants and we concentrate on one production plant at a time.

Our approach builds on previous research. Hawkins (2003) proposes a Lagrangian relaxation

method applicable to dynamic programs in which the evolutions of the different components of the

state variable are affected by different types of decisions, but these different types of decisions in-

teract through a set of linking constraints. More recently, Adelman & Mersereau (2004) compare

the Lagrangian relaxation method of Hawkins (2003) with an approximate dynamic programming

method that uses a separable approximation of the value function. The parameters of the separable
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approximation are computed by using the linear programming representation of the dynamic pro-

gram. When applied to the inventory allocation problem described above, both of these methods run

into computational difficulties. For example, the Lagrangian relaxation method of Hawkins (2003)

requires finding a “good” set of Lagrange multipliers by minimizing the so-called dual function. One

way of doing this is to solve a linear program, but the number of constraints in this linear program is

very large for our problem class. We use constraint generation to iteratively construct the constraints

of this linear program, and show that this can be done efficiently because constructing a constraint

requires simple sort operations. Another way of finding a “good” set of Lagrange multipliers is to

use Benders decomposition to represent the dual function by using a number of cutting planes. We

show that we can keep the number of cutting planes at a manageable level by using results from

the two-stage stochastic programming literature and constructing a cutting plane requires simple

sort operations. The approximate dynamic programming method of Adelman & Mersereau (2004)

computes the parameters of the separable value function approximation by solving a linear program

whose number of constraints is very large for our problem class. We use constraint generation to

iteratively construct the constraints of this linear program and show that constructing a constraint

requires solving a min-cost network flow problem. Finally, we show that the value function approxi-

mations obtained by the two methods are computationally attractive in the sense that applying the

greedy policies characterized by them requires solving min-cost network flow problems.

The approximate dynamic programming field has been active within the past two decades. Most

of the work attempts to approximate the value function V (·) by a function of the form
∑

k∈K αk Vk(·),
where {Vk(·) : k ∈ K} are fixed basis functions and {αk : k ∈ K} are adjustable parameters. The

challenge is to find parameter values {α̂k : k ∈ K} such that
∑

k∈K α̂k Vk(·) is a “good” approxi-

mation of V (·). Temporal differences and Q-learning use sampled trajectories of the system to find

“good” parameter values (Bertsekas & Tsitsiklis (1996)). On the other hand, linear programming-

based methods find “good” parameter values by solving a linear program (Schweitzer & Seidmann

(1985), de Farias & Van Roy (2003)). Since this linear program contains one constraint for every

state-decision pair, it can be very large and is usually solved approximately. Numerous successful

applications of approximate dynamic programming appeared in inventory routing (Kleywegt, Nori

& Savelsbergh (2002), Adelman (2004)), dynamic fleet management (Powell & Carvalho (1998),

Godfrey & Powell (2002), Topaloglu & Powell (2006)), revenue management (Adelman (2005)), mar-

keting (Bertsimas & Mersereau (2005)) and resource allocation under incomplete information (Yost

& Washburn (2000)). Of particular interest to us are the papers by Bertsimas & Mersereau (2005),

Yost & Washburn (2000) and Adelman (2005). The first two of these papers are applications of

the Lagrangian relaxation method of Hawkins (2003), whereas the third one is an application of the

linear programming-based method of Adelman & Mersereau (2004).
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The literature on inventory allocation under uncertainty is rich and there exist a variety of ap-

proaches that are quite different than ours. We refer the reader to Graves, Kan & Zipkin (1981),

Tayur, Ganeshan & Magazine (1998) and Zipkin (2000) for detailed treatments of various approaches.

Two particularly interesting papers that emerge from this literature are Karmarkar (1981) and Kar-

markar (1987), where the author characterizes the form of the optimal policy and give bounds on the

optimal objective value for a multiple-period multiple-location newsvendor problem that is similar

to the problem considered in this paper.

In this paper, we make the following research contributions. We propose two approximate dy-

namic programming methods for a stochastic nonstationary multiple-plant multiple-customer in-

ventory allocation problem. Our first method uses a linear approximation of the value function and

computes the parameters of this approximation by using the linear programming representation of the

dynamic program. We show how to solve this linear program efficiently by using constraint genera-

tion. This is one of the few nontrivial linear programming-based approximate dynamic programming

methods where the underlying linear program can be solved efficiently. Our second method uses

Lagrangian relaxation to relax the constraints that link the decisions for different production plants.

We propose two approaches for minimizing the dual function, one of which is based on constraint

generation and the other one is based on Benders decomposition. We show that constructing a con-

straint in constraint generation or constructing a cutting plane in Benders decomposition requires

simple sort operations. Finally, we show that the greedy policies obtained by these two approximate

dynamic programming methods can be applied by solving min-cost network flow problems. Compu-

tational experiments show that our methods yield high-quality solutions. They also provide insights

into the conditions that render stochastic models more effective than deterministic ones.

The paper is organized as follows. Section 1 describes the problem and formulates it as a dynamic

program. Section 2 describes our first solution method that uses a linear approximation of the value

function, whereas Section 3 describes our second solution method that uses Lagrangian relaxation.

Section 4 shows that applying the greedy policies obtained by either one of these two solution methods

requires solving min-cost network flow problems. Section 5 presents our computational experiments.

1. Problem Formulation

There is a set of plants producing a certain product to satisfy the demand occurring at a set of

customer locations. At the beginning of each time period, a certain amount of production occurs

at each plant. Due to the randomness in the yield of the production processes, we assume that

the production quantities at the plants are random. Before observing the demand at the customer

locations, we have to decide how much product to ship from each plant to each customer location.
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After shipping the product to the customer locations, we observe the demand. The unsatisfied

demand is lost. The left over product at the customer locations is disposed at a salvage value, but

the plants can store the product. Our objective is to maximize the total expected profit over a finite

horizon. We define the following.

T = Set of time periods in the planning horizon. We have T = {1, . . . , τ} for finite τ .

P = Set of plants.

C = Set of customer locations.

cijt = Cost of shipping one unit of product from plant i to customer location j at time

period t.

ρjt = Revenue per unit of product sold at customer location j at time period t.

σjt = Salvage value per unit of unsold product at customer location j at time period t.

πjt = Shortage cost of not being able to satisfy a unit of demand at customer location j

at time period t.

hit = Holding cost per unit of product held at plant i at time period t.

Qit = Random variable representing the production at plant i at time period t.

Djt = Random variable representing the demand at customer location j at time period t.

We assume that ρjt + πjt ≥ σjt, the production and demand occur in discrete quantities, and

the production and demand random variables for different plants, different customer locations and

different time periods are independent of each other and have finite supports. We let U be an upper

bound on the production random variables {Qit : i ∈ P, t ∈ T } and S be an upper bound on the

demand random variables {Djt : j ∈ C, t ∈ T }. We define the following decision variables.

uijt = Amount of product shipped from plant i to customer location j at time period t.

wjt = Total amount of product shipped to customer location j at time period t. That is,

we have wjt =
∑

i∈P uijt.

xit = Amount of product held at plant i at time period t.

rit = Beginning inventory at plant i at time period t after observing the production.

We assume that the shipments occur in discrete quantities and the shipment costs are incurred on a

per-unit basis. In particular, we do not consider the economies of scale. Furthermore, we assume that

we are not allowed to hold more than L units of product at any plant. Therefore, since the production
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random variables are bounded by U , the inventory at any plant is bounded by U +L. We emphasize

that the production quantities are modeled as exogenous random variables for ease of notation. We

can easily model the production quantities as decision variables by letting {qit : i ∈ P, t ∈ T } be

the decision variables representing the production quantities and {ξit : i ∈ P, t ∈ T } be the random

variables representing the yield of the production processes. In this case, we need to include the

production costs in the list of cost parameters and the production decision variables in the list of

decision variables above. The results in the paper continue to hold without almost any modifications.

By suppressing one or more of the indices in the variables defined above, we denote a vector

composed of the components ranging over the suppressed indices. For example, we have Qt = {Qit :

i ∈ P}, rt = {rit : i ∈ P}. We do not distinguish between row and column vectors. We denote the

cardinality of set A by |A|. In the remainder of this section, we define the one-period expected profit

function and formulate the problem as a dynamic program.

1.1. One-period expected profit function

If the amount of product shipped to customer location j at time period t is wjt and the demand is

Djt, then the obtained profit is

Fjt(wjt, Djt) = ρjt min{wjt, Djt}+ σjt max{wjt −Djt, 0} − πjt max{Djt − wjt, 0}.

Letting Fjt(wjt) = E
{
Fjt(wjt, Djt)

}
, Fjt(wjt) is the expected profit obtained at time period t by

shipping wjt units of product to customer location j. Using the fact that the random variable

Djt takes integer values and ρjt + πjt ≥ σjt, we can show that Fjt(·) is a piecewise-linear concave

function with points nondifferentiability being a subset of positive integers. In this case, Fjt(·) can

be characterized by specifying Fjt(0) = −πjt E
{
Djt

}
and the first differences Fjt(wjt + 1)−Fjt(wjt)

for all wjt = 0, 1, . . .. The latter can be computed by noting that

Fjt(wjt + 1, Djt)− Fjt(wjt, Djt) =

{
σjt if Djt ≤ wjt

ρjt + πjt otherwise,

which implies that

Fjt(wjt + 1)− Fjt(wjt) = E
{
Fjt(wjt + 1, Djt)− Fjt(wjt, Djt)

}

= σjt P{Djt ≤ wjt}+
[
ρjt + πjt

]
P{Djt ≥ wjt + 1}. (1)

Since the random variable Djt is bounded by S, we have Fjt(s+1)−Fjt(s) = σjt for all s = S, S+1, . . .

by (1). Therefore, letting fjst = Fjt(s + 1) − Fjt(s), we can characterize Fjt(·) by specifying Fjt(0)

and fjst for all s = 0, . . . , S.

1.2. Dynamic programming formulation

Using rt as the state variable at time period t, we can formulate the problem as a dynamic program.

Since the inventory at any plant is bounded by U + L, letting R = U + L and R = {0, . . . , R}, we
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use R|P| as the state space. In this case, the optimal policy can be found by computing the value

functions through the optimality equation

Vt(rt) = max −
∑

i∈P

∑

j∈C
cijt uijt +

∑

j∈C
Fjt(wjt)−

∑

j∈C
Fjt(0)−

∑

i∈P
hit xit + E

{
Vt+1(xt + Qt+1)

}
(2)

subject to xit +
∑

j∈C
uijt = rit ∀ i ∈ P (3)

∑

i∈P
uijt − wjt = 0 ∀ j ∈ C (4)

xit ≤ L ∀ i ∈ P (5)

uijt, wjt, xit ∈ Z+ ∀ i ∈ P, j ∈ C. (6)

The reason that we subtract the constant
∑

j∈C Fjt(0) from the objective function will be clear in

the proof of Lemma 1 below. Constraints (3) are the product availability constraints at the plants,

whereas constraints (4) keep track of the amount of product shipped to each customer location.

Lemma 1, which we prove in the appendix, gives an alternative representation of problem (2)-(6).

Lemma 1. The optimality equation

Vt(rt) = max
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

i∈P
hit xit + E

{
Vt+1(xt + Qt+1)

}
(7)

subject to xit +
∑

j∈C

S∑

s=0

yijst = rit ∀ i ∈ P (8)

∑

i∈P
yijst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (9)

xit ≤ L ∀ i ∈ P (10)

xit, yijst ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S (11)

is equivalent to the optimality equation in (2)-(6). In particular, if (x∗t , y∗t ) is an optimal solution to

problem (7)-(11), and we let u∗ijt =
∑S

s=0 y∗ijst and w∗jt =
∑

i∈P
∑S

s=0 y∗ijst for all i ∈ P, j ∈ C, then

(u∗t , w∗t , x∗t ) is an optimal solution to problem (2)-(6). Furthermore, the optimal objective values of

problems (2)-(6) and (7)-(11) are equal to each other.

Throughout the paper, we use the optimality equation in (7)-(11). Letting Y(rt) be the set of

feasible solutions to problem (7)-(11) and

pt(xt, yt) =
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

i∈P
hit xit,

this optimality equation can succinctly be written as

Vt(rt) = max
(xt,yt)∈Y(rt)

{
pt(xt, yt) + E

{
Vt+1(xt + Qt+1)

}
}

. (12)
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2. Linear Programming-Based Approximation

In this section, we approximate Vt(rt) with a linear function of the form θt +
∑

i∈P ϑit rit and use

the linear programming representation of the dynamic program in (12) to decide what values we

should pick for {θt : t ∈ T } and {ϑit : i ∈ P, t ∈ T }. Previous research in Powell & Carvalho (1998),

Papadaki & Powell (2003) and Adelman (2005) shows that linear value function approximations can

yield high-quality solutions in the fleet management, batch service and revenue management settings.

Associating positive weights {α(r1) : r1 ∈ R|P|} with the initial states, it is well-known that the

value functions can be computed by solving the linear program

min
∑

r1∈R|P|
α(r1) v1(r1) (13)

subject to vt(rt) ≥ pt(xt, yt) + E
{
vt+1(xt+Qt+1)

}

∀ rt ∈ R|P|, (xt, yt) ∈ Y(rt), t ∈ T \ {τ} (14)

vτ (rτ ) ≥ pτ (xτ , yτ ) ∀ rτ ∈ R|P|, (xτ , yτ ) ∈ Y(rτ ), (15)

where {vt(rt) : rt ∈ R|P|, t ∈ T } are the decision variables. Letting {v∗t (rt) : rt ∈ R|P|, t ∈ T } be

an optimal solution to this problem, if the weight for a particular initial state r1 satisfies α(r1) > 0,

then we have v∗1(r1) = V1(r1) (Puterman (1994)). Problem (13)-(15) has τ |R||P| decision variables

and
∑

t∈T
∑

rt∈R|P| |Y(rt)| constraints, which can both be very large.

To deal with the large number of decision variables, we approximate Vt(rt) with a linear function

of the form θt +
∑

i∈P ϑit rit. To decide what values to pick for {θt : t ∈ T } and {ϑit : i ∈ P, t ∈ T },
we substitute θt +

∑
i∈P ϑit rit for vt(rt) in problem (13)-(15) to obtain the linear program

min
∑

r1∈R|P|
α(r1) θ1 +

∑

r1∈R|P|

∑

i∈P
α(r1) ri1 ϑi1 (16)

subject to θt +
∑

i∈P
rit ϑit ≥ pt(xt, yt) + θt+1 +

∑

i∈P

[
xit + E

{
Qi,t+1

}]
ϑi,t+1

∀ rt ∈ R|P|, (xt, yt) ∈ Y(rt), t ∈ T \ {τ} (17)

θτ +
∑

i∈P
riτ ϑiτ ≥ pτ (xτ , yτ ) ∀ rτ ∈ R|P|, (xτ , yτ ) ∈ Y(rτ ), (18)

where {θt : t ∈ T }, {ϑit : i ∈ P, t ∈ T } are the decision variables. The set of feasible solutions to the

problem above is nonempty, since we can obtain a feasible solution {θ̂t : t ∈ T }, {ϑ̂it : i ∈ P, t ∈ T }
by letting p̂t = maxrt∈R|P|

{
max(xt,yt)∈Y(rt) pt(xt, yt)

}
, θ̂t =

∑τ
t′=t p̂t′ and ϑ̂it = 0 for all i ∈ P, t ∈ T .

The following proposition shows that we obtain upper bounds on the value functions by solving

problem (16)-(18). Results similar to Proposition 2 below and Proposition 5 in Section 3 are shown

in Adelman & Mersereau (2004) for infinite-horizon problems. Our proofs are for finite-horizon

problems and tend to be somewhat simpler.
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Proposition 2. If {θ̂t : t ∈ T }, {ϑ̂it : i ∈ P, t ∈ T } is a feasible solution to problem (16)-(18), then

we have Vt(rt) ≤ θ̂t +
∑

i∈P ϑ̂it rit for all rt ∈ R|P|, t ∈ T .

Proof. We show the result by induction. It is easy to show the result for the last time period.

Assuming that the result holds for time period t + 1 and using the fact that {θ̂t : t ∈ T }, {ϑ̂it : i ∈
P, t ∈ T } is feasible to problem (16)-(18), we have

θ̂t +
∑

i∈P
ϑ̂it rit ≥ max

(xt,yt)∈Y(rt)

{
pt(xt,yt) + E

{
θ̂t+1 +

∑

i∈P
ϑ̂i,t+1

[
xit + Qi,t+1

]}
}

≥ max
(xt,yt)∈Y(rt)

{
pt(xt, yt) + E

{
Vt+1(xt + Qt+1)

}
}

= Vt(rt). ¤

The proposition above also shows that the optimal objective value of problem (16)-(18) is bounded

from below by
∑

r1∈R|P| α(r1) V1(r1), which implies that problem (16)-(18) is bounded.

The number of decision variables in problem (16)-(18) is τ + τ |P|, but the number of constraints

is still as many as that of problem (13)-(15). We use constraint generation to deal with the large

number of constraints. The idea is to iteratively solve a master problem, which has the same objective

function and decision variables as problem (16)-(18), but has only a few of the constraints. After

solving the master problem, we check if any of constraints (17)-(18) is violated by the solution. If

there is one such constraint, then we add this constraint to the master problem and resolve the

master problem. In particular, letting {θ̂t : t ∈ T }, {ϑ̂it : i ∈ P, t ∈ T } be the solution to the

current master problem, we solve the problem

max
rt∈R|P|

{
max

(xt,yt)∈Y(rt)

{
pt(xt, yt) +

∑

i∈P
ϑ̂i,t+1 xit

}
−

∑

i∈P
ϑ̂it rit

}
(19)

for all t ∈ T \ {τ} to check if any of constraints (17) is violated by this solution. Letting (r̂t, x̂t, ŷt)

be an optimal solution to problem (19), if we have pt(x̂t, ŷt) +
∑

i∈P ϑ̂i,t+1 x̂it −
∑

i∈P ϑ̂it r̂it > θ̂t −
θ̂t+1 −

∑
i∈P E

{
Qi,t+1

}
ϑ̂i,t+1, then the constraint

θt +
∑

i∈P
r̂it ϑit ≥ pt(x̂t, ŷt) + θt+1 +

∑

i∈P

[
x̂it + E

{
Qi,t+1

}]
ϑi,t+1

is violated by the solution {θ̂t : t ∈ T }, {ϑ̂it : i ∈ P, t ∈ T }. We add this constraint to the master

problem and resolve the master problem. Similarly, we check if any of constraints (18) is violated by

the solution {θ̂t : t ∈ T }, {ϑ̂it : i ∈ P, t ∈ T } by solving the problem

max
rτ∈R|P|

{
max

(xτ ,yτ )∈Y(rτ )

{
pτ (xτ , yτ )

}
−

∑

i∈P
ϑ̂iτ riτ

}
. (20)

We summarize the constraint generation idea in Figure 1.
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Fortunately, problems (19) and (20) are min-cost network flow problems, and hence, constraint

generation can be done efficiently. To see this, we write problem (19) as

max
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst +

∑

i∈P

[
ϑ̂i,t+1 − hit

]
xit −

∑

i∈P
ϑ̂it rit

subject to (9), (10)

xit +
∑

j∈C

S∑

s=0

yijst − rit = 0 ∀ i ∈ P (21)

rit ≤ R ∀ i ∈ P (22)

rit, xit, yijst ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S.

We let {ηit : i ∈ P} be the slack variables for constraints (22). We define new decision variables

{ζjst : j ∈ C, s = 0, . . . , S − 1}, and using these decision variables, we split constraints (9) in the

problem above into
∑

i∈P yijst− ζjst = 0 and ζjst ≤ 1 for all j ∈ C, s = 0, . . . , S− 1. In this case, the

problem above can be written as

max
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst+

∑

i∈P

[
ϑ̂i,t+1 − hit

]
xit −

∑

i∈P
ϑ̂it rit (23)

subject to (10), (21) (24)

rit + ηit = R ∀ i ∈ P (25)
∑

i∈P
yijst − ζjst = 0 ∀ j ∈ C, s = 0, . . . , S − 1 (26)

ζjst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (27)

rit, xit, yijst, ηit, ζjs′t ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S, s′ = 0, . . . , S − 1. (28)

Defining three sets of nodes O1 = P, O2 = P and O3 = C × {0, . . . , S − 1}, it is easy to see that

problem (23)-(28) is a min-cost network flow problem that takes place over a network with the set

of nodes O1
⋃O2

⋃O3
⋃{φ} shown in Figure 2. Corresponding to each decision variable in problem

(23)-(28), there exists an arc in the network in Figure 2. The arc corresponding to decision variable

rit leaves node i ∈ O1 and enters node i ∈ O2. The arc corresponding to decision variable xit leaves

node i ∈ O2 and enters node φ. Whenever s ∈ {0, . . . , S − 1}, the arc corresponding to decision

variable yijst leaves node i ∈ O2 and enters node (j, s) ∈ O3. The arc corresponding to decision

variable yijSt leaves node i ∈ O2 and enters node φ. The arc corresponding to decision variable

ηit leaves node i ∈ O1 and enters node φ. Finally, the arc corresponding to decision variable ζjst

leaves node (j, s) ∈ O3 and enters node φ. Constraints (25), (21) and (26) in problem (23)-(28) are

respectively the flow balance constraints for the nodes in O1, O2 and O3. The flow balance constraint

for node φ is redundant and omitted in problem (23)-(28). The supplies of the nodes in O1 are R.

We note that problem (20) is also a min-cost network flow problem, since it is a special case of

problem (19).
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3. Lagrangian Relaxation-Based Approximation

This section proposes a method to approximate the value functions that is based on the observation

that if we relax constraints (9) in problem (7)-(11), then the set of feasible solutions to this problem

decomposes by the elements of P. Associating positive Lagrange multipliers {λjst : j ∈ C, s =

0, . . . , S − 1, t ∈ T } with these constraints, this suggests solving the optimality equation

V λ
t (rt) = max

∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

i∈P
hit xit

+
∑

j∈C

S−1∑

s=0

λjst

[
1−

∑

i∈P
yijst

]
+ E

{
V λ

t+1(xt + Qt+1)
}

(29)

subject to (8), (10), (11) (30)

yijst ≤ 1 ∀ i ∈ P, j ∈ C, s = 0, . . . , S − 1, (31)

where we use the superscript λ to emphasize that the solution depends on the Lagrange multipliers.

Recalling constraints (9), we note that constraints (31) would be redundant in problem (7)-(11), but

we add them to problem (29)-(31) to tighten the relaxation. For ease of notation, we let

Yi(rit) =
{

(xit, yit) ∈ Z+ × Z|C|(1+S)
+ : xit +

∑

j∈C

S∑

s=0

yijst = rit

xit ≤ L

yijst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1
}

,

pit(xit, yit) =
∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst − hit xit,

where we use yit = {yijst : j ∈ C, s = 0, . . . , S}. In this case, problem (29)-(31) can be written as

V λ
t (rt) = max

∑

i∈P
pit(xit, yit) +

∑

j∈C

S−1∑

s=0

λjst

[
1−

∑

i∈P
yijst

]
+ E

{
V λ

t+1(xt + Qt+1)
}

(32)

subject to (xit, yit) ∈ Yi(rit) ∀ i ∈ P. (33)

The benefit of this method is that the optimality equation in (32)-(33) decomposes into |P| optimality

equations, each involving a one-dimensional state variable.

Proposition 3. If {V λ
it (rit) : rit ∈ R, t ∈ T } is a solution to the optimality equation

V λ
it (rit) = max

(xit,yit)∈Yi(rit)

{
pit(xit, yit)−

∑

j∈C

S−1∑

s=0

λjst yijst + E
{
V λ

i,t+1(xit + Qi,t+1)
}
}

(34)

for all i ∈ P, then we have

V λ
t (rt) =

τ∑

t′=t

∑

j∈C

S−1∑

s=0

λjst′ +
∑

i∈P
V λ

it (rit).
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Proof. We show the result by induction. It is easy to show the result for the last time period.

Assuming that the result holds for time period t+1, the objective function in (32) can be written as

∑

i∈P
pit(xit, yit) +

∑

j∈C

S−1∑

s=0

λjst

[
1−

∑

i∈P
yijst

]
+

τ∑

t′=t+1

∑

j∈C

S−1∑

s=0

λjst′ +
∑

i∈P
E

{
V λ

i,t+1(xit + Qi,t+1)
}
.

The result follows by noting that both the objective function above and the feasible set of problem

(32)-(33) decompose by the elements of P. ¤

Therefore, the optimality equation in (32)-(33) can be solved by concentrating on one plant at

a time. The optimality equation in (34) involves a one-dimensional state variable, but it requires

solving an optimization problem involving 1 + |C|(1 + S) decision variables. The following result

shows that this optimality equation can be solved efficiently.

Lemma 4. Problem (34) can be solved by a sort operation.

Proof. Using backward induction on time periods, it is easy to show that V λ
i,t+1(ri,t+1) is a concave

function of ri,t+1 in the sense that V λ
i,t+1(ri,t+1 − 1) + V λ

i,t+1(ri,t+1 + 1) ≤ 2V λ
i,t+1(ri,t+1) for all

ri,t+1 = 1, . . . , R − 1. This implies that E
{
V λ

i,t+1(xit + Qi,t+1)
}

is also a concave function of xit.

Therefore, letting ∆i`,t+1 = E
{
V λ

i,t+1(` + 1 + Qi,t+1)
}− E{

V λ
i,t+1(` + Qi,t+1)

}
for all ` = 0, . . . , L− 1

and associating the decision variables {zi`,t+1 : ` = 0, . . . , L− 1} with these first differences, problem

(34) can explicitly be written as

max
∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst − hit xit−

∑

j∈C

S−1∑

s=0

λjst yijst + E
{
V λ

i,t+1(Qi,t+1)
}

+
L−1∑

`=0

∆i`,t+1 zi`,t+1

subject to xit +
∑

j∈C

S∑

s=0

yijst = rit

xit −
L−1∑

`=0

zi`,t+1 = 0 (35)

yijst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (36)

zi`,t+1 ≤ 1 ∀ ` = 0, . . . , L− 1 (37)

xit, yijst, zi`,t+1 ∈ Z+ ∀ j ∈ C, s = 0, . . . , S, ` = 0, . . . , L− 1.

Dropping the constant term in the objective function and using constraint (35) to substitute
∑L−1

`=0 zi`,t+1

for xit, the problem above becomes

max
∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

j∈C

S−1∑

s=0

λjst yijst +
L−1∑

`=0

[
∆i`,t+1 − hit

]
zi`,t+1

subject to (36), (37)

∑

j∈C

S∑

s=0

yijst +
L−1∑

`=0

zi`,t+1 = rit

yijst, zi`,t+1 ∈ Z+ ∀ j ∈ C, s = 0, . . . , S, ` = 0, . . . , L− 1.
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The result follows by noting that the problem above is a knapsack problem where each item consumes

one unit of space. ¤

Proposition 5 shows that the optimality equation in (32)-(33) provides upper bounds on the value

functions.

Proposition 5. We have Vt(rt) ≤ V λ
t (rt) for all rt ∈ R|P|, t ∈ T .

Proof. We show the result by induction. It is easy to show the result for the last time pe-

riod. We assume that the result holds for time period t + 1, fix rt ∈ R|P| and let (x̂t, ŷt) =

argmax(xt,yt)∈Y(rt)

{
pt(xt, yt) + E

{
Vt+1(xt + Qt+1)

}}
. We have

Vt(rt) =
∑

i∈P
pit(x̂it, ŷit) + E

{
Vt+1(x̂t + Qt+1)

}

≤
∑

i∈P
pit(x̂it, ŷit) +

∑

j∈C

S−1∑

s=0

λjst

[
1−

∑

i∈P
ŷijst

]
+ E

{
V λ

t+1(x̂t + Qt+1)
} ≤ V λ

t (rt),

where the first inequality follows from the induction assumption and the fact that λjst ≥ 0 for all

j ∈ C, s = 0, . . . , S − 1 and (x̂t, ŷt) ∈ Y(rt). Noting the objective function of problem (32)-(33), the

second inequality follows from the fact that (x̂it, ŷit) ∈ Yi(rit) for all i ∈ P. ¤

By Proposition 5, we have V1(r1) ≤ V λ
1 (r1) for any set of positive Lagrange multipliers. If the

initial state is known, then we can solve minλ≥0 V λ
1 (r1) for a particular initial state r1 to obtain

the tightest possible bound on the value function at r1. If, however, the initial state is not known

and we need to obtain a “good” approximation to the value function for all possible initial states,

then we can associate positive weights {α(r1) : r1 ∈ R|P|} with the initial states. Assuming that
∑

r1∈R|P| α(r1) = 1 without loss of generality, we can obtain a possibly tight bound on the value

function by solving the problem

min
λ≥0

{ ∑

r1∈R|P|
α(r1) V λ

1 (r1)

}
= min

λ≥0

{ ∑

r1∈R|P|

∑

t∈T

∑

j∈C

S−1∑

s=0

α(r1) λjst +
∑

r1∈R|P|

∑

i∈P
α(r1) V λ

i1(ri1)

}

= min
λ≥0

{∑

t∈T

∑

j∈C

S−1∑

s=0

λjst +
∑

r1∈R|P|

∑

i∈P

∑

r̂i1∈R
1(ri1 = r̂i1)α(r1) V λ

i1(r̂i1)

}

= min
λ≥0

{∑

t∈T

∑

j∈C

S−1∑

s=0

λjst +
∑

i∈P

∑

r̂i1∈R
βi(r̂i1) V λ

i1(r̂i1)

}
, (38)

where the first equality follows from Proposition 3, 1(·) is the indicator function and we let βi(r̂i1) =
∑

r1∈R|P| 1(ri1 = r̂i1)α(r1). The objective function of problem (38) is called the dual function. In

the following two sections, we propose two methods to minimize the dual function.
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3.1. Constraint generation

In this section, we formulate problem (38) as a linear program that has a large number of constraints.

Similar to Section 2, we deal with the large number of constraints by using constraint generation.

Since {V λ
it (rit) : rit ∈ R, t ∈ T } is a solution to the optimality equation in (34), for any set of

Lagrange multipliers λ,
∑

i∈P
∑

ri1∈R βi(ri1) V λ
i1(ri1) can be computed by solving the linear program

min
∑

i∈P

∑

ri1∈R
βi(ri1) vi1(ri1)

subject to vit(rit) ≥ pit(xit, yit)−
∑

j∈C

S−1∑

s=0

λjst yijst + E
{
vi,t+1(xit + Qi,t+1)

}

∀ rit ∈ R, (xit, yit) ∈ Yi(rit), i ∈ P, t ∈ T \ {τ} (39)

viτ (riτ ) ≥ piτ (xiτ , yiτ )−
∑

j∈C

S−1∑

s=0

λjsτ yijsτ ∀ riτ ∈ R, (xiτ , yiτ ) ∈ Yi(riτ ), i ∈ P, (40)

where {vit(rit) : rit ∈ R, i ∈ P, t ∈ T } are the decision variables. Therefore, we can find an optimal

solution to problem (38) by solving the linear program

min
∑

t∈T

∑

j∈C

S−1∑

s=0

λjst +
∑

i∈P

∑

ri1∈R
βi(ri1) vi1(ri1) (41)

subject to (39), (40) (42)

λjst ≥ 0 ∀ j ∈ C, s = 0, . . . , S − 1, t ∈ T , (43)

where {vit(rit) : rit ∈ R, i ∈ P, t ∈ T }, {λjst : j ∈ C, s = 0, . . . , S − 1, t ∈ T } are the decision

variables. It is easy to see that the set of feasible solutions to the problem above is nonempty.

Furthermore, Proposition 5 and (38) show that the optimal objective value of this problem is bounded

from below by
∑

r1∈R|P| α(r1) V1(r1).

The number of decision variables in problem (41)-(43) is τ |P||R|+τ |C|S, which is manageable, but

the number of constraints is
∑

t∈T
∑

i∈P
∑

rit∈R |Yi(rit)|, which can be very large. We use constraint

generation to deal with the large number of constraints, where we iteratively solve a master problem

that has the same objective function and decision variables as problem (41)-(43), but has only a few

of the constraints. The idea is very similar to the one in Section 2.

In particular, letting {v̂it(rit) : rit ∈ R, i ∈ P, t ∈ T }, {λ̂jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T } be

the solution to the current master problem, we solve the problem

max
(xit,yit)∈Yi(rit)

{
pit(xit, yit)−

∑

j∈C

S−1∑

s=0

λ̂jst yijst + E
{
v̂i,t+1(xit + Qi,t+1)

}
}

(44)

for all rit ∈ R, i ∈ P, t ∈ T \ {τ} to check if any of constraints (39) in problem (41)-(43) is

violated by this solution. Letting (x̂it, ŷit) be an optimal solution to problem (44), if we have
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pit(x̂it, ŷit)−
∑

j∈C
∑S−1

s=0 λ̂jst ŷijst + E
{
v̂i,t+1(x̂it + Qi,t+1)

}
> v̂it(rit), then the constraint

vit(rit) ≥ pit(x̂it, ŷit)−
∑

j∈C

S−1∑

s=0

λjst ŷijst + E
{
vi,t+1(x̂it + Qi,t+1)

}

is violated by the solution {v̂it(rit) : rit ∈ R, i ∈ P, t ∈ T }, {λ̂jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T }.
We add this constraint to the master problem and resolve the master problem. Similarly, we solve the

problem max(xiτ ,yiτ )∈Yi(riτ )

{
piτ (xiτ , yiτ )−

∑
j∈C

∑S−1
s=0 λ̂jsτ yijsτ

}
for all riτ ∈ R, i ∈ P to check if any

of constraints (40) in problem (41)-(43) is violated by the solution {v̂it(rit) : rit ∈ R, i ∈ P, t ∈ T },
{λ̂jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T }.

If v̂i,t+1(ri,t+1) is a concave function of ri,t+1 in the sense that

v̂i,t+1(ri,t+1 − 1) + v̂i,t+1(ri,t+1 + 1) ≤ 2 v̂i,t+1(ri,t+1) (45)

for all ri,t+1 = 1, . . . , R − 1, then problem (44) has the same form as the problem considered in

Lemma 4 and can be solved by a sort operation. This makes constraint generation very efficient.

In general, it is not guaranteed that the solution to the master problem will satisfy (45). To ensure

that (45) is satisfied, we add the constraints

vit(rit − 1) + vit(rit + 1) ≤ 2 vit(rit) ∀ rit = 1, . . . , R− 1, i ∈ P, t ∈ T (46)

to the master problem before we begin constraint generation. By the following lemma, adding

constraints (46) to problem (41)-(43) does not change its optimal objective value. Therefore, we can

add constraints (46) to the master problem without disturbing the validity of constraint generation.

Lemma 6. Adding constraints (46) to problem (41)-(43) does not change its optimal objective value.

Proof. We let {v∗it(rit) : rit ∈ R, i ∈ P, t ∈ T }, {λ∗jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T } be an

optimal solution to problem (41)-(43) and {V λ∗
it (rit) : rit ∈ R, t ∈ T } be obtained by solving the

optimality equation in (34) with the set of Lagrange multipliers λ∗. As mentioned in the proof of

Lemma 4, we have V λ∗
it (rit − 1) + V λ∗

it (rit + 1) ≤ 2V λ∗
it (rit) for all rit = 1, . . . , R − 1, i ∈ P, t ∈ T .

We now show that {V λ∗
it (rit) : rit ∈ R, i ∈ P, t ∈ T }, {λ∗jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T } is also

an optimal solution to problem (41)-(43) and this establishes the result.

Since {V λ∗
it (rit) : rit ∈ R, t ∈ T } solves the optimality equation in (34), we have

V λ∗
it (rit) ≥ pit(xit, yit)−

∑

j∈C

S−1∑

s=0

λ∗jst yijst + E
{
V λ∗

i,t+1(xit + Qi,t+1)
}

for all rit ∈ R, (xit, yit) ∈ Yi(rit), i ∈ P, t ∈ T . Therefore, {V λ∗
it (rit) : rit ∈ R, i ∈ P, t ∈ T },

{λ∗jst : j ∈ C, s = 0, . . . , S−1, t ∈ T } is feasible to problem (41)-(43). We now show by induction that
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v∗it(rit) ≥ V λ∗
it (rit) for all rit ∈ R, i ∈ P, t ∈ T , which implies that {V λ∗

it (rit) : rit ∈ R, i ∈ P, t ∈ T },
{λ∗jst : j ∈ C, s = 0, . . . , S− 1, t ∈ T } is an optimal solution to problem (41)-(43). It is easy to show

the result for the last time period. Assuming that the result holds for time period t + 1 and noting

constraints (39) in problem (41)-(43), we have

v∗it(rit) ≥ max
(xit,yit)∈Yi(rit)

{
pit(xit, yit)−

∑

j∈C

S−1∑

s=0

λ∗jst yijst + E
{
v∗i,t+1(xit + Qi,t+1)

}
}

≥ max
(xit,yit)∈Yi(rit)

{
pit(xit, yit)−

∑

j∈C

S−1∑

s=0

λ∗jst yijst + E
{
V λ∗

i,t+1(xit + Qi,t+1)
}
}

= V λ∗
it (rit). ¤

3.2. Benders decomposition

We begin this section by showing that
∑

i∈P
∑

ri1∈R βi(ri1) V λ
i1(ri1) is a convex function of λ. This

result allows us to solve problem (38) through Benders decomposition, which represents the dual

function by using a number of cutting planes that are constructed iteratively.

We use some new notation in this section. In particular, we let xλ
it(rit), {yλ

ijst(rit) : j ∈ C, s =

0, . . . , S} be an optimal solution to problem (34). We use the superscript λ and the argument

rit to emphasize that the solution depends on the Lagrange multipliers and the state. We let V λ
it

and λjt respectively be the vectors {V λ
it (rit) : rit ∈ R} and {λjst : s = 0, . . . , S − 1}. We let

Y λ
ijt = {yλ

ijst(rit) : rit ∈ R, s = 0, . . . , S − 1} be the |R| × S-dimensional matrix whose (rit, s)-th

component is yλ
ijst(rit). Finally, we let P λ

it be the |R| × |R|-dimensional matrix whose (rit, ri,t+1)-th

component is P{xλ
it(rit) + Qi,t+1 = ri,t+1}.

The following proposition shows that
∑

i∈P
∑

ri1∈R βi(ri1)V λ
i1(ri1) is a convex function of λ.

Proposition 7. For any two sets of Lagrange multipliers λ and λ̂, we have

V λ̂
it ≥ V λ

it −
∑

j∈C
Y λ

ijt

[
λ̂jt − λjt

]− P λ
it

∑

j∈C
Y λ

ij,t+1

[
λ̂j,t+1 − λj,t+1

]

− P λ
it P λ

i,t+1

∑

j∈C
Y λ

ij,t+2

[
λ̂j,t+2 − λj,t+2

]− . . .− P λ
it P λ

i,t+1 . . . P λ
i,τ−1

∑

j∈C
Y λ

ijτ

[
λ̂jτ − λjτ

]

for all i ∈ P, t ∈ T .

Proof. We show the result by induction. It is easy to show the result for the last time period. We

assume that the result holds for time period t+1. Letting yλ
it(rit) = {yλ

ijst(rit) : j ∈ C, s = 0, . . . , S},
since (xλ

it(rit), yλ
it(rit)) is an optimal solution to problem (34), we have

V λ
it (rit) = pit(xλ

it(rit), yλ
it(rit))−

∑

j∈C

S−1∑

s=0

λjst yλ
ijst(rit) + E

{
V λ

i,t+1(x
λ
it(rit) + Qi,t+1)

}

V λ̂
it (rit) ≥ pit(xλ

it(rit), yλ
it(rit))−

∑

j∈C

S−1∑

s=0

λ̂jst yλ
ijst(rit) + E

{
V λ̂

i,t+1(x
λ
it(rit) + Qi,t+1)

}
.
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Subtracting the first expression from the second one, we obtain

V λ̂
it (rit)− V λ

it (rit) ≥ −
∑

j∈C

S−1∑

s=0

yλ
ijst(rit)

[
λ̂jst − λjst

]

+ E
{
V λ̂

i,t+1(x
λ
it(rit) + Qi,t+1)− V λ

i,t+1(x
λ
it(rit) + Qi,t+1)

}
. (47)

The expectation on the right side above can be written as

∑

ri,t+1∈R
P{xλ

it(rit) + Qi,t+1 = ri,t+1}
[
V λ̂

i,t+1(ri,t+1)− V λ
i,t+1(ri,t+1)

]
,

which implies that (47) can be written in matrix notation as

V λ̂
it − V λ

it ≥ −
∑

j∈C
Y λ

ijt

[
λ̂jt − λjt

]
+ P λ

it

[
V λ̂

i,t+1 − V λ
i,t+1

]
. (48)

The result follows by using the induction assumption

V λ̂
i,t+1 ≥ V λ

i,t+1 −
∑

j∈C
Y λ

ij,t+1

[
λ̂j,t+1 − λj,t+1

]− P λ
i,t+1

∑

j∈C
Y λ

ij,t+2

[
λ̂j,t+2 − λj,t+2

]

− . . .− P λ
i,t+1 P λ

i,t+2 . . . P λ
i,τ−1

∑

j∈C
Y λ

ijτ

[
λ̂jτ − λjτ

]

in (48) and noting that the matrix P λ
it has positive entries. ¤

Letting Πλ
ijt = P λ

i1 P λ
i2 . . . P λ

i,t−1 Y λ
ijt with Πλ

ij1 = Y λ
ij1, we have

V λ̂
i1 ≥ V λ

i1 −
∑

j∈C
Πλ

ij1

[
λ̂j1 − λj1

]−
∑

j∈C
Πλ

ij2

[
λ̂j2 − λj2

]− . . .−
∑

j∈C
Πλ

ijτ

[
λ̂jτ − λjτ

]

by Proposition 7. In this case, letting βi be the vector {βi(ri1) : ri1 ∈ R}, we obtain

∑

i∈P

∑

ri1∈R
βi(ri1) V λ̂

i1(ri1) =
∑

i∈P
βi V

λ̂
i1 ≥

∑

i∈P
βi V

λ
i1 −

∑

t∈T

∑

i∈P

∑

j∈C
βi Πλ

ijt

[
λ̂jt − λjt

]
. (49)

Therefore,
∑

i∈P
∑

ri1∈R βi(ri1) V λ
i1(ri1) has a subgradient, and hence, Theorem 3.2.6 in Bazaraa,

Sherali & Shetty (1993) implies that
∑

i∈P
∑

ri1∈R βi(ri1) V λ
i1(ri1) is a convex function of λ.

Our use of Benders decomposition to solve problem (38) bears close resemblance to Benders

decomposition for two-stage stochastic programs (Ruszczynski (2003)). We iteratively solve a master

problem of the form

min
∑

t∈T

∑

j∈C

S−1∑

s=0

λjst + v (50)

subject to v ≥
∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λjt − λn

jt

] ∀ n = 1, . . . , k − 1 (51)

λjst ≥ 0 ∀ j ∈ C, s = 0, . . . , S − 1, t ∈ T (52)
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at iteration k, where v, {λjst : j ∈ C, s = 0, . . . , S−1, t ∈ T } are the decision variables. Constraints

(51) are the cutting planes that represent the function
∑

i∈P
∑

ri1∈R βi(ri1) V λ
i1(ri1) and they are

constructed iteratively by using the solution to the master problem and the subgradient provided

by (49). Since the decision variable v only appears on the left side of constraints (51), it is easy to

see that the set of feasible solutions to the master problem is nonempty. We have k = 1 at the first

iteration. Therefore, the master problem does not include cutting planes at the first iteration and

its optimal objective value is −∞. In practical implementations, we add the constraint v ≥ −M to

the master problem at the first iteration, where M is a large but finite number. This ensures that

the optimal objective value of the master problem is bounded from below by −M .

We let (vk, λk) be the solution to the master problem at iteration k. After solving the master

problem, we compute V λk

i1 (ri1) for all ri1 ∈ R, i ∈ P. By Lemma 4, this can be done very efficiently.

From (51), we always have

vk = max
n∈{1,...,k−1}

{ ∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λk

jt − λn
jt

]
}
≤

∑

i∈P
βi V

λk

i1 =
∑

i∈P

∑

ri1∈R
βi(ri1) V λk

i1 (ri1),

where the inequality follows from (49). If we have vk =
∑

i∈P
∑

ri1∈R βi(ri1)V λk

i1 (ri1), then for any

set of positive Lagrange multipliers λ, we have

∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst +

∑

i∈P

∑

ri1∈R
βi(ri1) V λk

i1 (ri1) =
∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst + vk

=
∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst + max

n∈{1,...,k−1}

{ ∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λk

jt − λn
jt

]
}

≤
∑

t∈T

∑

j∈C

S−1∑

s=0

λjst + max
n∈{1,...,k−1}

{ ∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λjt − λn

jt

]
}

≤
∑

t∈T

∑

j∈C

S−1∑

s=0

λjst +
∑

i∈P
βi V

λ
i1 =

∑

t∈T

∑

j∈C

S−1∑

s=0

λjst +
∑

i∈P

∑

ri1∈R
βi(ri1) V λ

i1(ri1),

where the first inequality follows from the fact that (vk, λk) is an optimal solution to the master prob-

lem and the second inequality follows from (49). Thus, if we have vk =
∑

i∈P
∑

ri1∈R βi(ri1) V λk

i1 (ri1),

then λk is an optimal solution to problem (38) and we stop. On the other hand, if we have

vk <
∑

i∈P
∑

ri1∈R βi(ri1) V λk

i1 (ri1), then we construct the constraint

v ≥
∑

i∈P
βi V

λk

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλk

ijt

[
λjt − λk

jt

]
, (53)

add it to the master problem, increase k by 1 and resolve the master problem. We summarize the

Benders decomposition idea in Figure 3.

By using an argument similar to the one used to show the convergence of Benders decomposition

for two-stage stochastic programs, we can show that the Benders decomposition method described

above terminates after a finite number of iterations with an optimal solution to problem (38).
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Proposition 8. The Benders decomposition method for solving problem (38) terminates after a

finite number of iterations with an optimal solution.

Proof. There are a finite number of solutions in Yi(rit). Therefore, there is a finite set of |R| × S-

dimensional matrices such that Y λ
ijt takes a value in this set for any λ. Similarly, there exists a finite

set of |R|× |R|-dimensional matrices such that P λ
it takes a value in this set for any λ. Consequently,

there exists a finite set of S-dimensional vectors such that βi Πλ
ijt takes a value in this set for any λ.

Letting pλ
it be the vector {pit(xλ

it(rit), yλ
it(rit)) : rit ∈ R}, we write (34) in matrix notation as

V λ
it = pλ

it −
∑

j∈C
Y λ

ijt λjt + P λ
it V λ

i,t+1.

Using this expression and backward induction on time periods, it is easy to show that

V λ
i1 = pλ

i1 + P λ
i1 pλ

i2 + P λ
i1 P λ

i2 pλ
i3 + . . . + P λ

i1 P λ
i2 . . . P λ

i,τ−1 pλ
iτ −

∑

t∈T

∑

j∈C
Πλ

ijt λjt. (54)

Since there are a finite number of solutions in Yi(rit), there exists a finite set of |R|-dimensional

vectors such that pλ
it takes a value in this set for any λ. This implies that there exists a finite set of

scalars such that βi

[
pλ

i1 + P λ
i1 pλ

i2 + P λ
i1 P λ

i2 pλ
i3 + . . . + P λ

i1 P λ
i2 . . . P λ

i,τ−1 pλ
iτ

]
takes a value in this set for

any λ. Using (53) and (54), we write the constraint added to the master problem at iteration k as

v ≥
∑

i∈P
βi

[
pλk

i1 + P λk

i1 pλk

i2 + P λk

i1 P λk

i2 pλk

i3 + . . . + P λk

i1 P λk

i2 . . . P λk

i,τ−1 pλk

iτ

]−
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλk

ijt λjt.

There exist a finite number of possible values for βi Πλk

ijt and βi

[
pλk

i1 + P λk

i1 pλk

i2 + P λk

i1 P λk

i2 pλk

i3 + . . . +

P λk

i1 P λk

i2 . . . P λk

i,τ−1 pλk

iτ

]
. Therefore, the constraint added to the master problem at iteration k is one of

the finitely many possible constraints. Using the finiteness of the number of possible cutting planes,

we can show the result by following the same argument in Ruszczynski (2003) that is used to show

the finite convergence of Benders decomposition for two-stage stochastic programs. ¤

One problem with Benders decomposition is that the number of cutting planes in the master

problem can grow large. We note that since a new cutting plane is added at each iteration, the

objective value of the master problem does not decrease from one iteration to the next. If we drop

the loose cutting planes that are satisfied as strict inequalities from the master problem, then the

objective value still does not decrease from one iteration to the next. It turns out that we can

indeed drop the loose cutting planes from the master problem and still ensure that the Benders

decomposition method terminates after a finite number of iterations with an optimal solution.

Lemma 9. Assume that we drop the loose cutting planes from the master problem at iteration k

whenever the objective value of the master problem at iteration k is strictly larger than the objective
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value at iteration k − 1. In this case, the Benders decomposition method for solving problem (38)

terminates after a finite number of iterations with an optimal solution.

Proof. The proof follows from an argument similar to the one in Ruszczynski (2003) and uses the

finiteness of the number of possible cutting planes. ¤

In general, dropping all loose cutting planes is not a good idea, since the dropped cutting planes

may have to be reconstructed at the later iterations. In our computational experiments, we drop the

cutting planes that remain loose for 50 consecutive iterations.

We note that we are not restricted with the methods given in Sections 3.1 and 3.2. Since

the objective function of problem (38) is a convex function with subgradients characterized as in

Proposition 7, there exist other methods, such as subgradient search, to minimize this nonsmooth

convex function. For our problem class, Benders decomposition yields small master problems that can

be solved easily. However, subgradient search may be a more attractive option for large applications

where solving the master problem becomes problematic.

4. Applying the Greedy Policy

This section shows that applying the greedy policies characterized by the value function approxima-

tions requires solving min-cost network flow problems.

Letting {θ∗t : t ∈ T }, {ϑ∗it : i ∈ P, t ∈ T } be an optimal solution to problem (16)-(18), the value

function approximations obtained by the method given in Section 2 are of the form θ∗t +
∑

i∈P ϑ∗it rit.

On the other hand, letting {λ∗jst : j ∈ C, s = 0, . . . , S − 1, t ∈ T } be an optimal solution to problem

(38) and noting Proposition 3, the value function approximations obtained by the method given in

Section 3 are of the form

τ∑

t′=t

∑

j∈C

S−1∑

s=0

λ∗jst′ +
∑

i∈P
V λ∗

it (rit).

As mentioned in the proof of Lemma 4, V λ∗
it (rit) is a concave function of rit. Therefore, the value

function approximations obtained by the methods given in Sections 2 and 3 are of the form θ̂t +
∑

i∈P V̂it(rit), where θ̂t is a constant and V̂it(rit) is a concave function of rit.

The greedy policy characterized by the value function approximations {θ̂t+
∑

i∈P V̂it(rit) : t ∈ T }
makes the decisions at time period t by solving the problem

max
(xt,yt)∈Y(rt)

{
pt(xt, yt) + θ̂t +

∑

i∈P
E

{
V̂i,t+1(xit + Qi,t+1)

}
}

.
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Since E
{
V̂i,t+1(xit +Qi,t+1)

}
is a concave function of xit, letting ∆i`,t+1 = E

{
V̂i,t+1(`+1+Qi,t+1)

}−
E

{
V̂i,t+1(` + Qi,t+1)

}
for all ` = 0, . . . , L − 1 and associating the decision variables {zi`,t+1 : ` =

0, . . . , L− 1} with these first differences, the problem above can be written as

max
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

i∈P
hit xit + θ̂t +

∑

i∈P
E

{
V̂i,t+1(Qi,t+1)

}
+

∑

i∈P

L−1∑

`=0

∆i`,t+1 zi`,t+1

subject to xit +
∑

j∈C

S∑

s=0

yijst = rit ∀ i ∈ P (55)

xit −
L−1∑

`=0

zi`,t+1 = 0 ∀ i ∈ P (56)

∑

i∈P
yijst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (57)

zi`,t+1 ≤ 1 ∀ i ∈ P, ` = 0, . . . , L− 1 (58)

xit, yijst, zi`,t+1 ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S, ` = 0, . . . , L− 1.

We define the new decision variables {ζjst : j ∈ C, s = 0, . . . , S−1}, and using these decision variables,

we split constraints (57) into
∑

i∈P yijst− ζjst = 0 and ζjst ≤ 1 for all j ∈ C, s = 0, . . . , S− 1. In this

case, dropping the constant terms in the objective function, the problem above can be written as

max
∑

i∈P

∑

j∈C

S∑

s=0

[
fjst − cijt

]
yijst −

∑

i∈P
hit xit +

∑

i∈P

L−1∑

`=0

∆i`,t+1 zi`,t+1 (59)

subject to (55), (56), (58) (60)
∑

i∈P
yijst − ζjst = 0 ∀ j ∈ C, s = 0, . . . , S − 1 (61)

ζjst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (62)

xit, yijst, zi`,t+1, ζjs′t ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S,

` = 0, . . . , L− 1, s′ = 0, . . . , S − 1. (63)

Defining three sets of nodes O1 = P, O2 = P and O3 = C × {0, . . . , S − 1}, it is easy to see that

problem (59)-(63) is a min-cost network flow problem that takes place over a network with the set

of nodes O1
⋃O2

⋃O3
⋃{φ} shown in Figure 4. Corresponding to each decision variable in problem

(59)-(63), there exists an arc in the network in Figure 4. The arc corresponding to decision variable

xit leaves node i ∈ O1 and enters node i ∈ O2. Whenever s ∈ {0, . . . , S − 1}, the arc corresponding

to decision variable yijst leaves node i ∈ O1 and enters node (j, s) ∈ O3. The arc corresponding

to decision variable yijSt leaves node i ∈ O1 and enters node φ. The arc corresponding to decision

variable zi`,t+1 leaves node i ∈ O2 and enters node φ. Finally, the arc corresponding to decision

variable ζjst leaves node (j, s) ∈ O3 and enters node φ. Constraints (55), (56) and (61) in problem

(59)-(63) are respectively the flow balance constraints for the nodes in O1, O2 and O3. The supplies

of the nodes in O1 are {rit : i ∈ P}.
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5. Computational Experiments

In this section, we numerically test the performances of the approximate dynamic programming

methods given in Sections 2 and 3.

5.1. Experimental setup and benchmark strategy

All of our test problems involve 41 customer locations spread over a 1000 × 1000 region. We let

cijt = c̄ dij , where c̄ is the shipping cost applied on a per-mile basis and dij is the Euclidean distance

from plant i to customer location j. From (1), the expected profit function at customer location j at

time period t depends on σjt and ρjt + πjt, and hence, we let πjt = 0 without loss of generality. For

all i ∈ P, j ∈ C, t ∈ T , we sample σjt, ρjt and hit from the uniform distributions over [0.5 σ̄, 1.5 σ̄],

[0.5 ρ̄, 1.5 ρ̄] and [0.5 h̄, 1.5 h̄] respectively. In all of our test problems, we let c̄ = 1.6, ρ̄ = 1000 and

h̄ = 20. We vary the other parameters to obtain test problems with different characteristics.

We model the production random variables through mixtures of uniformly distributed random

variables. In particular, we let Qit =
∑N

n=1 1(Xit = n) Un
it, where Xit is uniformly distributed over

{1, . . . , N} and Un
it is uniformly distributed over {an

it, . . . , b
n
it} for all n = 1, . . . , N . This allows us

to change the variance of Qit in any way we like by changing N and {(an
it, b

n
it) : n = 1, . . . , N}.

Furthermore, we can accurately approximate any random variable with a discrete distribution and

a finite support by using mixtures of uniformly distributed random variables. When presenting the

results, we give the coefficients of variation of the production random variables.

The benchmark strategy we use is the so-called rolling horizon method. For a given rolling horizon

length K, this method solves an optimization problem that spans K time periods and uses the point

forecasts of the future production quantities. In particular, if the state vector at time period t is rt,

then the rolling horizon method makes the decisions by solving the problem

max −
t+K−1∑

t′=t

∑

i∈P

∑

j∈C
cijt′ uijt′ +

t+K−1∑

t′=t

∑

j∈C
Fjt′(wjt′)−

t+K−1∑

t′=t

∑

i∈P
hit′ xit′ (64)

subject to
∑

j∈C
uijt + xit = rit ∀ i ∈ P (65)

∑

j∈C
uijt′ + xit′ − xi,t′−1 = E

{
Qit′

} ∀ i ∈ P, t′ = t + 1, . . . , t + K − 1 (66)

∑

i∈P
uijt′ − wjt′ = 0 ∀ j ∈ C, t′ = t, . . . , t + K − 1 (67)

xit′ ≤ L ∀ i ∈ P, t′ = t, . . . , t + K − 1 (68)

uijt′ , wjt′ , xit′ ∈ R+ ∀ i ∈ P, j ∈ C, t′ = t, . . . , t + K − 1. (69)

(If we have t + K − 1 > τ , then we substitute τ for t + K − 1 in the problem above.) Although this

problem includes decision variables for time periods t, . . . , t+K−1, we only implement the decisions
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for time period t and solve a similar problem to make the decisions for time period t+1. The rolling

horizon method is expected to give better solutions as K increases. For our test problems, increasing

K beyond 8 time periods provides marginal improvements in the objective value.

We let α(r1) = 1/|R||P| for all r1 ∈ R|P|. Setup runs showed that changing these weights does

not noticeably affect the performances of the methods given in Sections 2 and 3.

5.2. Computational results

In Section 3, we give two methods to minimize the dual function. Setup runs showed that the Benders

decomposition method in Section 3.2 is significantly faster than the constraint generation method in

Section 3.1. Therefore, we use the Benders decomposition method to minimize the dual function.

However, the Benders decomposition method has slow tail performance in the sense that the

improvement in the objective value of the master problem slows down as the iterations progress.

We deal with this difficulty by solving problem (38) only approximately. In particular, letting λ∗ be

an optimal solution to problem (38) and (vk, λk) be an optimal solution to the master problem at

iteration k, we have

∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst + vk =

∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst + max

n∈{1,...,k−1}

{∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λk

jt − λn
jt

]
}

≤
∑

t∈T

∑

j∈C

S−1∑

s=0

λ∗jst + max
n∈{1,...,k−1}

{∑

i∈P
βi V

λn

i1 −
∑

t∈T

∑

i∈P

∑

j∈C
βi Πλn

ijt

[
λ∗jt − λn

jt

]
}

≤
∑

t∈T

∑

j∈C

S−1∑

s=0

λ∗jst +
∑

i∈P
βi V

λ∗
i1 =

∑

t∈T

∑

j∈C

S−1∑

s=0

λ∗jst +
∑

i∈P

∑

ri1∈R
βi(ri1) V λ∗

i1 (ri1)

≤
∑

t∈T

∑

j∈C

S−1∑

s=0

λk
jst +

∑

i∈P

∑

ri1∈R
βi(ri1) V λk

i1 (ri1),

where the first inequality follows from the fact that (vk, λk) is an optimal solution to the master

problem, the second inequality follows from (49) and the third inequality follows from the fact that λ∗

is an optimal solution to problem (38). Therefore, the first and last terms in the chain of inequalities

above give lower and upper bounds on the optimal objective value of problem (38). In Figure 5, we

plot the percent gap between the lower and upper bounds as a function of the iteration number k for

a particular test problem, along with the total expected profit that is obtained by the greedy policy

characterized by the value function approximations {∑τ
t′=t

∑
j∈C

∑S−1
s=0 λk

jst′+
∑

i∈P V λk

it (rit) : t ∈ T }.
This figure shows that the Benders decomposition method has slow tail performance, but the quality

of the greedy policy does not improve after the first few iterations. Consequently, we stop the Benders

decomposition method when the percent gap between the lower and upper bounds is less than 10%.

This does not noticeably affect the quality of the greedy policy. Such slow tail performance is also

reported in Yost & Washburn (2000). Magnanti & Wong (1981) and Ruszczynski (2003) show that
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choosing the cutting planes “carefully” and using regularized Benders decomposition or trust region

methods may remedy this difficulty.

We summarize our results in Tables 1-4. In these tables, the first column gives the characteristics

of the test problems, where τ is the length of the planning horizon, |P| is the number of plants, P is the

number of plants that serves a particular customer location (we assume that each customer location

is served by the closest P plants), σ̄ is the average salvage value, Q̄ is the total expected production

quantity (that is, Q̄ = E
{∑

t∈T
∑

i∈P Qit

}
) and V̄ is the average coefficient of variation of the

production random variables (that is, V̄ is the average of {
√

V ar(Qit)/E
{
Qit

}
: i ∈ P, t ∈ T }). The

second set of columns give the performance of the linear programming-based method (LP). Letting

{θ∗t +
∑

i∈P ϑ∗it rit : t ∈ T } be the value function approximations obtained by LP, the first one of these

columns gives the ratio of the total expected profit that is obtained by the greedy policy characterized

by these value function approximations to the total expected profit obtained by the 8-period rolling

horizon method (RH). To estimate the total expected profit that is obtained by the greedy policy,

we simulate the behavior of the greedy policy for 500 different samples of {Qit : i ∈ P, t ∈ T }. The

second column gives the number of constraints added to the master problem. The third column gives

the CPU seconds needed to solve problem (16)-(18). The fourth and fifth columns give what percents

of the CPU seconds are spent on solving the master problem and constructing the constraints. The

third set of columns give the performance of the Lagrangian relaxation-based method (LG). Letting

{∑τ
t′=t

∑
j∈C

∑S−1
s=0 λ∗jst′ +

∑
i∈P V λ∗

it (rit) : t ∈ T } be the value function approximations obtained

by LG, the first one of these columns gives the ratio of the total expected profit that is obtained

by the greedy policy characterized by these value function approximations to the total expected

profit obtained by RH. The second and third columns give the number of cutting planes and the

CPU seconds needed to solve problem (38) with 10% optimality gap. The fourth and fifth columns

give what percents of the CPU seconds are spent on solving the master problem and constructing

the cutting planes. Letting λ0 be a trivial feasible solution to problem (38) consisting of all zeros,

the sixth column gives the ratio of the total expected profit that is obtained by the greedy policy

characterized by the value function approximations {∑τ
t′=t

∑
j∈C

∑S−1
s=0 λ0

jst′+
∑

i∈P V λ0

it (rit) : t ∈ T }
to the total expected profit obtained by RH. Consequently, the gap between the columns labeled

“Prf” and “In Prf” shows the significance of finding a near-optimal solution to problem (38).

There are several observations that we can make from Tables 1-4. On a majority of the test

problems, LP performs worse than RH, whereas LG performs better than RH. (Almost all of the

differences are statistically significant at the 5% level.) The CPU seconds and the number of con-

straints for LP show less variation among different test problems than the CPU seconds and the

number of cutting planes for LG. Comparing the columns labeled “Prf” and “In Prf” shows that

24



finding a near-optimal solution to problem (38) significantly improves the quality of the greedy policy

obtained by LG. For some test problems, the greedy policy characterized by the value function ap-

proximations {∑τ
t′=t

∑
j∈C

∑S−1
s=0 λ0

jst′ +
∑

i∈P V λ0

it (rit) : t ∈ T } performs better than LP. Therefore,

simply ignoring the constraints that link the decisions for different plants can provide better policies

than using linear value function approximations. Nevertheless, this approach is not a good idea in

general. The last row in Table 3 shows that the total expected profit obtained by this approach can

be almost half of the total expected profit obtained by RH.

Our computational results complement the findings in Adelman & Mersereau (2004) in an inter-

esting fashion. Adelman & Mersereau (2004) show that if the linear programming-based method uses

nonlinear approximations of the value functions, then it provides tighter upper bounds on the value

functions than does the Lagrangian relaxation-based method. However, for our problem class, if the

linear programming-based method uses nonlinear approximations of the value functions, then con-

straint generation requires solving integer programs, which can be computationally prohibitive. Con-

sequently, although Adelman & Mersereau (2004) show that the linear programming-based method is

superior to the Lagrangian relaxation-based method when it uses a nonlinear “approximation archi-

tecture,” our computational results indicate that the linear programming-based method along with

a linear “approximation architecture” can be inferior to the Lagrangian relaxation-based method.

We proceed to examine Tables 1-4 in detail. Table 1 shows the results for problems with different

values of P . For each value of P , we use low, moderate and high values for the coefficients variation

of the production random variables. As the number of plants that can serve a particular customer

location increases, the performance gap between LG and RH diminishes. This is due to the fact that

if a customer location can be served by a large number of plants, then it is possible to make up an

inventory shortage in one plant by using the inventory in another plant. In this case, it is not crucial

to make the “correct” inventory allocation decisions and RH performs almost as well as LG. It is

also interesting to note that the performance of the greedy policy characterized by the value function

approximations {∑τ
t′=t

∑
j∈C

∑S−1
s=0 λ0

jst′ +
∑

i∈P V λ0

it (rit) : t ∈ T } gets better as P decreases. This

shows that if P is small, then simply ignoring the constraints that link the decisions for different

plants can provide good policies. Finally, the performance gap between LG and RH gets larger as

the coefficients of variation of the production random variables get large.

Table 2 shows the results for problems with different values of σ̄. As the salvage value increases,

a large portion of the inventory at the plants is shipped to the customer locations to exploit the

high salvage value and the incentive to store inventory decreases. This reduces the value of a dy-

namic programming model that carefully balances the inventory holding decisions with the shipment

decisions, and the performance gap between LG and RH diminishes.
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Table 3 shows the results for problems with different values of Q̄. As the total expected production

quantity increases, the product becomes more abundant and it is not crucial to make the “correct”

inventory allocation decisions. As a result, the performance gap between LG and RH diminishes.

Finally, Table 4 shows the results for problems with different dimensions. The CPU seconds and

the number of constraints for LP increase as τ or |P| increases. However, the CPU seconds and the

number of cutting planes for LG do not change in a systematic fashion. (This has been the case

for many other test problems we worked on.) Nevertheless, as shown in Figure 5, the quality of the

greedy policy obtained by LG is quite good even after a few iterations and problem (38) does not

have to be solved to optimality. This observation is consistent with that of Cheung & Powell (1996),

where the authors carry out only a few iterations of a subgradient search algorithm to obtain a good

lower bound on the recourse function arising from a multi-period stochastic program.

6. Conclusion

We presented two approximate dynamic programming methods for an inventory allocation problem

under uncertainty. Computational experiments showed that the Lagrangian relaxation-based method

performs significantly better than the linear programming-based method and the rolling horizon

method. It appears that a model that explicitly uses the full distributions of the production random

variables can yield better decisions than the linear programming-based method and the rolling horizon

method, which use only the expected values of the production random variables (see problems (16)-

(18) and (64)-(69)). The magnitude of the improvement obtained by the Lagrangian relaxation-based

method over the other methods depends on the problem parameters. Tables 1-4 indicate that the

Lagrangian relaxation-based method is particularly useful when a customer location can be served

by a few plants, when the salvage value for the product is low, when the product is scarce and when

the variability in the production quantities is high.

The Lagrangian relaxation-based method offers promising research opportunities. There are many

dynamic programs where the evolutions of the different components of the state variable are affected

by different types of decisions and these different types of decisions interact through a few linking

constraints. For example, almost every problem that involves dynamic allocation of a fixed amount

of resource to independent activities is of this nature. It is interesting to see what improvement the

Lagrangian relaxation-based method will provide over other solution methods in different application

settings.
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8. Appendix

Proof of Lemma 1. Since Fjt(·) is a piecewise-linear concave function with points of nondiffer-

entiability being a subset of positive integers, noting that fjst = σjt for all s = S, S + 1, . . . and

associating the decision variables {zjst : s = 0, . . . , S} with the first differences of Fjt(·), problem

(2)-(6) can be written as

Vt(rt) = max −
∑

i∈P

∑

j∈C
cijt uijt +

∑

j∈C

S∑

s=0

fjst zjst −
∑

i∈P
hit xit + E

{
Vt+1(xt + Qt+1)

}

subject to (3), (5)

∑

i∈P
uijt −

S∑

s=0

zjst = 0 ∀ j ∈ C

zjst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1

uijt, xit, zjst ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S.

(See Nemhauser & Wolsey (1988) for more on embedding piecewise-linear concave functions in op-

timization problems.) Defining the new decision variables {yijst : i ∈ P, j ∈ C, s = 0, . . . , S} and

substituting
∑S

s=0 yijst for uijt, the problem above becomes

Vt(rt) = max −
∑

i∈P

∑

j∈C

S∑

s=0

cijt yijst +
∑

j∈C

S∑

s=0

fjst zjst −
∑

i∈P
hit xit + E

{
Vt+1(xt + Qt+1)

}
(70)

subject to (5) (71)

xit +
∑

j∈C

S∑

s=0

yijst = rit ∀ i ∈ P (72)

∑

i∈P

S∑

s=0

yijst −
S∑

s=0

zjst = 0 ∀ j ∈ C (73)

zjst ≤ 1 ∀ j ∈ C, s = 0, . . . , S − 1 (74)

xit, yijst, zjst ∈ Z+ ∀ i ∈ P, j ∈ C, s = 0, . . . , S. (75)

By Lemma 10 below, we can substitute
∑

i∈P yijst for zjst in problem (70)-(75), in which case

constraints (73) become redundant and the result follows. ¤

Lemma 10. There exists an optimal solution (x∗t , y∗t , z∗t ) to problem (70)-(75) that satisfies
∑

i∈P y∗ijst =

z∗jst for all j ∈ C, s = 0, . . . , S.
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Proof of Lemma 10. We let (x∗t , y∗t , z∗t ) be an optimal solution to problem (70)-(75), I+ = {(j, s) :
∑

i∈P y∗ijst > z∗jst} and I− = {(j, s) :
∑

i∈P y∗ijst < z∗jst}. If we have |I+| + |I−| = 0, then we

are done. Assume that we have |I+| + |I−| > 0. We now construct another optimal solution

(x̂t, ŷt, ẑt) with |Î+| + |Î−| < |I+| + |I−|, where we use Î+ = {(j, s) :
∑

i∈P ŷijst > ẑjst} and

Î− = {(j, s) :
∑

i∈P ŷijst < ẑjst}. This establishes the result.

Assume that (j′, s′) ∈ I+. Since (x∗t , y∗t , z∗t ) satisfies constraints (73), there exists s′′ such that

(j′, s′′) ∈ I−. (If we assume that (j′, s′′) ∈ I−, then there exists s′ such that (j′, s′) ∈ I+ and the

proof remains valid.) We let δ =
∑

i∈P y∗ij′s′t − z∗j′s′t > 0 and assume that δ ≤ z∗j′s′′t −
∑

i∈P y∗ij′s′′t.

We pick i1, . . . , in ∈ P such that y∗i1j′s′t + . . . + y∗inj′s′t ≥ δ and y∗i1j′s′t + . . . + y∗in−1,j′s′t < δ.

We let x̂it = x∗it, ẑjst = z∗jst for all i ∈ P, j ∈ C, s = 0, . . . , S and

ŷijst =





0 if i ∈ {i1, . . . , in−1}, j = j′, s = s′

y∗i1j′s′t + . . . + y∗inj′s′t − δ if i = in, j = j′, s = s′

y∗ij′s′′t + y∗ij′s′t if i ∈ {i1, . . . , in−1}, j = j′, s = s′′

y∗inj′s′′t − y∗i1j′s′t − . . .− y∗in−1,j′s′t + δ if i = in, j = j′, s = s′′

y∗ijst otherwise.

(76)

It is easy to check that
∑S

s=0 ŷijst =
∑S

s=0 y∗ijst for all i ∈ P, j ∈ C, which implies that (x̂t, ŷt, ẑt) is

feasible to problem (70)-(75) and yields the same objective value as (x∗t , y∗t , z∗t ). Therefore, (x̂t, ŷt, ẑt)

is an optimal solution. Furthermore, (76) implies that

∑

i∈P
ŷijst =





z∗j′s′t if j = j′, s = s′∑
i∈P y∗ij′s′′t + δ if j = j′, s = s′′∑
i∈P y∗ijst otherwise.

Since we have ẑjst = z∗jst for all j ∈ C, s = 0, . . . , S and
∑

i∈P ŷijst =
∑

i∈P y∗ijst whenever

(j, s)6∈{(j′, s′), (j′, s′′)}, the elements of Î+ and Î− are respectively the same as the elements of

I+ and I−, except possibly for (j′, s′) and (j′, s′′). Since we have
∑

i∈P ŷij′s′t = z∗j′s′t = ẑj′s′t,

we have (j′, s′) 6∈Î+ and (j′, s′)6∈Î−. Finally, since we have
∑

i∈P ŷij′s′′t =
∑

i∈P y∗ij′s′′t + δ ≤
∑

i∈P y∗ij′s′′t + z∗j′s′′t −
∑

i∈P y∗ij′s′′t = ẑj′s′′t, we have (j′, s′′)6∈Î+. Therefore, we have |Î+| = |I+| − 1

and |Î−| ≤ |I−|. The proof for the case δ > z∗j′s′′t −
∑

i∈P y∗ij′s′′t follows from a similar argument. ¤
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Step 1. Initialize the sets {N 1
t : t ∈ T } to empty sets. Initialize the iteration counter k to 1.

Step 2. Solve the master problem at iteration k

min
∑

r1∈R|P|
α(r1) θ1 +

∑

r1∈R|P|

∑

i∈P
α(r1) ri1 ϑi1

subject to θt +
∑

i∈P
rn
it ϑit ≥ pt(xn

t , yn
t ) + θt+1 +

∑

i∈P

[
xn

it + E
{
Qi,t+1

}]
ϑi,t+1

∀ n ∈ N k
t , t ∈ T \ {τ}

θτ +
∑

i∈P
rn
iτ ϑiτ ≥ pτ (xn

τ , yn
τ ) ∀ n ∈ N k

τ .

Let {θk
t : t ∈ T }, {ϑk

it : i ∈ P, t ∈ T } be an optimal solution to this problem.

Step 3. For all t ∈ T \ {τ}, solve problem (19) with ϑ̂it = ϑk
it and ϑ̂i,t+1 = ϑk

i,t+1 for all i ∈ P. Letting
(rk

t , xk
t , y

k
t ) be an optimal solution to this problem, if we have

pt(xk
t , y

k
t ) +

∑

i∈P
ϑk

i,t+1 xk
it −

∑

i∈P
ϑk

it rk
it > θk

t − θk
t+1 −

∑

i∈P
E

{
Qi,t+1

}
ϑk

i,t+1,

then let N k+1
t = N k

t

⋃{k}. Otherwise, let N k+1
t = N k

t .

Step 4. Solve problem (20) with ϑ̂iτ = ϑk
iτ for all i ∈ P. Letting (rk

τ , xk
τ , y

k
τ ) be an optimal solution to

this problem, if we have

pτ (xk
τ , y

k
τ )−

∑

i∈P
ϑk

iτ rk
iτ > θk

τ ,

then let N k+1
τ = N k

τ

⋃{k}. Otherwise, let N k+1
τ = N k

τ .

Step 5. If we have N k+1
t = N k

t for all t ∈ T , then {θk
t : t ∈ T }, {ϑk

it : i ∈ P, t ∈ T } is an optimal
solution to problem (16)-(18) and stop. Otherwise, increase k by 1 and go to Step 2.

Figure 1: Constraint generation method to solve problem (16)-(18).
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Figure 2: Problem (23)-(28) is a min-cost network flow problem. In this figure, we assume that
P = {A,B}, C = {C, D} and S = 2.

Step 1. Initialize the iteration counter k to 1.

Step 2. Solve the master problem (50)-(52). Let (vk, λk) be an optimal solution to this problem.

Step 3. Compute {V λk

i1 (ri1) : ri1 ∈ R, i ∈ P} by solving the optimality equation in (34) with λ = λk.

Step 4. If we have vk =
∑

i∈P
∑

ri1∈R βi(ri1) V λk

i1 (ri1), then λk is an optimal solution to problem (38)
and stop. Otherwise, add constraint (53) to the master problem (50)-(52), increase k by 1 and
go to Step 2.

Figure 3: Benders decomposition method to solve problem (38).

31



xit

yijst

yijSt

ζjst

zil,t+1

A

B

C,0

C,1

D,0

D,1

O1

O2 O3

φ

A

B

Figure 4: Problem (59)-(63) is a min-cost network flow problem. In this figure, we assume that
P = {A,B}, C = {C, D}, S = 2 and L = 4.
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Figure 5: Percent gap between the lower and upper bounds on the optimal objective value of problem
(38) (on the left side) and total expected profit that is obtained by the greedy policy characterized
by the value function approximations {∑τ

t′=t

∑
j∈C

∑S−1
s=0 λk

jst′ +
∑

i∈P V λk

it (rit) : t ∈ T } (on the right
side).
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Problem parameters LP LG
(τ, |P|, P, σ̄, Q̄, V̄ ) Prf #Cn Cpu %Mp %Cg Prf #Ct Cpu %Mp %Cg In Prf

(14, 9, 2,−200, 2000, 0.90) 0.96 153 21 41 59 1.04 28 10 64 36 1.00
(14, 9, 4,−200, 2000, 0.90) 0.97 129 20 39 60 1.02 187 374 74 26 0.96
(14, 9, 8,−200, 2000, 0.90) 0.97 137 25 34 66 1.02 259 578 74 26 0.95

(14, 9, 2,−200, 2000, 0.95) 0.94 130 18 42 58 1.08 28 9 65 35 1.01
(14, 9, 4,−200, 2000, 0.95) 0.95 172 26 38 62 1.04 114 129 70 30 0.92
(14, 9, 8,−200, 2000, 0.95) 0.96 153 28 33 67 1.04 278 493 71 29 0.91

(14, 9, 2,−200, 2000, 0.99) 0.92 135 19 44 56 1.25 28 8 65 34 1.11
(14, 9, 4,−200, 2000, 0.99) 0.92 174 26 37 63 1.10 110 115 69 31 0.88
(14, 9, 8,−200, 2000, 0.99) 0.91 143 26 32 68 1.09 275 432 69 31 0.86

Table 1: Computational results for problems with different numbers of plants that serve a customer
location.

Problem parameters LP LG
(τ, |P|, P, σ̄, Q̄, V̄ ) Prf #Cn Cpu %Mp %Cg Prf #Ct Cpu %Mp %Cg In Prf

(14, 9, 4, 100, 2000, 0.90) 0.99 139 20 37 63 1.01 10 4 69 31 0.99
(14, 9, 4, 0, 2000, 0.90) 0.98 130 19 39 61 1.01 17 8 69 30 0.99

(14, 9, 4,−200, 2000, 0.90) 0.97 129 20 39 60 1.02 187 374 74 26 0.96
(14, 9, 4,−300, 2000, 0.90) 0.83 143 22 38 62 1.09 736 4334 87 13 0.77

(14, 9, 4, 100, 2000, 0.95) 0.99 201 29 36 64 1.01 11 4 70 29 0.99
(14, 9, 4, 0, 2000, 0.95) 0.99 177 26 37 63 1.01 17 7 69 31 0.98

(14, 9, 4,−200, 2000, 0.95) 0.95 172 26 38 62 1.04 114 129 70 30 0.92
(14, 9, 4,−300, 2000, 0.95) 0.90 142 21 36 64 1.11 605 2225 80 20 0.77

(14, 9, 4, 100, 2000, 0.99) 0.99 131 20 39 61 1.01 11 4 70 30 0.99
(14, 9, 4, 0, 2000, 0.99) 0.98 139 21 39 61 1.01 18 7 67 33 0.99

(14, 9, 4,−200, 2000, 0.99) 0.92 174 26 37 63 1.10 110 115 69 31 0.88
(14, 9, 4,−300, 2000, 0.99) 0.95 152 23 36 64 1.06 582 1968 79 21 0.91

Table 2: Computational results for problems with different salvage values.

Problem parameters LP LG
(τ, |P|, P, σ̄, Q̄, V̄ ) Prf #Cn Cpu %Mp %Cg Prf #Ct Cpu %Mp %Cg In Prf

(14, 9, 4,−200, 1000, 0.91) 0.93 142 17 41 59 1.07 412 428 76 24 1.06
(14, 9, 4,−200, 2000, 0.90) 0.97 129 20 39 60 1.02 187 374 74 26 0.96
(14, 9, 4,−200, 4000, 0.87) 0.94 162 32 33 67 0.99 52 133 68 32 0.90

(14, 9, 4,−200, 1000, 0.96) 0.88 131 16 42 58 1.14 402 334 73 27 1.13
(14, 9, 4,−200, 2000, 0.95) 0.95 172 26 38 62 1.04 114 129 70 30 0.92
(14, 9, 4,−200, 4000, 0.95) 0.90 141 29 34 66 1.04 56 137 68 32 0.81

(14, 9, 4,−200, 1000, 0.98) 0.76 144 17 42 57 1.50 363 232 69 31 1.45
(14, 9, 4,−200, 2000, 0.99) 0.92 174 26 37 63 1.10 110 115 69 31 0.88
(14, 9, 4,−200, 4000, 0.98) 0.76 142 29 33 66 0.98 47 103 68 32 0.54

Table 3: Computational results for problems with different total expected production quantities.

Problem parameters LP LG
(τ, |P|, P, σ̄, Q̄, V̄ ) Prf #Cn Cpu %Mp %Cg Prf #Ct Cpu %Mp %Cg In Prf

(8, 9, 4,−200, 1000, 0.92) 0.79 115 7 26 73 1.28 332 112 72 28 1.21
(14, 9, 4,−200, 2000, 0.90) 0.97 129 20 39 60 1.02 187 374 74 26 0.96
(21, 9, 4,−200, 3000, 0.93) 0.91 176 40 41 58 1.04 830 17911 99 1 0.90

(14, 4, 4,−200, 2000, 0.91) 0.85 40 3 6 94 1.12 1637 6090 92 8 1.11
(14, 9, 4,−200, 2000, 0.90) 0.97 129 20 39 60 1.02 187 374 74 26 0.96
(14, 14, 4,−200, 2000, 0.93) 0.91 216 67 67 33 0.98 523 4175 96 4 0.93

Table 4: Computational results for problems with different dimensions.
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