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Abstract

In this paper, we study a revenue management model over a single flight leg, where the customers
are allowed to lock an available fare. Each customer arrives into the system with an interest in
purchasing a ticket for a particular fare class. If this fare class is available, the customer either
immediately purchases the ticket by paying the fare or locks the fare by paying a fee. If the
customer locks the fare, then the airline reserves the capacity for the customer for a certain
duration of time. At the end of this duration of time, the customer makes her ultimate purchase
decision at the locked fare. The goal of the airline is to find a policy to decide which set of
fare classes to make available at each time period to maximize the total expected revenue. Such
fare locking options are commonly offered by airlines today, but the dynamic programming
formulation of the revenue management problem with the option to lock an available fare
has a high dimensional state variable that keeps track of the locked fares. We develop an
approximate policy that is guaranteed to obtain at least half of the optimal total expected
revenue. Our approach is based on leveraging a linear programming approximation to decompose
the problem by the seats on the flight and solving a dynamic program that controls the capacity
on each seat separately. We also show that our results continue to hold when the airline makes
pricing decisions, instead of fare class availability decisions. Our numerical study shows that
the practical performance our approximate policy is remarkably good when compared with a
tractable upper bound on the optimal total expected revenue.



A recent practice adopted by airlines is to offer the option of locking an available fare. With this

option, the customers lock an available fare for a certain duration of time by paying a fee. In return

for the fee, the airline reserves the capacity for the customer until she makes her ultimate purchase

decision within a certain duration of time. If the customer ultimately purchases the ticket, then she

pays the fare that she locked. If the customer ultimately does not purchase the ticket, then the fee

for locking the fare is wasted. On the one hand, by using the option of locking an available fare, the

customers can protect themselves against lack of capacity until their travel plans materialize. On

the other hand, by offering the option of locking an available fare, the airlines can come up with

another revenue stream. Nevertheless, the option of locking an available fare brings an additional

source of uncertainty in the revenue management decisions of the airlines. In particular, since the

ultimate purchase decisions of the customers with locked fares are uncertain, the capacity available

for future customers also becomes uncertain.

In this paper, we study a revenue management model over a single flight leg when customers

have the option of locking an available fare. Each customer arrives into the system with an interest

in purchasing a ticket for a particular fare class. If this fare class is available, then the customer

either purchases the ticket immediately or locks the fare by paying a fee. If the customer locks

the fare, then the airline reserves the capacity for the customer for a certain duration of time,

allowing the customer to delay her purchase decision. If the customer ultimately decides to purchase

the ticket, then she pays the fare she locked. The goal is to find a policy to decide which fare

classes to make available at each time period in the selling horizon to maximize the total expected

revenue. The dynamic programming formulation of this problem requires a high dimensional state

variable that keeps track of the customers with locked fares. Therefore, finding the optimal policy

is computationally challenging. We construct an approximate policy that is guaranteed to obtain

at least half of the optimal total expected revenue.

The construction of our approximate policy has three components. First, we give a linear

programming approximation to the problem under the assumption that the demands for the fare

classes and the locking decisions of the customers take on their expected values. Second, we use the

optimal solution to the linear programming approximation to decide whether a customer arriving at

a certain time period with an interest in a certain fare class is offered the fare class. If the customer

is offered the fare class, then we “dispatch” the customer randomly to one of the seats on the

flight. Therefore, each seat on the flight receives an exogenous arrival of customers, in which case,

we can solve a dynamic program to manage the capacity on each seat individually. Third, we use

the dynamic program that we solve for each seat to obtain approximations to the value functions

in the dynamic programming formulation of the original problem. We use these approximations

to the value functions to construct our approximate policy. We show that our approximate policy

obtains at least half of the optimal total expected revenue.

To our knowledge, there are no policies that can be computed efficiently, while providing a

constant factor approximation guarantee for the revenue management problem over a single flight
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leg with the option of locking an available fare. Our approximate policy fills this gap. Our

numerical study indicates that the practical performance of this policy is substantially better than

the theoretical approximation guarantee. To obtain our approximation guarantee, we show that the

optimal objective value of the linear programming approximation provides an upper bound on the

optimal total expected revenue and the total expected revenue from the approximate policy is at

least half of the optimal objective value of the linear programming approximation. So, letting OPT

be the optimal total expected revenue, LP be the optimal objective value of the linear programming

approximation and APP be the total expected revenue from the approximate policy, we show that

LP ≥ OPT and APP ≥ LP/2, which yield APP ≥ LP/2 ≥ OPT/2, implying that the approximate

policy obtains at least half of the optimal total expected revenue. As a side note, since the total

expected revenue from the approximate policy cannot exceed the optimal total expected revenue, we

have OPT ≥ APP, in which case, the last chain of inequalities yields OPT ≥ LP/2 ≥ OPT/2. Thus,

the upper bound provided by the linear programming approximation also deviates from the optimal

total expected revenue by at most a factor of two. Linear programming approximations are often

used in the revenue management literature, but we are not aware of such a tightness result for the

upper bound from the linear programming approximation.

The demand model that we use is the so called independent demand model, where each customer

arrives with an interest in purchasing a ticket for a particular fare class and she leaves without a

purchase when this fare class is not available. In this case, the decision that we make at each time

period is the set of fare classes offered to the customers. Such a simple demand model allows us

to explain the ideas behind our approximate policy clearly, but we show that all of our results

continue to hold under the price dependent demand model, where each customer arrives with a

particular willingness to pay and she leaves without a purchase when the price for the ticket exceeds

the willingness to pay of the customer. In this case, the decision that we make at each time period

is the price that we charge for the ticket. Under price dependent demand, we can still construct an

approximate policy that obtains at least half of the optimal total expected revenue.

Related Literature. There are two studies of the revenue management problem over a single

flight leg with an option to lock an available fare. Aydin et al. (2016) consider the problem under

independent demand, whereas Chen and Chen (2016) consider the problem under price dependent

demand. The models in Aydin et al. (2016) and Chen and Chen (2016) precisely correspond

to the models that we consider in this paper under independent demand and price dependent

demand. Aydin et al. (2016) demonstrate that it is not always beneficial for the airline to offer

the option of locking a fare, but there are cases when the revenue improvements from offering the

option can be substantial. Chen and Chen (2016) study how the option of locking an available fare

affects the pricing decisions of the airline. As far as we are aware, these papers are the first studies

of the problem but they do not provide policies with performance guarantees.

The construction of our approximate policy borrows from Wang et al. (2015) and Gallego

et al. (2015). These papers consider the problem of assigning resources to arriving customers,
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when the reward from assigning a resource to a customer depends on the identities of the resource

and the customer. In Wang et al. (2015), one chooses the resource to assign to each customer,

whereas in Gallego et al. (2015), one chooses the set of resources to offer to each customer, among

which the customer makes a choice. Both papers use a linear programming approximation to

decompose the problem by the resources and to construct approximate policies with performance

guarantees. The performance guarantees in these papers require a special choice of Lagrange

multipliers in a suitable relaxation of the problem and use arguments specially tailored to the

problem class. Our performance guarantee does not require a special choice of Lagrange multipliers

and uses an induction argument that could be applicable in a variety of settings.

The option of locking an available fare is one approach to construct a revenue stream while

providing some flexibility to the customers and the airlines, but there are other approaches studied

in the literature. Karaesmen and van Ryzin (2004) study overbooking models with substitutable

flights, where the customers that are denied boarding from one flight can be accommodated on the

next one. Gallego and Phillips (2004) focus on flexible products, where the customers purchase

ticket for a particular date without knowing which particular flight they eventually take. Gallego

et al. (2008) give a model to study callable products, where the airline may buy back the tickets

purchased by low fare customers to sell them to high fare customers. Gallego and Stefanescu (2009)

study models for upgrading customers to higher fare classes when the airline runs out of capacity

to serve the customers for their originally purchased fare classes. Balseiro et al. (2011) focus on

call options for sports tournaments, which allow the customers to reserve tickets early by paying a

small fee and ultimately purchase the ticket only if their teams are on the final game.

Our approximate policy makes use of a linear programming approximation that is formulated

under the assumption that all random components of the problem take on their expected

values. Similar deterministic approximations are often used in the literature. For example, Gallego

and van Ryzin (1994) focus on dynamic pricing on a single flight leg, whereas Gallego and van

Ryzin (1997) focus on dynamic pricing over a flight network. Talluri and van Ryzin (1998) focus

on capacity allocation over a flight network. Gallego et al. (2004) focus on network revenue

management with customer choice behavior. Kunnumkal et al. (2012) focus on overbooking over

a flight network. The authors give deterministic approximations for each one of these settings,

show that the deterministic approximation provides an upper bound on the optimal total expected

revenue and develop policies that are asymptotically optimal as the capacity and the demand

increases linearly with the same rate, but do not provide policies with constant factor approximation

guarantees when the capacity and the demand do not necessarily get large.

When we give a dynamic programming formulation for the revenue management problem under

the option of locking an available fare, the state variable ends up being high dimensional, since we

need to keep track of the customers with locked fares over a suitable portion of the history of the

system. High dimensional state variables appear in numerous setting in revenue management. For

example, in revenue management problems over a network of flight legs, the state variable needs
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to keep track of the remaining capacities on all of the flight legs. Adelman (2007) constructs

linear approximations of the value functions in the dynamic programming formulation of the

network revenue management problem. The author chooses the slopes of the value function

approximations by solving a linear program that represents the dynamic programming formulation

of the network revenue management problem. Liu and van Ryzin (2008) extract policies from a

linear programming approximation of the network revenue management problem, but the authors

consider the network revenue management problem under customer choice, where the customers are

offered a set of itineraries, among which they make a choice. Zhang and Adelman (2009) construct

linear approximations to the value functions in the network revenue management management

problem under customer choice, whereas Topaloglu (2009) constructs separable and piecewise linear

approximations. Other strategies for approximating the value functions can be found in Kunnumkal

and Topaloglu (2010), Meissner and Strauss (2012), Meissner et al. (2012) and Kunnumkal (2014).

Vossen and Zhang (2015) and Kunnumkal and Talluri (2016) show the relationships between these

approximation strategies and indicate that some of them are equivalent to each other.

Dynamic programming formulations of overbooking problems also require high dimensional

state variables, since we need to keep track of the reservations for different fare classes and the

reservations for different fare classes cancel and show up with different probabilities due to different

restrictions. Subramanian et al. (1999) give a dynamic programming formulation of the overbooking

problem over a single flight leg and show that the state variable collapses to a scalar when the

cancellation and show up probabilities are the same for all fare classes. This model assumes that

there can be at most one cancellation at each time period. Bertsimas and Popescu (2003) use a

deterministic approximation to compute policies for overbooking over a flight network. Erdelyi and

Topaloglu (2010) study overbooking problems over a network of flight legs and propose an approach

to decompose the problem by the flight legs, but their approach does not have a performance

guarantee. Lan et al. (2011) give a robust formulation of the overbooking problem, provide policies

that minimize regret and characterize the structure of the optimal policy. Aydin et al. (2013) give

an overbooking model over a single flight leg, where any one of the reservations can cancel at a

particular time period, so that there can be multiple cancellations.

Organization. In Section 1, we formulate the problem as a dynamic program. In Section 2, we

give a linear programming approximation. In Section 3, we show how to decompose the problem by

the seats on the flight so that we can solve a dynamic program to control the capacity on each seat

separately. This approach provides approximations to the value functions in the original dynamic

programming formulation. In Section 4, we use these approximations to construct an approximate

policy and show that the approximate policy obtains at least half of the optimal total expected

revenue. In Section 5, we extend our approach to deal with the case where the customers interested

in different fare classes have different parameters governing their purchase behavior. In Section 6,

we show that our results continue to hold under price dependent demand. In Section 7, we provide

a numerical study. In Section 8, we conclude.
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1 Problem Formulation

We have n fare classes indexed by N = {1, . . . , n}. The capacity available on the flight is C. The

selling horizon has τ time periods indexed by T = {1, . . . , τ}. There is at most one customer arrival

at each time period. With probability λi,t, a customer with an interest in purchasing a ticket for

fare class i arrives into the system at time period t. If fare class i is not available, then the customer

leaves without a purchase. If fare class i is available, then the customer either purchases the ticket

or locks the fare. In particular, with probability ρ, the customer purchases the ticket by paying

the fare ri for fare class i. With probability 1 − ρ, the customer locks the fare by paying the fee

h. Locking the fare ensures that the capacity on the flight is reserved for the customer and the

customer makes her purchase decision for the ticket for fare class i after L time periods. With

probability π, the customer ultimately purchases the ticket after L time periods, in which case,

she pays the fare ri. With probability 1 − π, the customer does not purchase the ticket and the

capacity reserved for this customer becomes available for other customers. We want to find a policy

to decide which fare classes to make available at each time period so that we maximize the total

expected revenue over the selling horizon.

We proceed to describing the sequence of events that take place at time period t. Considering the

capacity available on the flight and the customers who locked fares at time periods t− L, . . . , t− 1,

we decide which fare classes to make available at time period t. Next, we observe the customer

arrival at time period t, along with whether this customer purchases the ticket for the fare class

she is interested in or locks the fare. Finally, if the customer arriving at time period t − L locked

the fare at this time period, then we observe the ultimate purchase decision of this customer. If the

customer ultimately decides not to make a purchase, then the capacity reserved for this customer

becomes available for other customers. At the beginning of a time period, we use x to denote

the remaining capacity on the flight and y` ∈ {0, 1} to capture whether the customer arriving `

time periods ago locked the fare that is of interest to her. In particular, we have y` = 1 if and

only if the customer arriving ` time periods ago locked the fare that is of interest to her. At the

beginning of a time period, we observe the customers who locked the fares at the previous L time

periods. Therefore, the vector (y1, . . . , yL) captures the customers with locked fares at the previous

time periods who have not yet made their purchase decisions.

To formulate the problem as a dynamic program, we use (x, y1, . . . , yL) as the state variable

at a time period. We capture the decisions that we make at a time period by using the vector

u = (u1, . . . , un) ∈ {0, 1}n, where ui = 1 if and only if we make fare class i available. Since we can

make a fare class available only when there is remaining capacity on the flight, the set of feasible

decisions at a time period is given by U(x) = {u ∈ {0, 1}n : ui ≤ x ∀ i ∈ N}. If we make fare class

i available and a customer with an interest in fare class i arrives into the system, then the customer

purchases the ticket with probability ρ, whereas the customer locks the fare with probability 1− ρ
and she ultimately purchases the ticket after L time periods with probability π. Therefore, if we

make fare class i available, then we obtain an expected revenue of ρ ri + (1 − ρ) (h + π ri) from a
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customer with an interest in fare class i. If the fee to lock the fare depends on the fare class, then

we can replace h with hi. For notational brevity, we let fi = ρ ri + (1− ρ) (h+ π ri), capturing the

expected revenue from a customer with an interest in fare class i. Given that there is a customer

arrival at time period t and the fare class that is of interest to this customer is available for purchase,

we use the random variable Bt to capture whether this customer locks the fare that is of interest

to her. In particular, Bt is a Bernoulli random variable with parameter 1 − ρ, taking value 1 if

and only if the customer locks the fare. As a function of whether the customer arriving at time

period t−L locked the fare that is of interest to her, we use the random variable Dt(yL) to capture

whether the customer ultimately decides not to purchase the ticket at time period t. In particular,

Dt(yL) is a Bernoulli random variable with parameter (1− π) yL, taking value 1 if and only if the

customer who locked a fare at time period t−L ultimately decides not to purchase the ticket at time

period t. If yL = 0 so that we do not have a customer who locked a fare L time periods ago, then

Dt(yL) = 0 with probability one. Letting Vt(x, y1, . . . , yL) be the optimal total expected revenue

over time periods t, . . . , τ given that the state of the system at time period t is (x, y1, . . . , yL), we

can compute the value functions {Vt(·) : t ∈ T} by solving the dynamic program

Vt(x, y1, y2, . . . , yL) = max
u∈U(x)

{∑
i∈N

λi,t ui

[
fi + E

{
Vt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)

}]
+
[

1−
∑
i∈N

λi,t ui

]
E
{
Vt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}}
, (1)

with the boundary condition that Vτ+1(·) = 0. Noting that the capacity available on the flight is

C, the optimal total expected revenue is given by V1(C, 0, . . . , 0).

In the dynamic program in (1), if the customer who locked the fare at time period t−L ultimately

decides not to purchase the ticket at time period t, then we have Dt(yL) = 1, in which case, the

capacity reserved for this customer becomes available for other customers. Also, if a customer is

interested in fare class i at time period t and this fare class is available, then we account for the

expected revenue fi from this customer at time period t, although the customer may lock the fare

and ultimately make her purchase decision after L time periods, in which case, the fare is collected

after L time periods. Section 4.4.2 in Talluri and van Ryzin (2005) focuses on overbooking problems

over a single flight leg and shows that we can account for the expected refund to a customer who does

not show up for the flight when the customer purchases the ticket rather than when the customer

makes her decision to show up for the flight. By using the same argument, it is indeed possible

to show that we can account for the expected revenue from a customer at the time period she

arrives into the system, although a portion of the expected revenue from the customer is obtained

after L time periods. Due to the high dimensional state variable in the dynamic program in (1),

it is difficult to compute the optimal policy. In the rest of the paper, we focus on developing an

approximate policy with a performance guarantee.

In our model, the probability 1 − ρ of locking the fare, the probability 1 − π of ultimately

not purchasing the ticket and the number of time periods L that a customer with a locked fare
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waits until she makes a purchase decision do not depend on the fare class that is of interest to the

customer. In Section 5, we explain that our results continue to hold when we allow 1−ρ, 1−π and

L to depend on the fare class, but the state variable becomes more involved. By allowing L to to

depend on the fare class, we can also capture the situation where the customers can lock the fare

for different durations, where we define different fare classes corresponding to different durations to

lock the fare. Lastly, we note that the decisions of the customers to lock a fare and to ultimately

purchase the ticket after locking the fare are probabilistic. So, the customers do not anticipate the

behavior of the policy that is used to decide which fare classes to make available. This approach is

precisely the same one adopted by Aydin et al. (2016) and Chen and Chen (2016). In our model, we

can interpret 1− ρ as the fraction of customers with uncertain travel plans. These customers lock

the fare. The travel plans of these customers become certain after L time periods. We interpret

1−π as the fraction of customers whose uncertain travel plans do not materialize. These customers

do not purchase the ticket L time periods after locking the fare. By using a probabilistic model of

the customer behavior, we capture the customers as boundedly rational and we obtain a tractable

model to make operational decisions.

2 Upper Bound on the Optimal Total Expected Revenue

We construct a linear program to obtain an upper bound on the optimal total expected revenue. In

the linear program, we use the decision variable zi,t to capture the expected number of customers

arriving at time period t with an interest in fare class i and finding this fare class available. Note that

these customers either purchase the ticket for fare class i or lock the fare. Consider the customers

arriving with an interest in fare class i and finding this fare class available. These customers consume

the capacity on the flight. Using 1(·) to denote the indicator function, the total expected capacity

consumed due to these customers over time periods 1, . . . , t is
∑

κ∈T 1(κ ≤ t) zi,κ. Again, consider

the customers arriving with an interest in fare class i and finding this fare class available. Each

one of these customers locks the fare with probability 1− ρ and ultimately decides not to purchase

the ticket after L time periods with probability 1 − π. The total expected capacity released due

to these customers over time periods 1, . . . , t is
∑

κ∈T 1(κ ≤ t− L) (1− ρ) (1− π) zi,κ, where we

use the fact that customers locking the fare after time period t − L release the capacity after

time period t. Therefore, the net total expected capacity consumed over time periods 1, . . . , t is∑
κ∈T

∑
i∈N 1(κ ≤ t) zi,κ−

∑
κ∈T

∑
i∈N 1(κ ≤ t−L) (1−ρ) (1−π) zi,κ. Using the decision variables

z = {zi,t : i ∈ N, t ∈ T}, we consider the linear program

max
z∈<n×τ+

{∑
t∈T

∑
i∈N

fi zi,t : zi,t ≤ λi,t ∀ i ∈ N, t ∈ T,

C −
∑
κ∈T

∑
i∈N

1(κ ≤ t) zi,κ +
∑
κ∈T

∑
i∈N

1(κ ≤ t− L) (1− ρ) (1− π) zi,κ ≥ 0 ∀ t ∈ T

}
. (2)

The objective function accounts for the total expected revenue over the selling horizon. The

first constraint ensures that the expected number of customers arriving at time period t with
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an interest in fare class i and finding this fare class available cannot exceed the expected

number of customers arriving with an interest in fare class i. Since
∑

κ∈T
∑

i∈N 1(κ ≤ t) zi,κ −∑
κ∈T

∑
i∈N 1(κ ≤ t− L) (1− ρ) (1− π) zi,κ is the net total expected capacity consumed over time

periods 1, . . . , t, the second constraint ensures that the net total expected capacity consumed cannot

exceed the capacity available on the flight. We use the linear program above to obtain an upper

bound on the optimal total expected revenue. Later on, we construct an approximate policy that

allows us to obtain a total expected revenue that is at least half of this upper bound on the optimal

total expected revenue. Therefore, the approximate policy that we construct obtains at least half

of the optimal total expected revenue.

In the next lemma, we show that the optimal objective value of problem (2) provides an upper

bound on the optimal total expected revenue.

Lemma 1 Letting ζ∗ be the optimal objective value of problem (2) and noting that V1(C, 0, . . . , 0)

is the optimal total expected revenue, we have ζ∗ ≥ V1(C, 0, . . . , 0).

Proof. Under the optimal policy, we let Z∗i,t = 1 if a customer arrives at time period t with an

interest in fare class i and finds this fare class available. Otherwise, Z∗i,t = 0. Note that Z∗i,t is a

random variable. As a function of whether a customer arrives at time period t with an interest

in fare class i and finds this fare class available, we use the random variable Qt(Z
∗
i,t) to capture

whether the customers locks the fare at time period t for fare class i and ultimately decides not

to purchase the ticket after L time periods. In particular, Qt(Z
∗
i,t) is a Bernoulli random variable

with parameters (1− ρ) (1− π)Z∗i,t, taking value 1 if and only if a customer arrives at time period

t with an interest in fare class i, finds this fare class available, locks the fare and ultimately does

not purchase the ticket after L time periods. Under the optimal policy, for all t ∈ T , we have

C −
∑
κ∈T

∑
i∈N

1(κ ≤ t)Z∗i,κ +
∑
κ∈T

∑
i∈N

1(κ ≤ t− L)Qκ(Z∗i,κ) ≥ 0. (3)

In particular, the customers arriving with an interest in a fare class and finding the fare class

available either purchase the ticket or lock the fare. In either case, they consume the capacity. In (3),∑
κ∈T

∑
i∈N 1(κ ≤ t)Z∗i,t is the total capacity consumed by all customers at or before time period

t. The customers arriving with an interest in a fare class, finding this fare class available, locking

the fare and ultimately not purchasing the ticket release the capacity after L time periods. In (3),∑
κ∈T

∑
i∈N 1(κ ≤ t− L)Qκ(Z∗i,κ) is the total capacity released by all customers at or before time

period t. In (3), we state that the remaining capacity at the end of time period t under the optimal

policy is nonnegative. Taking expectations in (3), since E{Qκ(Z∗i,κ)} = (1− ρ) (1− π)E{Z∗i,κ}, the

solution {E{Z∗i,t} : i ∈ N, t ∈ T} satisfies the second constraint in problem (2).

We let Di,t = 1 if a customer arrives at time period t with an interest in fare class i. Otherwise,

Di,t = 0. Note that Di,t is a random variable satisfying E{Di,t} = λi,t. By the definition

of Z∗i,t, we have Z∗i,t ≤ Di,t. Taking expectations in the last inequality, it follows that the
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solution {E{Z∗i,t} : i ∈ N, t ∈ T} satisfies the first constraint in problem (2) as well. In this case,

the solution {E{Z∗i,t} : i ∈ N, t ∈ T} is feasible to problem (2). From each customer that

arrives with an interest in fare class i and finds this fare class available, we obtain an expected

revenue of fi. Thus, noting the definition of Z∗i,t once more, we can write the total expected

revenue obtained by the optimal policy as V1(C, 0, . . . , 0) =
∑

t∈T
∑

i∈N fi E{Z∗i,t}, which implies

that the objective value provided by the solution {E{Z∗i,t} : i ∈ N, t ∈ T} for problem (2) is

equal to V1(C, 0, . . . , 0). Since the solution {E{Z∗i,t} : i ∈ N, t ∈ T} is feasible to problem (2)

and the objective value provided by this solution for problem (2) is equal to V1(C, 0, . . . , 0), the

optimal objective value ζ∗ for problem (2) is at least V1(C, 0, . . . , 0). �

In the revenue management literature, it is common to construct deterministic optimization

problems to obtain upper bounds on the optimal total expected revenue. Gallego and van Ryzin

(1997) give an example in dynamic pricing, Talluri and van Ryzin (1998) give an example in capacity

allocation, Gallego et al. (2004) give an example in network revenue management with customer

choice and Kunnumkal et al. (2012) give an example in overbooking. In this paper, we construct

an approximate policy that allows us to obtain a total expected revenue that is at least half of

the upper bound provided by the optimal objective value of problem (2). This result immediately

implies that the upper bound provided by the optimal objective value of problem (2) never exceeds

the optimal total expected revenue by more than a factor of two.

In the next section, we approximate the value functions in the dynamic program in (1), which

allows us to construct an approximate policy.

3 Approximations to the Value Functions

Our approach for approximating the value functions in the dynamic program in (1) is based on

decomposing the dynamic program by the seats on the flight and managing the availability of the

fare classes for each seat separately. We use {z∗i,t : i ∈ N, t ∈ T} to denote an optimal solution to

problem (2). When we manage the availability of the fare class on a particular seat, with probability

z∗i,t/C, a customer arrives at time period t with an interest in fare class i. The interpretation of

the probability z∗i,t/C will shortly become clear. If fare class i is not available, then the customer

immediately leaves without a purchase. If fare class i is available, then the customer purchases the

ticket or locks the fare. In particular, as in Section 1, with probability ρ, the customer purchases

the ticket by paying the fare ri, whereas with probability 1 − ρ, the customer locks the fare by

paying the fee h. If the customer locks the fare, then she makes her ultimate purchase decision

for the ticket for fare class i after L time periods. With probability π, the customer ultimately

purchases the ticket for fare class i after L time periods by paying the fare ri. With probability

1−π, the customer ultimately does not purchase the ticket, in which case, the capacity reserved for

this customer becomes available for other customers. Therefore, when we manage the availability of

the fare classes for each seat separately, the mechanics of the problem is identical to the mechanics

in the original problem. Since z∗i,t ≤ λi,t, the probability z∗i,t/C implies that we “reject” a customer
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interested in fare class i with probability (λi,t − z∗i,t)/λi,t. If we “accept” the customer, then we

randomly dispatch her to one of the seats. Since we manage one unit of capacity, we can find the

optimal policy to manage the capacity in a tractable fashion. In particular, when we manage the

capacity on one seat, we use vt to denote the optimal total expected revenue over time periods

t, . . . , τ given that the capacity on the seat is available at time period t. Using [·]+ = max{·, 0}, we

can compute the value functions {vt : t ∈ T} by solving the dynamic program

vt =
∑
i∈N

z∗i,t
C

max
{
fi + (1− ρ) (1− π) vt+L+1, vt+1

}
+

{
1−

∑
i∈N

z∗i,t
C

}
vt+1

=
∑
i∈N

z∗i,t
C

[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]+
+ vt+1, (4)

with the boundary condition that vτ+1 = . . . = vτ+L+1 = 0. Note that we continue using the fact

that fi is the expected revenue from a customer interested in fare class i.

In the dynamic program in (4), the two terms in the maximum operator correspond to making

and not making fare class i available. Consider a customer arriving at time period t with an interest

in fare class i. If we make fare class i available, then with probability (1− ρ) (1− π), the customer

locks the fare and ultimately decides at time period t+ L not to purchase the ticket for fare class

i, in which case, the capacity on the seat becomes available for use at time period t+ L+ 1. If we

do not make fare class i available, then the customer leaves without a purchase, in which case, the

capacity on the seat is available at time period t + 1. Intuitively speaking, since the capacity on

the flight is C, the total expected revenue obtained by managing the availability of the fare classes

on each seat separately is Cv1. In the next lemma, we show that Cv1 is at least half of the upper

bound on the optimal total expected revenue provided by problem (2).

Lemma 2 Letting ζ∗ be the optimal objective value of problem (2), if {vt : t ∈ T} are obtained by

solving the dynamic program in (4), then we have Cv1 ≥ ζ∗/2.

Proof. By (4), we observe that C (vt − vt+1) =
∑

i∈N z
∗
i,t

[
fi + (1− ρ) (1− q) vt+L+1 − vt+1

]+ ≥∑
i∈N z

∗
i,t

[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]
. Adding this chain of inequalities over all t ∈ T ,

we obtain C v1 ≥
∑

t∈T
∑

i∈N z
∗
i,t

[
fi + (1 − ρ) (1 − π) vt+L+1 − vt+1

]
. Since

∑
t∈T
∑

i∈N fi z
∗
i,t

corresponds to the optimal objective value of problem (2), this inequality is equivalent to C v1 ≥ ζ∗+∑
t∈T
∑

i∈N z
∗
i,t

[
(1− ρ) (1− π) vt+L+1 − vt+1

]
. In the last inequality, we can write the expression∑

t∈T
∑

i∈N z
∗
i,t vt+L+1 equivalently as∑

κ∈T

∑
i∈N

z∗i,κ vκ+L+1 =
∑
κ∈T

∑
i∈N

z∗i,κ
∑
t∈T

1(t ≥ κ+ L+ 1) (vt − vt+1)

=
∑
t∈T

(vt − vt+1)
∑
κ∈T

∑
i∈N

1(κ ≤ t− 1− L) z∗i,κ.

Repeating the argument in the chain of equalities above after replacing L with zero, we can also write

the expression
∑

t∈T
∑

i∈N z
∗
i,t vt+1 equivalently as

∑
t∈T (vt−vt+1)

∑
κ∈T

∑
i∈N 1(κ ≤ t−1) z∗i,κ. In
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this case, replacing
∑

t∈T
∑

i∈N z
∗
i,t vt+L+1 and

∑
t∈T
∑

i∈N z
∗
i,t vt+1 in the inequality C v1 ≥ ζ∗ +∑

i∈N
∑

t∈T z
∗
i,t

[
(1− ρ) (1− π) vt+L+1 − vt+1

]
with their equivalent expressions, we get

Cv1 ≥ ζ∗+
∑
t∈T

(vt − vt+1)

{∑
κ∈T

∑
i∈N

1(κ ≤ t− 1− L) (1− ρ) (1− π) z∗i,κ−
∑
κ∈T

∑
i∈N

1(κ ≤ t− 1) z∗i,κ

}
.

Since {z∗i,t : i ∈ N, t ∈ T} is a feasible solution to problem (2), noting the second constraint in

this problem for time period t − 1, we have
∑

κ∈T
∑

i∈N 1(κ ≤ t − 1 − L) (1 − ρ) (1 − π) z∗i,κ−∑
κ∈T

∑
i∈N 1(κ ≤ t − 1) z∗i,κ ≥ −C. Furthermore, by (4), since [a]+ ≥ 0 for all a ∈ <, we

have vt − vt+1 ≥ 0 for all t ∈ T . In this case, the inequality above implies that C v1 ≥ ζ∗ −∑
t∈T (vt − vt+1)C = ζ∗ − C v1. Focusing on the first and last expressions in the last chain of

inequalities, it follows that 2Cv1 ≥ ζ∗. �

In the next section, we develop an approximate policy that uses {vt : t ∈ T} computed through

the dynamic program in (4) to obtain at least half of the optimal total expected revenue.

4 Performance Guarantee for the Approximate Policy

Our approximate policy is, intuitively speaking, based on following the decision rule in the dynamic

program in (4). We let {vt : t ∈ T} be computed through the dynamic program in (4). In the

approximate policy, if fi+(1−ρ) (1−π) vt+L+1−vt+1 ≥ 0 and there is capacity on the flight, then we

make fare class i available at time period t. Otherwise, we do not make fare class i available. In this

section, we show that if we use the approximate policy, then we obtain at least half of the optimal

total expected revenue. Our computational experiments indicate that the practical performance

of the approximate policy can be substantially better than the theoretical guarantee of obtaining

half of the optimal total expected revenue. We can compute the total expected revenue from the

approximate policy by using a dynamic program similar to the one in (1), but the decision in the

dynamic program is fixed by the approximate policy. We use ûxi,t ∈ {0, 1} to denote the decision of

the approximate policy for fare class i at time period t given that the remaining capacity on the

flight is x. In particular, we have ûxi,t = 1 if and only if fi + (1− ρ) (1− π) vt+L+1 − vt+1 ≥ 0 and

x > 0. Letting Θt(x, y1, . . . , yL) be the total expected revenue from the approximate policy over

the time periods t, . . . , τ given that the state of the system at time period t is (x, y1, . . . , yL), we

can compute the value functions {Θt(·) : t ∈ T} by solving the dynamic program

Θt(x, y1, y2, . . . , yL) =
∑
i∈N

λi,t û
x
i,t

[
fi + E

{
Θt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)

}]
+

{
1−

∑
i∈N

λi,t û
x
i,t

}
E
{

Θt+1(x+Dt(yL), 0, y1, . . . , yL−1)
}
, (5)

with the boundary condition that Θτ+1(·) = 0. The total expected revenue obtained by the

approximate policy is given by Θ1(C, 0, . . . , 0).

In the next theorem, we show that the total expected revenue obtained by the approximate

policy is at least half of the optimal total expected revenue.
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Theorem 3 Noting that V1(C, 0, . . . , 0) is the optimal total expected revenue, we have

Θ1(C, 0, . . . , 0) ≥ V1(C, 0, . . . , 0)/2.

Proof. We show that Θt(x, y1, . . . , yL) ≥ vt x + (1 − π) [vt+L y1 + . . . + vt+1 yL] for all t ∈ T by

using induction over the time periods. In this case, using this inequality for the first time period

and the state (x, y1, . . . , yL) = (C, 0, . . . , 0), the desired result follows by noting that we have

Θ1(C, 0, . . . , 0) ≥ C v1 ≥ ζ∗/2 ≥ V1(C, 0, . . . , 0)/2, where the last two inequalities use Lemmas 1

and 2. Letting Ṽt(x, y1, . . . , yL) = vt x + (1− π) [vt+L y1 + . . .+ vt+1 yL] for notational brevity, we

proceed to using induction over the time periods to show that Θt(x, y1, . . . , yL) ≥ Ṽt(x, y1, . . . , yL)

for all t ∈ T . By the boundary conditions of the dynamic programs in (4) and (5), we

vτ+1 = . . . = vτ+L+1 = 0 and Θτ+1(·) = 0, in which case, it immediately follows that the result

holds at time period τ + 1. Assuming that the result holds at time period t+ 1, we show that the

result holds at time period t. Noting that Ṽt(x, y1, . . . , yL) is a linear function of (x, y1, . . . , yL) of

the form vt x+ (1− π) [vt+L y1 + . . .+ vt+1 yL], we have

E
{
Ṽt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)− Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}
= E

{
− vt+1 + (1− π) vt+L+1Bt

}
= −vt+1 + (1− ρ) (1− π) vt+L+1, (6)

where the last equality uses the fact that Bt is a Bernoulli random variable with parameter

1− ρ. In this case, noting (5) and using the induction assumption, we obtain

Θt(x, y1, y2, . . . , yL) ≥
∑
i∈N

λi,t û
x
i,t

[
fi + E

{
Ṽt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)

}]
+

{
1−

∑
i∈N

λi,t û
x
i,t

}
E
{
Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}
=
∑
i∈N

λi,t û
x
i,t

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]
+ E

{
Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}
, (7)

where the equality uses (6). For the first expression on the right side of (7), note that ûxi,t = 1 if

and only if fi − vt+1 + (1− ρ) (1− π) vt+L+1 ≥ 0 and x > 0. Thus, for any x ∈ [0, C], we obtain∑
i∈N

λi,t û
x
i,t

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]
=
∑
i∈N

λi,t 1(x > 0)
[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]+
≥
∑
i∈N

z∗i,t
x

C

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]+
= (vt − vt+1)x. (8)

In the chain of inequalities above, the first equality uses the fact that ûxi,t = 1 if and only if fi−vt+1+

(1− ρ) (1− π) vt+L+1 ≥ 0 and x > 0. The first inequality uses the fact that {z∗i,t : i ∈ N, t ∈ T} is

13



a feasible solution to problem (2) so that we have λi,t ≥ z∗i,t and 1(x > 0) ≥ x/C for any x ∈ [0, C].

The second equality is by (4). For the second expression on the right side of (7), we have

E
{
Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}
= E

{
vt+1

[
x+Dt(yL)

]
+(1− π)

[
vt+L+1 0 + vt+L y1 + . . .+ vt+2 yL−1

]}
,

where we use the definition of Ṽt(x, y1, . . . , yL). Noting that Dt(yL) is a Bernoulli random

variable with parameter (1 − π) yL and rearranging the expression, the equality above yields

E{Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)} = vt+1 x+ (1− π) [vt+L y1 + . . .+ vt+2 yL−1 + vt+1 yL]. Using

this equality and the inequality on (8) in the right side of (7), we obtain Θt(x, y1, . . . , yL) ≥
(vt − vt+1)x + vt+1 x + (1 − π) [vt+L y1 + . . . + vt+2 yL−1 + vt+1 yL] = Ṽt(x, y1, . . . , yL), where the

equality follows from the definition of Ṽt(x, y1, . . . , yL). �

Theorem 3 shows that the total expected revenue obtained by the approximate policy is

at least half of the optimal total expected revenue. The proof of Theorem 3 is based on

showing that vt x + (1 − π) [vt+L y1 + . . . + vt+1 yL] is a lower bound on Θ1(x, y1, y2, . . . , yL).

Note that we can interpret vt x + (1 − π) [vt+L y1 + . . . + vt+1 yL] as an approximation to the

value function Vt(x, y1, . . . , yL). In particular, if we manage the availability of the fare classes on

each seat separately, then vt captures the optimal total expected revenue from a seat available

at time period t. If the state of the system is (x, y1, . . . , yL) at time period t, then we have

x seats available at this time period and the total expected revenue from each one of these

seats is vt, which yields the term vt x in the approximation vt x + (1 − π) [vt+L y1 + . . . +

vt+1 yL]. Furthermore, if y1 = 1, then we have one seat reserved for the customer who locked

the fare at time period t− 1. This customer makes her ultimate purchase decision at time period

t + L − 1. With probability 1 − π, the customer ultimately does not purchase the ticket, in

which case, the seat becomes available for other customers at the end of time period t + L − 1

and it can be used for a customer arriving at time period t + L. This reasoning yields the

term (1 − π) vt+L y1 in the approximation vt x + (1− π) [vt+L y1 + . . .+ vt+1 yL]. A similar

reasoning yields the other terms in the approximation vt x + (1− π) [vt+L y1 + . . .+ vt+1 yL]. It

also turns out that the approximate policy is equivalent to approximating the value function

Vt(x, y1, . . . , yL) in (1) by using Ṽt(x, y1, . . . , yL) = vt x + (1− π) [vt+L y1 + . . .+ vt+1 yL]. To see

this equivalence, by the same argument in (6), we have E{Ṽt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)}−
E{Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)} = −vt+1 + (1− ρ) (1− π) vt+L+1. In this case, approximating

Vt(x, y1, . . . , yL) on the right side of (1) with Ṽt(x, y1, . . . , yL), we obtain the problem

max
u∈U(x)

{∑
i∈N

λi,t ui

[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]}
+ E{Ṽt+1(x+Dt(yL), 0, y1, . . . , yL−1)}.

Setting ui = 1 if and only if fi + (1 − ρ) (1 − π) vt+L+1 − vt+1 ≥ 0 and x > 0 yields an optimal

solution to the problem above, which is the decision rule used by the approximate policy.
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5 Purchase Decisions Depending on Fare Classes

We can extend our results to deal with the case where 1 − ρ, 1 − π and L depend on the fare

class that is of interest to a customer. Consider the case where a customer with an interest in fare

class i locks the fare with probability 1 − ρi, makes her purchase decision after Li time periods

and ultimately decides not to purchase the ticket with probability 1 − πi. In this case, the state

variable in our dynamic programming formulation needs to keep track of the fare classes that are

of interest to the customers who locked the fare. We use yi,` ∈ {0, 1} to capture whether the

customer arriving ` time periods ago is interested in fare class i and locks the fare. Using the

vector y` = (y1,`, . . . , yn,`) ∈ {0, 1}n and letting L = max{Li : i ∈ L}, we capture the state of the

system at a time period by using (x, y1, . . . , yL). We emphasize that y` in the state variable in this

section is a vector. We continue using the vector u = (u1, . . . , un) ∈ {0, 1}n to capture the decisions

that we make at a time period, where ui = 1 if and only if we make fare class i available.

We proceed to describing the changes that we need to do in the dynamic program in (1). Given

that there is a customer arrival with an interest in fare class i at time period t and this fare class

is available, we use the random variable Bi,t to capture whether this customer locks the fare. In

particular, Bi,t is a Bernoulli random variable with parameter 1− ρi, taking value 1 if and only if

the customer locks the fare. As a function of whether the customer arriving at time period t− Li
is interested in fare class i and locks the fare, we use the random variable Di,t(yi,Li) to capture

whether the customer with an interest in fare class i ultimately decides not to purchase the ticket at

time period t. In particular, Di,t(yi,Li) is a Bernoulli random variable with parameter (1−πi) yi,Li ,
taking value 1 if and only if the customer ultimately decides not to purchase. In this case, using

ei ∈ <n+ to denote a unit vector with a one in the i-th component, all we need to do is to replace

Bt and Dt(yL) in the dynamic program in (1) with Bi,t ei and
∑

i∈N Di,t(yi,Li).

The only change that we need to do in the linear program in (2) is to replace 1−ρ, 1−π and L in

the second constraint with 1−ρi, 1−πi and Li. In this case, Lemma 1 continues to hold. Similarly,

the only change that we need to do in the dynamic program in (4) is to replace 1−ρ, 1−π and L with

1− ρi, 1−πi and Li. In this case, Lemma 2 continues to hold. In the approximate policy, we make

fare class i available at time period t if and only if fi+ (1−ρi) (1−πi) vt+Li+1− vt+1 ≥ 0 and there

is capacity on the flight. To compute the total expected revenue obtained by the approximate

policy, we can use the dynamic program in (5) after replacing Bt and Dt(yL) with Bi,t ei and∑
i∈N Di,t(yi,Li). In this case, Theorem 3 continues to hold. Thus, the total expected revenue

from the optimal policy is at least half of the optimal total expected revenue when 1 − ρ, 1 − π
and L depend on the fare class that is of interest to a customer, but the proof of Theorem 3 gets

substantially more tedious since we have to deal with vectors y1, . . . , yL.

In our model, each customer arrives with an interest in a fare class and we pick the fare classes

that are available. Our results continue to hold when we pick the price for the ticket and the

customers decide to purchase based on the price. We give this extension in the next section.
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6 Capacity Control by Using Pricing Decisions

We describe the changes that need to be made in our results when we pick the price for the ticket

and the purchase decisions of the customers depend on the price.

6.1 Problem Formulation

We have n possible price levels indexed by N = {1, . . . , n}. The capacity on the flight is C. The

selling horizon has τ time periods indexed by T = {1, . . . , τ}. For notational brevity, we assume

that there is one customer arrival at each time period. If we charge price level i for the ticket,

then the customer arriving at time period t purchases the ticket or locks the fare with probability

λi,t. We can interpret λi,t as the probability that the willingness to pay of the customer arriving

at time period t exceeds price level i. We assume that there is one price level φ ∈ N such that

λφ,t = 0 for all t ∈ T . In this case, if there is no capacity available on the flight, then we can charge

price level φ to ensure that the customers arriving into the system do not purchase the ticket or

lock the fare. Given that we charge price level i at a time period, if the willingness to pay of the

arriving customer exceeds price level i, then the customer purchases the ticket with probability

ρ by paying the price ri corresponding to price level i, whereas the customer locks the fare with

probability 1− ρ by paying the fee h. A customer with a locked fare makes her purchase decision

after L time periods. With probability π, the customer purchases the ticket, in which case, she pays

the price corresponding to the fare she locked. With probability 1−π, the customer decides not to

purchase the ticket. So, if we charge price level i and the willingness to pay of a customer exceeds

price level i, then we obtain an expected revenue of fi = ρ ri + (1− ρ) (h+π ri). We continue using

(x, y1, . . . , yL) to capture the state of the system, where x and y` are as defined in Section 1. To

capture the decisions that we make at a time period, we use the vector u = (u1, . . . , un) ∈ {0, 1},
where ui = 1 if and only if we charge price level i. At any time period, we can charge only one price

level. Furthermore, if there is no capacity available on the flight, then we need to charge a price level

that ensures that no customer purchases the ticket or locks the fare. Therefore, the set of feasible

decisions at time period t is given by Ut(x) = {u ∈ {0, 1}n :
∑

i∈N ui = 1, λi,t ui ≤ x ∀ i ∈ N}. We

continue using the random variables Bt and Dt(yL) as defined in Section 1. In this case, letting

Vt(x, y1, . . . , yL) be the optimal total expected revenue over time periods t, . . . , T given that the state

of the system at time period t is (x, y1, . . . , yL), we can compute the value functions {Vt(·) : t ∈ T}
by solving the dynamic program

Vt(x, y1, y2, . . . , yL) = max
u∈Ut(x)

{∑
i∈N

λi,t ui

[
fi + E

{
Vt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)

}]
+
[

1−
∑
i∈N

λi,t ui

]
E
{
Vt+1(x+Dt(yL), 0, y1, . . . , yL−1)

}}
, (9)

with the boundary condition that Vτ+1(·) = 0. This dynamic program is identical to the one in

(1), but the set of feasible decisions Ut(x) and the interpretations of λi,t and ui are different.

16



6.2 Upper Bound on the Optimal Total Expected Revenue

We formulate a linear program to obtain an upper bound on the optimal total expected revenue. We

use the decision variable zi,t to capture the probability of charging price level i at time period t. Using

the vector z = {zi,t : i ∈ N, t ∈ T}, we consider the linear program

max
z∈<n×τ+

{∑
t∈T

∑
i∈N

fi λi,t zi,t :
∑
i∈N

zi,t = 1 ∀ t ∈ T,

C −
∑
κ∈T

∑
i∈N

1(κ ≤ t)λi,κ zi,κ +
∑
κ∈T

∑
i∈N

1(κ ≤ t− L) (1− ρ) (1− π)λi,κ zi,κ ≥ 0 ∀ t ∈ T

}
. (10)

The willingness to pay of a customer arriving at time period t exceeds price level i with probability

λi,t, in which case, the expected revenue obtained from the customer is fi. Thus, the objective

function accounts for the total expected revenue over the selling horizon. The first constraint

ensures that we charge some price level at time period t. The second constraint is similar to the

second constraint in problem (2) and ensures that the net total expected capacity consumed over

time periods 1, . . . , t cannot exceed the capacity available on the flight. Using the same argument

in the proof of Lemma 1, we can show that the optimal objective value of problem (10) is an upper

bound on the optimal total expected revenue. The only difference is that we let Z∗i,t = 1 if we

charge price level i at time period t under the optimal policy.

6.3 Approximations to the Value Functions

We can approximate the value functions in the dynamic program in (9) by making the pricing

decisions for each seat separately. Using {z∗i,t : i ∈ N, t ∈ T} to denote an optimal solution to

problem (10), we compute the value functions {vt : t ∈ T} through the dynamic program

vt =
∑
i∈N

λi,t
C

z∗i,t max
{
fi + (1− ρ) (1− π) vt+L+1, vt+1

}
+

{
1−

∑
i∈N

λi,t
C

z∗i,t

}
vt+1

=
∑
i∈N

λi,t
C

z∗i,t

[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]+
+ vt+1. (11)

In the dynamic program above, we charge price level i at time period t with probability z∗i,t. The

willingness to pay for a customer arriving at time period t exceeds price level i with probability

λi,t/C. Noting the maximum operator in (11), even if the willingness to pay for a customer exceeds

the price level we charge, we can deny the customer from purchasing the ticket or locking the

fare. In reality, when we control the capacity on the flight by making pricing decisions, we do not

have the option of denying a customer from purchasing the ticket or locking the fare, but we use

the value functions that are obtained through the dynamic program in (11) only to construct an

approximate policy. Using the same argument in the proof of Lemma 2, we can show that Cv1 is

least half of the optimal objective value of problem (10).
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6.4 Performance Guarantee for the Approximate Policy

We let {vt : t ∈ T} be computed through the dynamic program in (11). In the approximate

policy, we let the vector ûxt = (ûx1,t, . . . , û
x
n,t) ∈ {0, 1}n be the optimal solution to the

problem maxu∈Ut(x)
{∑

i∈N λi,t ui
[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]}
. Since ûxt ∈ Ut(x), noting

the definition of Ut(x), there is a unique price level i such that ûi,t(x) = 1, which corresponds

to the price level that we charge in the approximate policy. Note that it is simple to obtain the

optimal solution to the problem maxu∈Ut(x)
{∑

i∈N λi,t ui
[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]}
. If

x = 0, then we set ûxφ,t = 1 and ûxi,t = 0 for all i ∈ N \ {φ}. If x > 0, then we find k ∈ N such

that k = arg maxi∈N
{
λi,t
[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]}
and set ûxk,t = 1 and ûxi,t = 0 for all

i ∈ N \ {k}. We let Θt(x, y1, . . . , yL) be the total expected revenue from the approximate policy

over time periods t, . . . , τ given that the state of the system at time period t is (x, y1, . . . , yL). We

can compute the value functions {Θt(·) : t ∈ T} by solving the dynamic program

Θt(x, y1, y2, . . . , yL) =
∑
i∈N

λi,t û
x
i,t

[
fi + E

{
Θt+1(x− 1 +Dt(yL), Bt, y1, . . . , yL−1)

}]
+

{
1−

∑
i∈N

λi,t û
x
i,t

}
E
{

Θt+1(x+Dt(yL), 0, y1, . . . , yL−1)
}
, (12)

with the boundary condition that Θτ+1(·) = 0. Note that the dynamic programs in (12) and (5)

are identical, but ûxi,t has a different interpretation in each dynamic program.

Using the same argument in the proof of Theorem 3, we can show that the total expected

revenue obtained by the approximate policy is at least half of the optimal total expected

revenue. The only slight deviation occurs when we obtain a chain of inequalities analogous

to the one in (8). In particular, let k ∈ N be such that ûxk,t = 1. By the discussion

at the beginning of this section, we have λk,t
[
fk + (1 − ρ) (1 − π) vt+L+1 − vt+1

]
≥

1(x > 0)λi,t
[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]
for all i ∈ N . Since λφ,t = 0, the last inequality also

implies λk,t
[
fk + (1− ρ) (1− π) vt+L+1 − vt+1

]
≥ 0 so that λk,t

[
fk+(1−ρ) (1−π) vt+L+1−vt+1

]
≥

1(x > 0)λi,t
[
fi + (1 − ρ) (1 − π) vt+L+1 − vt+1

]+
for all i ∈ N . Since {z∗i,t : i ∈ N, t ∈ T} is a

feasible solution to problem (10), we have
∑

i∈N z
∗
i,t = 1, in which case, multiplying the last

inequality by z∗i,t and adding over all i ∈ N , we get λk,t
[
fk + (1− ρ) (1− π) vt+L+1 − vt+1

]
≥∑

i∈N λi,t z
∗
i,t 1(x > 0)

[
fi + (1− ρ) (1− π) vt+L+1 − vt+1

]+
. Thus, since ûxk,t = 1 and ûxi,t = 0 for

all i ∈ N \ {k}, for any x ∈ [0, C], we obtain∑
i∈N

λi,t û
x
i,t

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]
= λk,t û

x
k,t

[
fk − vt+1 + (1− ρ) (1− π) vt+L+1

]
=
∑
i∈N

λi,t z
∗
i,t 1(x > 0)

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]+
≥
∑
i∈N

λ∗i,t z
∗
i,t

x

C

[
fi − vt+1 + (1− ρ) (1− π) vt+L+1

]+
= (vt − vt+1)x,

where the first equality is by the fact that ûxi,t = 1 if and only if i = k, the inequality is by the fact

that 1(x > 0) ≥ x/C for any x ∈ [0, C] and the last equality is by (11).
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7 Numerical Study

In this section, we give a numerical study to demonstrate that the practical performance of the

approximate policy can be significantly better than the theoretical guarantee.

7.1 Numerical Setup

In all of our test problems, the number of fare classes is n = 4, the number of time periods in

the selling horizon is τ = 300, the capacity on the flight is C = 100 and the fares associated with

the four fare classes are (r1, r2, r3, r4) = (1000, 750, 500, 250). For the fee h of locking the fare, we

use h ∈ {40, 80}. Noting the discussion in the previous section, we allow the probability 1 − ρ of

locking the fare to depend on the fare class that is of interest to the customer. In particular, we use

1− ρi to denote the probability that a customer with an interest in fare class i locks the fare. We

use (1− ρ1, 1− ρ2, 1− ρ3, 1− ρ4) ∈ {(0.15, 0.2, 0.25, 0.3), (0.4, 0.45, 0.5, 0.55)}. The number of time

periods L that a customer with a locked fare waits until she makes a purchase decision and the

probability π that a customer with a locked fare ultimately purchases the ticket do not depend on

the fare class that is of interest to the customer. We use L ∈ {25, 50} and π ∈ {0.4, 0, 7}. To come up

with the probability λi,t of a customer arrival with an interest in fare class i at time period t, we

let γ1,t = 0.1 + 1(t ≥ τ
3 )× 0.1 + 1(t ≥ 2τ

3 ) × 0.2 for fare class 1 so that we have γ1,t = 0.1 for

all t ∈ [1, τ3 ), γ1,t = 0.2 for all t ∈ [ τ3 ,
2τ
3 ) and γ1,t = 0.4 for all t ∈ [2τ3 , τ ]. Similarly, we let

γ2,t = 0.2 + 1(t ≥ 2τ
3 ) × 0.1 for fare class 2, γ3,t = 0.3 − 1(t ≥ 2τ

3 ) × 0.1 for fare class 3 and

γ4,t = 0.4−1(t ≥ τ
3 )× 0.1−1(t ≥ 2τ

3 )×0.2 for fare class 4. Note that γ1,t and γ2,t are increasing in

t, whereas γ3,t and γ4,t are decreasing in t. A customer with an interest in fare class i immediately

purchases the ticket with probability ρi, whereas she locks the fare with probability 1 − ρi and

ultimately purchases after L time periods with probability π. Therefore, if we make all of the fare

classes available at all of the time periods in the selling horizon, then the total expected capacity

consumption on the flight is
∑

t∈T
∑

i∈N λi,t (ρi + (1− ρi)π), which implies that the load factor of

the flight is
∑

t∈T
∑

i∈N λi,t (ρi + (1− ρi)π)/C. In our test problems, we set λi,t = γi,t/∆ for some

value of ∆ to achieve a load factor of 1.2. Noting that γ1,t and γ2,t are increasing in t, whereas γ3,t

and γ4,t are decreasing in t and fare classes 1 and 2 are the more expensive fare classes, whereas

fare classes 3 and 4 are the less expensive fare classes, our numerical setup corresponds to the

situation where the demand for the more expensive fare classes tend to arrive more frequently later

in the selling horizon, whereas the demand for the less expensive fare classes tend to arrive more

frequently earlier in the selling horizon

For notational brevity, we let 1−ρ = (1−ρ1, 1−ρ2, 1−ρ3, 1−ρ4), (1−ρ)L = (0.15, 0.2, 0.25, 0.3)

and (1−ρ)H = (0.4, 0.45, 0.5, 0.55), where the superscripts L and H stand for low and high. Varying

(h, 1 − ρ, L, π) so that h ∈ {40, 80}, 1 − ρ ∈ {(1 − ρ)L, (1 − ρ)H}, L ∈ {25, 50} and π ∈ {0.4, 0.7},
we obtain 16 test problems in our numerical setup.
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7.2 Numerical Results

We summarize our numerical results in Table 1. The first column in this table shows the parameters

for each test problem by using the tuple (h, 1−ρ, L, π). The second column shows the total expected

revenue obtained by the approximate policy. We estimate the total expected revenue obtained by

the approximate policy by simulating the performance of this policy over 1,000 sample paths. The

third column shows the upper bound on the optimal total expected revenue provided by the optimal

objective value of problem (2). The fourth column shows the percent gap between the upper bound

on the optimal total expected revenue and the total expected revenue obtained by the approximate

policy, which gives an estimate of the optimality gap of the approximate policy. This estimate

of the optimality gap is somewhat pessimistic in the sense that we compare the total expected

revenue obtained by the approximate policy with an upper bound on the optimal total expected

revenue, rather than the optimal total expected revenue itself. The fifth column shows the CPU

seconds required to solve the linear program in (2), whereas the sixth column shows the CPU seconds

required to solve the dynamic program in (4).

The results in Table 1 indicate that the approximate policy performs quite well. Over all of our

test problems, the average gap between the upper bound on the optimal total expected revenue and

the total expected revenue obtained by the approximate policy is about 3.23%. The state variable

in the dynamic program in (1) has L+ 1 dimensions, where L is the number of time periods that a

customer with a locked fair waits to make her ultimate purchase decision. Therefore, the number of

dimensions of the state variable gets larger as L gets larger. The optimality gaps of the approximate

policy remain quite stable as L gets larger. The CPU seconds to implement the approximate policy

are quite reasonable. The main bulk of the computational work requires solving the linear program

in (2), which can be carried out in a faction of a second.

8 Conclusions

We considered a revenue management problem on a single flight leg, where the customers have

the option of locking an available fare. The dynamic programming formulation of the problem

requires a high dimensional state variable. We gave an approximate policy that is guaranteed to

obtain at least half of the optimal total expected revenue. Our approach is based on using a linear

programming approximation to decompose the problem by the seats on the flight and managing

the availability of the fare classes for each seat separately. For future research, one can try to

use this general approach to obtain approximate policies for other dynamic programs with high

dimensional state variables. Linear programming approximations are often used for constructing

approximate policies for managing resources in various settings, but we are not aware of any

constant factor performance guarantees for the approximate policies constructed by using solely

these linear programming approximations. It is exciting to see what problems will be amenable to

leveraging a linear programming approximation to decompose the problem by the resources and to

obtain approximate policies through simpler dynamic programs.
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Prob. Params. App. Rev. Perc. Lin. Dyn.
(h, 1− ρ, L, π) Rev. Bnd. Gap Secs. Secs.

(40, (1− ρ)L, 25, 0.4) 67,487 69,759 3.26 0.023 0.004

(40, (1− ρ)L, 25, 0.7) 66,866 69,177 3.34 0.024 0.004

(40, (1− ρ)L, 50, 0.4) 67,272 69,539 3.26 0.023 0.006

(40, (1− ρ)L, 50, 0.7) 66,744 69,074 3.37 0.024 0.006

(40, (1− ρ)H, 25, 0.4) 69,062 71,196 3.00 0.028 0.005

(40, (1− ρ)H, 25, 0.7) 68,145 70,426 3.24 0.023 0.004

(40, (1− ρ)H, 50, 0.4) 68,019 70,255 3.18 0.023 0.007

(40, (1− ρ)H, 50, 0.7) 67,760 70,043 3.26 0.027 0.006

(80, (1− ρ)L, 25, 0.4) 68,213 70,472 3.21 0.024 0.005

(80, (1− ρ)L, 25, 0.7) 67,557 69,861 3.30 0.029 0.005

(80, (1− ρ)L, 50, 0.4) 67,942 70,242 3.28 0.024 0.006

(80, (1− ρ)L, 50, 0.7) 67,437 69,753 3.32 0.023 0.007

(80, (1− ρ)H, 25, 0.4) 71,388 73,650 3.07 0.024 0.005

(80, (1− ρ)H, 25, 0.7) 70,229 72,543 3.19 0.023 0.005

(80, (1− ρ)H, 50, 0.4) 70,252 72,601 3.24 0.025 0.006

(80, (1− ρ)H, 50, 0.7) 69,794 72,124 3.23 0.025 0.007

Table 1: Performance of the approximate policy.
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