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Abstract: Many airline reservation systems offer the commitment option to their potential passengers. This

option allows passengers to reserve a seat for a fixed duration before making a final purchase decision. In this

study, we develop single-leg revenue management models that consider such contingent commitment decisions.

We start with a dynamic programming model of this problem. This model is computationally intractable as it

requires storing a multi-dimensional state space due to book-keeping of the committed seats. To alleviate this

difficulty, we propose an alternate dynamic programming formulation that uses an approximate model of how the

contingent commitments behave and we show how to extract a capacity allocation policy from the approximate

dynamic programming formulation. In addition, we present a deterministic linear programming model that gives

an upper bound on the optimal expected revenue from the intractable dynamic programming model. As the

problem size becomes large in terms of flight capacity and the expected number of arrivals, we demonstrate an

asymptotic lower bound for the deterministic linear programming model. Our extensive numerical study indicates

that offering commitment options can noticeably increase the expected revenue even though offering a contingent

commitment option may not always be in the best interest of the airline. Also, our results show that the proposed

approximate dynamic programming model coordinates capacity allocation and commitment decisions quite well.

Keywords: Revenue management; airline; contingent commitment option; dynamic programming

1. Introduction. One of the main concerns in airline revenue management is to aid the decision

makers to come up with strategies to increase the revenue. To this end, the control of the flight capac-

ities plays an important role in most of these strategies. Capacity control is the practice of allocating

seats to different fare classes to maximize the total expected revenue. Recently, the airline reservation

systems started offering contingent commitment options that allow passengers to reserve a seat for a

certain duration of time within the reservation period before making a buy or a leave decision. Since a

commitment option allows passengers to keep a seat at a small fee, it has the potential to attract price

sensitive customers as well as improve overall capacity utilization. However, it also creates another source

of uncertainty leading to probable revenue loss due to empty seats.

As an example of a contingent commitment, consider a flight for which the airline offers the commitment

option for all fare classes. Customers can still buy seats as usual. However, if a customer prefers to reserve

a seat instead of buying it, then she can commit to a seat for a fixed non-refundable fee. Such a passenger

would then be guaranteed a seat of the fare class until the end of a predetermined commitment period.

The length of the commitment period is fixed by the airline. If the customer decides to purchase her

committed ticket within this period, then she pays the ticket fare at the time of initial inquiry. Otherwise,

she leaves the system without any reimbursement. In short, this option allows a passenger to delay her

purchase decision with seat and price guarantee for the length of the commitment period.
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Figure 1: A screen shot of a contingent commitment option (KLM Website, 2014)

In practice, there are variants of the contingent commitment option. While some airline companies

offer this option to all customers before they choose their flights, some other companies present this

option right before customers purchase their tickets. Figure 1 shows a typical screen shot from an airline

reservation website where a contingent commitment option is offered until a predetermined expiration

date. We accessed the website in November and the flight departs in December. We observe that the

website offers a single contingent commitment option and its fee is fixed. Although the commitment

option resembles a typical travel insurance, there are two important differences. First, the commitment

option holds the reservation for a fixed period of time, whereas the travel insurance is valid until the

departure date. Second, contingent commitments allow passengers to exercise their options within the

commitment period. However, a travel insurance allows free cancellation only if specific circumstances,

like emergencies, arise. Therefore, a passenger is more likely to leave without exercising her contingent

commitment option than to cancel her travel insurance.

From an airline perspective, every committed seat provides an additional revenue due to the non-

refundable fee. However, reserving a seat, especially early in the reservation period, may result in re-

jecting a high fare class request at a later time, which in turn can lead to significant revenue losses.

Therefore, the contingent commitment and the capacity control decisions should be simultaneously taken

into consideration. To simplify the discussion, we refer to immediately purchased seats as bookings in the

subsequent part.

In this paper, we address the joint problem of capacity allocation and commitment option for a single

flight leg. We focus on contingent commitment options that are offered for fixed commitment fees and

predefined expiration dates (as in Figure 1). We examine how offering these commitment options to

customers affects overall revenue. Our problem setting is based on two independent streams of events;

arrivals of booking and commitment requests and exercising the commitment option. At each time

period, either a commitment request or a booking request can be realized independently. We need to

decide either to accept or reject each arriving request. In other words, our policy determines whether to
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keep an available seat for a particular class of customers at that time period or not. We first introduce a

dynamic programming formulation for this problem. However, this formulation requires keeping track of

the remaining commitment time of each accepted contingent commitment request, and hence, makes use of

a high-dimensional state variable. Consequently the dynamic program becomes intractable. As a remedy,

we propose an approximation to the dynamic programming formulation that performs remarkably well as

we demonstrate in our computational study. In addition to this approximation, we present deterministic

linear programming models which provide upper bounds on value functions of the intractable dynamic

programming formulation.

To the best of our knowledge, the concept of contingent commitment options has not been previously

studied in the literature. Since the decision to leave without exercising a commitment option resembles a

cancellation, our work is related to those works on single-leg capacity allocation with overbooking. The

most relevant studies in the single-leg setting are given by Subramanian et al. (1999) and Aydın et al.

(2013). Both of these studies propose a dynamic programming model for the capacity allocation problem

with overbooking. Similar to our model, these studies allow cancellations but they consider only booking

requests with no contingent commitments. Subramanian et al. (1999) consider cancellation and booking

requests as a combined stream and assume that at most one of these events can occur at any discrete

time epoch. On the other hand, Aydın et al. (2013) model the problem in a different way by allowing

the arrival and cancellation processes to be independent. The main departing point of our work is that

we consider two types of products, standard bookings and contingent commitments that can be sold by

the airline. Once the airline accepts a contingent commitment request from a customer, it receives a

fixed non-refundable fee and a seat is reserved for this customer for a certain duration. At the end of

this duration, the customer can either purchase the ticket or leave without making use of the contingent

commitment option. In addition, the dimension of the model that we are dealing with here is higher than

that of the model given for the overbooking problem. The number of dimensions of the state variable in

our model is equal to the length of the allowed commitment period, whereas the number of dimensions

in overbooking and cancellation models is equal to the number of fare classes. Generally, the length of

the allowed commitment period is larger than the number of fare classes.

Although we use airline reservation systems as the primary application area of this research, the

commitment option as we consider here is applicable to any industry selling fixed, perishable capacity,

such as; cargo, hotel and car rental. To make our point clear, we note that hotel reservation systems

and car rental agencies are already exercising some options similar to the commitment option here. Car

rental and hotel reservation systems offer both flexible and non-refundable products. While flexible

products can be canceled without any penalty, non-refundable products are offered with various penalty

options like charging the first day or the entire trip. For the non-refundable products the reservation

systems present insurance policies for a fixed price. These insurance policies guarantee the refund of the

whole reservation price, if the reservation is canceled. We will revisit these cases after presenting our

models. Although, some of the problems in hotel and car rental industries are network based problems,

the methods proposed in this paper may also be applied in these applications since in practice single-leg

decomposition methods are frequently applied to network problems.

We make the following research contributions in this paper: (i) We develop a dynamic programming
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model to make the capacity allocation and contingent commitment decisions over a single flight leg.

Due to the curse of dimensionality, we propose an alternate tractable dynamic programming model

that approximates the actual contingent commitments process. (ii) We introduce deterministic linear

programming approximations that give upper bounds on the intractable dynamic programming model.

A lower bound is also obtained when the problem size becomes large in terms of capacities and the

expected number of arrivals. (iii) Through computational experiments, we analyze the effects of offering

a contingent commitment option. We demonstrate that under certain conditions, offering this option will

increase the expected revenue of the flight even though offering the contingent commitment options is

not always in the best interest of the airline. We also show that our approximate dynamic programming

model performs remarkably well.

2. Review of Related Literature. There is an extensive literature on capacity allocation problems

in revenue management. For a comprehensive review of this area, we refer reader to Phillips (2005),

Talluri and van Ryzin (2004) and McGill and van Ryzin (1999). In the subsequent part of this section, we

describe extensions to capacity allocation problems like cancellations and flexible products. In addition,

we also discuss different options in pricing analysis and finance that are related to our work.

To compensate the revenue loss due to cancellations and no-shows, overbooking models have been

studied. Early overbooking studies mainly focus on static models. Beckman (1958), Thompson (1961),

and Coughlan (1999) develop static single leg capacity allocation and overbooking models by assuming

the demand requests are static random variables. Several researchers have concentrated on dynamic

overbooking models by considering the temporal dynamics of the demand process. Rothstein (1971) and

Chatwin (1998) present a single fare class dynamic programming model to formulate the cancellations

and the overbookings. Subramanian et al. (1999) study a more general setting than Chatwin (1998)

by extending the overbooking problem to a multi-class problem. They point out the computational

difficulties of the dynamic programming formulation and propose an approximation strategy.

Later studies concentrate on mitigating the effects of demand uncertainty. Karaesmen and van Ryzin

(2004) formulate a two-stage overbooking model for multiple flight legs which allows substitution between

flight legs in case of overbooking. In the first stage of the model, the airline takes reservations. In

the second stage, overbooked passengers are bumped to substitute flights. Shumsky and Zhang (2009)

analyze a dynamic upgrading model with fixed prices. Similar to work of Karaesmen and van Ryzin

(2004), their optimal policy separates the allocation decision from the upgrade decision. On the other

hand, Gallego and Stefanescu (2009) investigate the deterministic upgrading model where prices are fixed

and flexible. Different than the previous models, they allow upgrading to any higher quality fare class.

Recently callable and flexible products have been introduced in the airline industry. Callable products

give airlines the flexibility of accepting expensive fare class customers instead of low fare class customers.

A buyer of such a product can be transferred to a later flight if there is no capacity left in the flight she has

booked. In that case, the airline pays a pre-specified recall price to the customer (Gallego et al. (2008),

Gallego et al. (2006)). Similarly, in flexible products the airline is free to assign the buyer to any of the

pre-specified alternatives (Gallego and Phillips (2004)). Unlike the callable product, a flexible product

guarantees a seat in those alternatives. Callable and flexible products appeal to customers who have low

product valuation and flexible travel time. Gallego and Phillips (2004) show that offering the flexible
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product significantly increases the profitability. These options are also examined in the marketing science

literature. Fay and Xie (2008) work on the concept of probabilistic goods. In their study, a probabilistic

good corresponds to a set of multiple services that a buyer obtains with a probability. The probabilistic

selling denotes the selling strategy where probabilistic goods and standard products are sold together.

They examine the benefits of offering probabilistic goods. Similar to the flexible products, the opaque

selling option is introduced in the travel industry. In opaque selling, product alternatives are concealed

from a customer and she is unaware of the product she buys until the purchase. Anderson and Xie (2013)

present a recent study on the opaque selling option and examine the cases where opaque selling is offered

with regular full information selling. They show that offering opaque selling with regular selling improves

the customer segmentation, and hence, increases the revenues. Gallego and Stefanescu (2010) give a nice

overview of different options introduced in the service industries.

Lately, Sainam et al. (2009) investigate the benefits of call options in sport events. This option allows

sport fans to reserve a ticket for the final game until the teams playing in the final are identified. If

the option buyer decides to attend the game, she pays for the final. Otherwise, she cancels the tick-

et. Sainam et al. (2009) show that the call options provide extra revenue when they are offered with

the advance purchase option. Balseiro et al. (2011) extend the work of Sainam et al. (2009) by including

pricing analysis of call options. They propose a two-stage optimization model. In the first stage, a pricing

problem is solved and in the second stage, given the fixed prices, the capacity allocation problem is solved.

The problem is intractable. Therefore, they propose a deterministic approximation. Gallego and Sahin

(2010) work on the partially refundable fares and show that offering partially refundable fares is more

profitable than offering non-refundable and fully refundable fares. They propose an inter-temporal val-

uations model by considering both capacity provider and consumer. The commitment option that we

discuss here can be considered as a special case of partially refundable fares where the passengers can get

the refund, if they leave during the commitment period. However, these contingent commitment options

bring an additional source of complexity as they can be utilized only within a certain time window.

Contingent commitments in our study are somewhat similar to the options in the finance literature.

That literature focuses on pricing and exercise time of options. An option pricing problem can be

modeled as a Markov decision problem. However, the resulting problem is hard to solve due to the curse of

dimensionality. One approach is to use Monte Carlo simulation to generate good solutions (see for instance

Board et al. (2003) for the pricing of European options). Another approach is to apply approximate

dynamic programming to give lower and upper bounds on the value of the option (Longstaff and Schwartz,

2001; Tsitsiklis and Roy, 2001; Haugh and Kogan, 2008). The pricing problem is also approximated by

solving linear programming models (Dempster and Hutton, 1999). We refer the reader to Trigeorgis

(1996) for the review of pricing models. Several researchers work on the optimal time of exercising

the real option. McDonald and Siegel (1986) work on the investment timing problem for an irreversible

project and develop an investment rule when the value and the cost of the project are both stochastic.

Rhys et al. (2002) use a first passage time approach to obtain expected waiting time to exercise an

option. Han and Park (2008) develop a model to determine the exercise timing by considering the trade-

off between early exercising and waiting.
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3. Problem Formulation. We have a single flight leg with m fare classes and capacity C. The

reservation horizon is partitioned into T time periods, and the flight departs at the beginning of period

T + 1. Figure 2 summarizes an arrival process in the booking horizon. At each time period, at most one

customer arrives to the system with a particular fare class in mind. If this fare class is open for purchase,

then the customer either purchases the ticket (Case 1) or decides to pay for the contingent commitment

option. If the customer goes for the option, then she pays the option fee and is guaranteed a seat for the

next s time periods. Right before the option expires, the customer decides whether or not to exercise the

option and purchase the ticket. If the customer exercises the option, then she pays the airfare (Case 2).

Otherwise, the option expires (Case 3).

Customer Request

time

Exercise Option

Purchase Ticket

Purchase Option

t+ s

(Case 2)

Leave (Case 3)

Reject Accept

(Case 1)

t

Figure 2: Dynamics following the arrival of a customer request at time t

Next, we formally define the problem and introduce our remaining notations. A customer that is

interested in fare class i arrives at time period t with probability αit. Then, she buys the commitment

option with probability νi or books the seat with probability (1 − νi). In other words, booking and

commitment requests for fare class i arrive with probabilities pit = αit(1−νi) and qit = αitνi, respectively.

We assume that
∑m

i=1(pit + qit) ≤ 1 for all t ∈ {1, ..., T} and denote the probability of having no arrival

by p0t = 1 −
∑m

i=1(pit + qit). After s time periods, she exercises the option and buys the seat with

probability pb or leaves the system with probability pl = 1− pb.

As we pointed out in our preceding discussion, at each time period, we have to decide whether to

accept or reject the arriving fare class request. When we accept a booking request for fare class i, then

we generate a revenue of fi. When we accept a commitment request for fare class i, we gain a fixed

non-refundable revenue f c at the period of request. After s periods, we generate a revenue of fi with

probability pb, if the same customer decides to buy the ticket she had committed to. Talluri and van Ryzin

(2004, Section 4.4.2) demonstrate that there is no difference in the total expected revenue if the accepted

customer is charged at the time of reservation or later. Therefore, the expected revenue of an accepted

commitment request for fare class i is ϕi := f c + pbfi. Each type of request consumes one capacity unit

on the flight leg and the rejected requests or unexercised options simply leave the system.

We denote the total number of bookings and accepted commitments at a time period (decision

epoch) t by xt. To store the accepted contingent commitments between time periods t − s and t,

we designate an s-dimensional binary vector, zt. If there is an accepted commitment in one of the

periods {t − s, t − s + 1, · · · , t − 1}, then the corresponding component of zt equals to 1; otherwise,
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it is set to 0. The pair xt and zt represents the state in our dynamic programming model of the

problem. Note that the first element of zt shows if there is a commitment request by a customer s

time periods ago. At each time period, we need to check if there is such a customer and determine

whether she makes an actual purchase decision or not. Letting z1t be the first element of zt, the

leaving passenger without making an actual purchase decision is represented by a Bernoulli random

variable B(z1t, pl) having a success probability of pl. As we move from period t to t + 1, the first

element of zt needs to be dropped, and zt+1 is constructed by appending a binary variable to the

remaining s−1 elements of zt. To denote this shifting operation, we define Γ : {0, 1}s+1 7→ {0, 1}s given by

Γ(z, ζ) = [0 Is]

[
z

ζ

]
,

where 0 is an s-dimensional column vector consisting of zeros, Is is an s×s identity matrix, and ζ ∈ {0, 1}.
Using now this notation, if we accept a commitment request at time t+1, then zt+1 = Γ(zt, 1); otherwise,

zt+1 = Γ(zt, 0).

We capture the decisions at time period t by an m-dimensional binary vector ut = [u1t, u2t, · · · , umt]
ᵀ

where uit takes value 1 if we accept an arriving reservation request for fare class i at time period t, and

takes value 0 if we reject an arriving reservation request at time period t. Since our accept-reject decision

depends on the available capacity, the set of feasible decisions at time period t is given by

Ut(xt) = {ut ∈ {0, 1}m : xt + uit ≤ C, i = 1, 2, · · · ,m}.

We are ready to formulate the problem as a dynamic program. Let Jt(xt, zt) denote the expected

optimal revenue from t up to T given that at time period t, the total number of bookings and commitments

is xt and the commitment history for s periods is zt. By the independence of the arrival and the

commitment processes and the dynamic programming optimality principle, we obtain for every 1 ≤ xt ≤
C, zt ∈ {0, 1}s and t = 1, 2, · · · , s that

Jt(xt, zt) = max
ut∈U(xt)

{ m∑
i=1

pit

{
fiuit + Jt+1(xt + uit,Γ(zt, 0))

}
+

m∑
i=1

qit

{
ϕiuit + Jt+1(xt + uit,Γ(zt, uit))

}
+ p0tJt+1(xt,Γ(zt, 0))

}
(1a)

and for s < t ≤ T ,

Jt(xt, zt) = max
ut∈U(xt)

{ m∑
i=1

pit

{
fiuit + EJt+1(xt + uit −B(z1t, pl),Γ(zt, 0))

}
+

m∑
i=1

qit

{
ϕiuit + EJt+1(xt + uit −B(z1t, pl),Γ(zt, uit))

}
+

p0tEJt+1(xt −B(z1t, pl),Γ(zt, 0))

}
. (1b)

The boundary condition is simply JT+1(xT+1, zT+1) = 0. Since a contingent commitment makes the

purchase decision at the end of the commitment period, we do not observe any commitment purchase

decisions during the first s time periods. Since options expire at the end of commitment period, we need

to compute the expectation of optimal value functions using a Bernoulli event after time period s. This

means for z1t = 1 that

EJt+1(xt + uit −B(z1t, pl),Γ(zt, 0)) = pbJt+1(xt + uit,Γ(zt, 0)) + plJt+1(xt + uit − 1,Γ(zt, 0)).
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Clearly, J1(0,0) gives the optimal expected total revenue at the beginning of the planning horizon, where

0 represents the fact that we start with no commitments.

4. Approximate Model. We note that the state variable zt in the dynamic model may involve

many dimensions in actual applications. Thus, solving the recursive equation through standard dynamic

programming tools can be computationally demanding. Therefore, we propose an approximation to our

dynamic programming formulation. Our approximation hinges on the assumption that each commitment,

independently of other commitments, can exercise, leave or retain with probabilities qe, ql, and qr at each

time period until the departure of the flight. We calibrate these probabilities so that the expected

amount of time that a contingent commitment stays in the system is exactly s periods, and a contingent

commitment results in a final purchasing decision with probability pb, which is the probability that a

customer with a commitment purchases the ticket in the original model. In other words, we choose qr

and qe such that 1/(1− qr) = s and pb = qe + qeqr + qeq
2
r + . . . Thus, each accepted commitment request

eventually buys the ticket with probability pb. Therefore, as in Section 3, ϕi = f c + pbfi gives the

expected revenue obtained from a fare class i commitment request. Observe that the proposed way of

calculating pb somewhat underestimates the value of qe as this sum, at any time period t, should involve

only T − t terms and not infinite terms. However, if we use such a finite sum, then we have to use a time

dependent qe parameter, which disagrees with our approximation approach. Once we choose qr and qe

in this fashion, we obtain ql = 1− qr − qe.

Furthermore given that there are y accepted commitments, the random numbers of exercised, Me(y),

not exercised, Ml(y) and retained, Mr(y) commitments in period t follow collectively the multinomial

distribution with parameters qe, ql, qr, and number of trials y. Note that under this probabilistic setting,

a committed passenger may stay in the system until the departure time. We also assume that an accepted

commitment request cannot make a buy or leave decision in the time period she is accepted. We believe

that this assumption is more realistic since in practice the duration of a time period is quite short. An

appealing feature of this modeling approach is that it avoids the necessity to keep track of how long

each accepted contingent commitment has been in the system since a contingent commitment makes a

decision to exercise, leaves or retain the option at each time period independently. In this case, the state

variable in the dynamic programming formulation of the commitment problem collapses to two scalars;

the number of bookings and the number of accepted contingent commitments.

Let xt and yt be the total number of reservations (including both contingent commitments and book-

ings) and contingent commitments at time period t, respectively. Then, the recursive equations for the

proposed approximate dynamic programming model is given by

Vt(xt, yt) = max
ut∈U(xt)

{ m∑
i=1

pit

{
fiuit + EVt+1(xt + uit −Ml(yt),Mr(yt))

}
+

m∑
i=1

qit

{
ϕiuit + EVt+1(xt + uit −Ml(yt),Mr(yt) + uit)

}
+ (2)

p0tEVt+1(xt −Ml(yt),Mr(yt))

}
.

Again, the boundary condition is simply VT+1(xT+1, yT+1) = 0. In this formulation, xt − Ml(yt) and

Mr(yt) represent the remaining number of reservations and commitments, given the state of reservations

at the beginning of time period t is (xt, yt) and we do not accept anybody during that time period. On
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the other hand, if we accept a commitment request at time period t, the state of the system becomes

(xt + 1 −Ml(yt),Mr(yt) + 1), since we assume that commitments cannot leave within the period they

are accepted.

Note that in both models, the purchase probability of a contingent commitment is class independent.

In case of the dynamic model (1a)-(1b), we could have relaxed this assumption and worked with class

dependent purchase probabilities. Then, we would have needed to store the fare class of each accepted

commitment, which would have required holding even a larger state space. In case of the approximate

model (2), however, qe and qr values are class independent by definition. We could have used weighted

averages to set both probabilities. In fact this was the approximation used by Aydın et al. (2013). If we

had used such an approach, then we would have added one more level of approximation to our dynamic

programming model. Therefore, we avoided this kind of construction and decided to work with a purchase

probability that is class independent.

Before we discuss the optimal policy, let us note that the way we use the commitment option in the

approximate dynamic model resembles similar options offered in the service industry. For instance, the

insurance policies are also commonly offered to guarantee reservations. In this case, the customers can

leave at any time until they receive the service. However, this default option in insurance policies is just

an assumption in our approximate model.

The optimal policy of problem (2) can be summarized as follows: Given the state variables (xt, yt) at

time period t, the optimal decisions at time period t are given by

u∗
it =

{
1, if (1− νi)(fi + Vt+1(xt + 1, yt)) + νi(ϕi + Vt+1(xt + 1, yt + 1)) ≥ Vt+1(xt, yt) and xt < C;

0, otherwise.

(3)

Next, we present that optimal decisions have a nested structure under certain conditions. We defer the

proof of the proposition to the appendix.

Proposition 4.1 Suppose the probability of a request being a commitment is class independent; that is,

ν1 = ν2 = · · · = νm. Then, given the fare ordering f1 ≥ f2 ≥ ... ≥ fm, and hence, the ordering of the

expected commitment revenues, ϕ1 ≥ ϕ2 ≥ ... ≥ ϕm, we have u∗
1t ≥ u∗

2t ≥ ... ≥ u∗
mt, t = 1, ..., T .

The assumption in Proposition 4.1 seems crucial as we can give a simple counter example where the

optimal policy does not have a nested structure. Figure 3 illustrates such an example. Given that there

are x = 1 reservations and y = 0 commitments at the beginning of each time period, the optimal decisions

are computed. The optimal policy table is given in the lower part of the figure. As this table shows,

although a request for the low fare class is accepted, the expensive fare class request is rejected for the

first two periods.

5. Deterministic Linear Program. An alternate approximation approach is to model a deter-

ministic linear program (DLP) that corresponds to the dynamic programming model (1a)-(1b). In this

problem, our decision variables are the number of accepted reservations for each fare class at each time

period and the remaining capacity at the beginning of each time period. To formulate this linear pro-

gram, let wit be the number of the bookings and commitments that we plan to accept for fare class i at
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1

1 2 3 4

α13 = 0.6

α23 = 0.4

α12 = 0.5

α22 = 0.5

α11 = 0.3

α21 = 0.7

ν1 = 0.1 ν2 = 0.9

u∗
it

1

1

1

01st fare class

2nd fare class

0

Optimal Policy Table,(x,y)=(1,0)

Figure 3: A counter example when the assumption in Proposition 4.1 does not hold under class dependent

commitment request probabilities (m = 2, C = 25, f1 = 26, f2 = 25, f c = 10, s = 2, pb = 0.7)

time period t. We also denote the remaining capacity at time period t by ϑt. Since an arriving customer

either buys the commitment option with probability νi or books the seat with probability (1 − νi), the

expected number of booked and committed fare class i seats at time period t are given by (1−νi)wit and

νiwit, respectively. Consequently, the total expected number of reservations accepted at time period t is∑m
i=1 wit. Then, the deterministic linear program has the following form:

maximize

T∑
t=1

m∑
i=1

fi(1− νi)wit +

T∑
t=1

m∑
i=1

ϕiνiwit (4)

subject to ϑ1 = C, (5)

ϑt = ϑt−1 −
m∑
i=1

(1− νi)wi(t−1) −
m∑
i=1

νiwi(t−1), t = 2, · · · , s+ 1, (6)

ϑt = ϑt−1 −
m∑
i=1

(1− νi)wi(t−1) −
m∑
i=1

νiwi(t−1) +

m∑
i=1

νiwi(t−s−1)pl, t = s+ 2, · · · , T, (7)

ϑT+1 = ϑT −
m∑
i=1

(1− νi)wiT −
m∑
i=1

νiwiT +
T∑

k=T−s

m∑
i=1

νiwikpl, (8)

m∑
i=1

wit ≤ ϑt, t = 1, ..., T, (9)

wit ≤ αit, i = 1, ...,m; t = 1, ..., T, (10)

ϑt ≥ 0, t = 1, ..., T + 1, (11)

wit ≥ 0, i = 1, ...,m; t = 1, ..., T. (12)

Constraints (5)-(8) keep track of the remaining capacity at each time period. Constraints (9) ensure

that the accepted reservations at each time period do not exceed the available capacity at the beginning

of that time period. Similarly, constraints (10) guarantee that the reservation requests that we plan

to accept do not exceed the expected number of arrivals. Moreover, due to constraints (10), arriving

requests can be accepted partially. Note that the nonnegativity constraint on ϑt prevents overbooking.

By substituting constraints (5)-(7) into constraint (8) and rewriting ϑT+1 in terms of ϑt, t ∈ {1, · · · , T},
we obtain that ϑT+1 = C −

∑T
t=1

∑m
i=1 wit + pl

∑T
t=1

∑m
i=1 νiwit. Since ϑT+1 ≥ 0, by rearranging the

terms we observe that
∑T

t=1

∑m
i=1(1 − νi)wit + (1 − pl)

∑T
t=1

∑m
i=1 νiwit ≤ C. In addition, an accepted
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commitment customer does not exercise the option with probability pl, and hence, the available capacity

increases in this case. Therefore, the total expected number of assigned seats (bookings and option

buyers) may exceed the capacity. In this model, this excess amount depends on the probability of not

exercising. We denote the optimal objective function value of (4)-(12) by Z∗
DLP .

There are two uses of DLP. First, it gives a policy to accept or reject the product requests. Let

{w∗
it, ∀i, t} be the optimal value of the decision variables in problem (4)-(12). Then, according to the

policy dictated by DLP, a booking or a commitment request is accepted with probability w∗
it/αit. Second,

its optimal objective value provides an upper bound on the maximum expected revenue over the whole

planning horizon. This is an intuitive consequence of the linear programming approximation to a dynamic

model. In fact, results similar to the next proposition widely appear in revenue management literature;

see Talluri and van Ryzin (1998) and Gallego and van Ryzin (1997).

Proposition 5.1 The optimal objective value of the DLP model gives an upper bound on the dynamic

programming model (1a)-(1b). That is, J1(0,0) ≤ Z∗
DLP .

The proof of Proposition 5.1 is given in the appendix. We can obtain a tighter upper bound by using

a randomized linear program. This is a well-known result in the revenue management literature and it

involves a somewhat standard analysis. Therefore, we omit this discussion and refer interested reader to

Talluri and van Ryzin (1999) and Kunnumkal et al. (2011). Instead, we focus on obtaining an asymptotic

lower bound. To obtain this bound, we make use of another upper bounding problem as we explain next.

Note that problem (4)-(12) ensures that the remaining capacity at each time period, ϑt, is non-negative.

By relaxing this constraint, we can give an upper bound on the DLP model (4)-(12) as follows:

maximize
T∑

t=1

m∑
i=1

fi(1− νi)wit +
T∑

t=1

m∑
i=1

ϕiνiwit (13)

subject to

T∑
t=1

m∑
i=1

(1− νi)wit +

T∑
t=1

m∑
i=1

pbνiwit ≤ C, (14)

wit ≤ αit, i = 1, ...,m; t = 1, ..., T, (15)

wit ≥ 0, i = 1, ...,m; t = 1, ..., T. (16)

In constraint (14), pb = 1−pl is the probability of exercising the option. We denote the optimal objective

function of this model by Z∗
DLP−UB . Here, constraint (14) is obtained by substituting constraints (5)-(7)

into constraint (8).

Remark 5.1 When there is no commitment option (s = 0) or the probability of buying the committed

seat equals to 1 (pb = 1), DLP given by (4)-(12) boils down to the standard capacity allocation problem.

Furthermore, when Z∗
DLP−UB = Z∗

DLP , the dual variables corresponding to constraints (5)-(8) in problem

(4)-(12) are all equal. Therefore, the dual of problem (4)-(12) can be reduced to a one-dimensional

unconstrained problem, and it can be solved very efficiently by any variant of the bisection method.

Now we are ready to obtain an asymptotic lower bound on the distance between the optimal objective

function value of DLP and the optimal expected revenue of the dynamic programming model (1a)-(1b).
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Our analysis follows a similar approach as in Gallego et al. (2004). However, in our case, we need to

consider the expiration of the option explicitly. To provide an asymptotic bound, we scale the capacity of

the flight and the expected demand linearly with the same rate κ. We introduce a sequence of problems

{Pκ : κ ∈ Z+} indexed by parameter κ. Problem Pκ has κT time periods in the planning horizon and

the capacity of the flight is κC. Moreover, the arrival probabilities αit at time periods {κ(t−1)+1, ..., κt}
in problem Pκ are the same as the arrival probabilities at time period t in problem P1. Therefore, the

probability of a reservation request for fare class i at time period t is given by αi⌈t/κ⌉, where operator

⌈.⌉ rounds up the values passed to it. We note that the problem described in Section 3 is P1. The flight

capacity in problem Pκ is κ times the capacity of the flight in problem P 1. Similarly, the length of the

booking horizon in problem Pκ is κ times the length of the booking horizon in problem P1. Consequently,

the expected total booking demand and the expected total commitment demand for fare class i in problem

Pκ is
κT∑
t=1

αi⌈t/κ⌉ = κ

T∑
t=1

αit.

This implies that the expected numbers of reservation requests in problem Pκ are κ times larger than

those in problem P1. Consequently, problem Pκ is a scaled version of problem P1.

Our goal is to explore how the performance of the policy derived from the deterministic linear program

changes as the capacity on the flight leg and the demand progressively get larger. We do not scale the

length of the commitment horizon s, but the commitments do not lose their importance in our asymptotic

scaling regime, since as we scale up the demand, the number of customers that purchase the commitment

option also scales up.

We consider the linear programming model (13)-(16) for problem Pκ. Let Zκ
DLP−UB denote the

optimal objective value of the upper bound on DLP for the scaled problem Pκ. Likewise, Zκ
DLP denotes

the optimal objective value of the scaled deterministic linear program given by problem (4)-(12), and

Jκ
1 (0,0) stands for the optimal expected total revenue for the scaled problem Pκ that we obtain by

solving the corresponding dynamic program. Proposition 5.1 shows that the optimal objective value of

the deterministic linear program provides an upper bound on the optimal expected total revenue. Thus,

we have Zκ
DLP ≥ Jκ

1 (0,0). Since Zκ
DLP−UB ≥ Zκ

DLP , we also have Zκ
DLP−UB ≥ Jκ

1 (0,0). The lower

bound on these inequalities along with an asymptotic behavior are shown in the next proposition. We

give the proof of this result in the appendix.

Proposition 5.2 Given ϵ ∈ [1− pb, 1] and κ > 0, we have

Zκ
DLP−UB ≥ Zκ

DLP ≥ Jκ
1 (0,0) ≥

(
1− ϵ− CV 2

κϵ2

)
Zκ
DLP−UB ,

where CV denotes the maximum coefficient of variation over bookings and commitments for all fare

classes (see the appendix). Therefore,

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP

≤ 1.

The first part of this proposition gives a lower bound for the scaled problems of DLP and the dynamic

programming model (1a)-(1b). The asymptotic result in the second part implies that the optimal objective

function value of the DLP is at most 1/pb multiple of the dynamic model as the problem size gets large
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in terms of the capacity and the expected demand. This limiting behavior also shows that DLP becomes

asymptotically tight as pb becomes closer to 1. This is expected, since the commitment problem becomes

a standard capacity allocation problem when pb = 1 (Talluri and van Ryzin, 1998).

6. Computational Experiments. In this section, we conduct simulation experiments to evaluate

the effects of offering the contingent commitment option. We also provide a sensitivity analysis with

respect to various parameters. Moreover, we compare the performance of our dynamic model against

other benchmark strategies. We begin by describing the benchmark strategies.

Approximate Dynamic Model (ADM): This is the solution method that we develop in this paper.

That is, we solve the dynamic program in (2) to obtain the optimal policy. Then, we use the decision

rule (3) as our accept-reject policy for booking and commitment requests.

Standard Booking Strategy (SBS): This policy ignores the commitment requests and only accepts

the standard booking requests. Therefore, the no arrival probability at time period t becomes (1 −∑m
i=1 pit) in this policy. The optimal booking policy is then determined by solving the problem as a

standard capacity allocation problem (Talluri and van Ryzin, 2004, Section 2.5).

Deterministic Linear Program (DLP): This is the solution method described in Section 5. We

solve the problem (4)-(12) to obtain the optimal values of the variables w∗
it. Provided that there is

sufficient remaining capacity, we accept a reservation request for fare class i with probability w∗
it/αit at

time period t.

In the sequel, we refer to the average revenue obtained by the optimal policy of the dynamic model

given by (1a)-(1b) as DM. Recall that this model is computationally intractable for long commitment

periods. Hence, we test the models with respect to DM for only small instances. We simulate the arrival

of reservation requests and option decisions over discrete time periods {1, ..., T}. At each time period,

we first generate an arrival request and then apply the corresponding policy. While an accepted booking

request for fare class i generates a revenue of fi, an accepted commitment request generates a revenue of

f c. After the arrival process, we check whether there is a commitment made s periods ago and simulate

a purchase or leave decision. Each commitment passenger in fare class i buys the ticket with probability

pb generating an additional revenue of fi, or leaves the system.

To test the performances of the booking policies against varying arrival intensities, we use the load

factor parameter ρ. Noting that the total expected demand for the flight is
∑T

t=1

∑m
i=1(pit + pbqit), the

load factor is given by

ρ =

∑T
t=1

∑m
i=1(pit + pbqit)

C
.

The way we generate arrival probabilities is quite similar to the one given by Aydın et al. (2013). We

assume that the lower fare class requests arrive more frequently than the higher fare classes in early

periods. In all our numerical experiments, we set the capacity of the plane, the length of the planning

horizon and the number of fare classes to C = 100, T = 300 and m = 4, respectively. The fares are

evenly distributed between 250 and 1, 000.
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6.1 Benchmarking Study. Our experimental design is based on various factors of the load factor

(ρ), the commitment period (s), the commitment fee (f c), the probability of buying the committed seat

(pb), and the splitting probability of commitment arrivals (ν). We use load factor values ρ ∈ {1.2, 1.6}
corresponding to low and high loads. We select the commitment period lengths from the set {5, 25, 50}
to represent short, medium and long commitment intervals. The commitment fees f c ∈ {40, 80} are used

to represent low and high fees. We also test the models for varying buy probabilities pb ∈ {0.4, 0.7}. The
last parameter set comes from the splitting probability of contingent commitments (νi values). We give

two sets of values to represent low and high commitment arrivals. These are νL := (0.10, 0.15, 0.20, 0.25)

and νH := (0.40, 0.45, 0.50, 0.55) where the values in each set are ordered from expensive to cheap fare

class. We label our test problems by using all combinations of these parameters.

As mentioned in Section 5, DLP provides an upper bound on the maximum total expected revenue

obtained by the dynamic model over the time periods {1, ..., T}. Moreover, we also show that the optimal

objective function value of DLP is at most 1/pb multiple of the dynamic model as the problem size gets

large in terms of the capacity and the expected demand. Table 1 shows the optimal expected revenues

obtained by DM (J1(0,0)) and DLP (Z∗
DLP ) for different test instances. The first four columns indicate

the characteristics of the test instances. The next two columns give the optimal objective values of DM

and DLP, respectively. The last column gives the percentage gaps with respect to Z∗
DLP . We compare

the expected revenues for s = 5. The results show that the upper bound provided by DLP is within 1.5%

of DM. In particular, for the test instances with high load factor and high commitment demand, this

percentage gap drops down. We observe that the quality of the upper bound seems to be mostly affected

by the tightness of the flight capacity.

Table 1: Optimal expected revenues (s = 5)

Instances % Gap with DM

ρ ν• f c pb DM DLP DLP

40 0.4 65,657 66,420 1.16%

νH
40 0.7 64,390 65,185 1.23%

80 0.4 68,251 69,045 1.16%

1.2
80 0.7 66,563 67,391 1.24%

40 0.4 63,547 64,339 1.25%

νL
40 0.7 62,899 63,687 1.25%

80 0.4 64,308 65,116 1.26%

80 0.7 63,622 64,424 1.26%

40 0.4 75,598 76,113 0.68%

νH
40 0.7 74,469 75,101 0.85%

80 0.4 78,072 78,583 0.65%

1.6
80 0.7 76,563 77,198 0.83%

40 0.4 73,582 74,214 0.86%

νL
40 0.7 73,002 73,664 0.91%

80 0.4 74,259 74,890 0.85%

80 0.7 73,649 74,310 0.90%
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Next, we test the performances of the models against the dynamic model given by (1a)-(1b). We

estimate the net expected revenues by simulating the arrivals of booking and commitment requests over

5,000 sample paths. We set the length of the commitment period to 5 for the instances where we compare

our models with respect to DM. Table 2 shows the average total revenues and percentage gaps between

DM and the remaining solution methods. The first four columns in Table 2 show the characteristics of

the test instances. The next four columns give the expected total revenues obtained by DM, ADM, SBS,

and DLP, respectively. The last three columns give the percentage gaps between DM and the remaining

solution methods. Comparing the percentage gaps under this setup, we observe that the performances of

DM and ADM are very close, especially for high values of buy probabilities pb. In the worst-case, which

corresponds to the value of pb = 0.4, the gap between ADM and DM is less than 0.1%. Moreover as the

load factor increases, the percentage gap between DM and ADM decreases. When the arrival intensity is

high, models can compensate the revenue loss due to empty seats. On the other hand, we observe that

there is a noticeable performance gap between ADM and SBS. The performance of SBS improves slightly

when the load factor is high and splitting probability is low. However even in this case, it performs worse

than ADM. A noteworthy observation is the relatively large difference between ADM and SBS even when

the load factor is high (ρ = 1.6) and the splitting probability is low (νL). Because in this case there is

ample booking requests to use the full capacity of the flight.

Table 2: Average total revenues over 5,000 runs (s = 5)

Instances % Gap with DM

ρ ν• f c pb DM ADM SBS DLP ADM SBS DLP

40 0.4 65,748 65,732 51,455 64,062 0.024% 21.738% 2.564%

νH
40 0.7 64,443 64,437 42,685 62,684 0.010% 33.764% 2.730%

80 0.4 68,298 68,294 51,455 66,540 0.007% 24.660% 2.574%

1.2
80 0.7 66,459 66,453 42,685 64,648 0.009% 35.772% 2.725%

40 0.4 63,543 63,541 60,362 61,872 0.003% 5.007% 2.630%

νL
40 0.7 62,883 62,883 58,056 61,230 0.001% 7.677% 2.629%

80 0.4 64,313 64,308 60,362 62,602 0.008% 6.143% 2.660%

80 0.7 63,595 63,595 58,056 61,922 0.000% 8.710% 2.631%

40 0.4 75,579 75,569 63,738 73,508 0.014% 15.667% 2.740%

νH
40 0.7 74,435 74,434 56,267 72,257 0.002% 24.409% 2.926%

80 0.4 78,049 78,043 63,738 75,891 0.009% 18.336% 2.765%

1.6
80 0.7 76,543 76,541 56,267 74,315 0.003% 26.490% 2.911%

40 0.4 73,547 73,545 71,411 71,505 0.003% 2.905% 2.776%

νL
40 0.7 72,964 72,963 69,289 70,972 0.001% 5.036% 2.730%

80 0.4 74,221 74,220 71,411 72,162 0.001% 3.787% 2.774%

80 0.7 73,607 73,606 69,289 71,597 0.002% 5.867% 2.731%

Next, we report our results for larger values of the commitment period, s. For comparison, we also

present the results obtained when s is 5. Table 3 presents the performances of the benchmark strategies

with respect to various test instances. The columns have the same interpretation as in Table 2. To

emphasize the effect of the commitment decision in these experiments, we fix the commitment fee to the
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highest value, f c = 80. As depicted in Table 3, the total expected revenues decrease as the length of

the commitment period increases since the revenues obtained from the contingent commitments decrease

with the length of the commitment period. However, this loss can be compensated with the later arrivals

of the booking requests. Thus, the decrease in revenue is more striking when the arrival intensity is

low (ρ = 1.2). On the other hand, the results indicate that ADM consistently provides the highest

total expected revenues. However as the length of the commitment period increases, the percentage gaps

between ADM and the other solution methods decrease. This behavior can be attributed to the impact

of the commitment period on retain, buy and leave probabilities. Recall that qr = (s − 1)/s; so, qr

increases as the length of the commitment period increases. Therefore, when s is high, our proposed

dynamic model presumes that each accepted commitment request waits until the departure time for

purchasing or cancelling the option (over-estimates the commitment period). Consequently, it may fail

to capture the actual dynamics of the system and its performance deteriorates. Moreover, as the length

of the commitment period increases, there exist instances where the performances of SBS and DLP are

somewhat close.

The results indicate that offering a contingent commitment option is most beneficial when the purchase

probability is high and the length of the commitment period is short. When we compare the performances

of ADM and SBS, we observe that offering the commitment option brings in a significant revenue increase,

even if the customer arrival intensity for this option is low.

6.2 When to Offer the Commitment Option. In this part, we investigate the effects of the

contingent commitment option. We set the load factor (ρ) to 1.6, the length of the commitment period

(s) to 50, and the commitment fee (f c) to 80. The splitting probabilities of commitments for all fare

classes are set to the same value of 0.5. Initially, we study the potential revenue improvements of offering

the commitment option relative to offering only standard bookings. Since the dynamic model (1a)-(1b) is

computationally intractable for long commitment periods, we make an analysis on the approximate model

(2). To measure the effect of commitment option, we generate two models which accept the contingent

commitment requests during a limited time period. While the first model allows commitment arrivals

only in the first τ periods, the second model allows them only in the last τ . These models are denoted by

FCM and LCM, respectively. The time period of length τ during which any commitment requests may

be processed is called commitment interval. For instance, τ = 10 means that FCM allows commitments

during only the first 10 periods and LCM allows them only in the last 10 periods. On the other hand,

when τ = T , both FCM and LCM boil down to the ADM model where commitment arrivals are allowed

during the whole reservation horizon.

Figure 4 shows the optimal objective values of these models with respect to different purchase proba-

bilities. In this figure, the horizontal axis represents the commitment interval τ . As Figure 4 shows, FCM

performs better than LCM when the probability of purchase is low. Due to a high retain probability (qr)

and low purchase probability (pb), offering the commitment option later in the reservation horizon may

result in empty seats. Since FCM accepts contingent commitment requests early in the reservation peri-

od, it can compensate the empty seats resulting from not exercised commitments with the late booking

arrivals.

On the other hand, as the purchase probability increases, the performance of LCM improves. Since



Aydın, Birbil, Topaloglu: Delayed Purchases in ARM 17

Table 3: Average total revenues over 5,000 runs (f c = 80)

Instances % Gap with ADM

ρ ν• s pb ADM SBS DLP SBS DLP

5 0.4 68,294 51,455 66,540 24.656% 2.568%

5 0.7 66,453 42,685 64,648 35.767% 2.716%

νH
25 0.4 67,583 51,455 66,103 23.864% 2.190%

25 0.7 66,280 42,685 64,603 35.560% 2.530%

50 0.4 66,541 51,455 65,239 22.671% 1.957%

1.2
50 0.7 65,831 42,685 64,260 35.160% 2.386%

5 0.4 64,308 60,362 62,602 6.135% 2.653%

5 0.7 63,595 58,056 61,922 8.710% 2.631%

νL
25 0.4 64,139 60,362 62,488 5.889% 2.574%

25 0.7 63,514 58,056 61,846 8.594% 2.626%

50 0.4 63,885 60,362 62,273 5.515% 2.523%

50 0.7 63,401 58,056 61,738 8.431% 2.623%

5 0.4 78,043 63,738 75,891 18.329% 2.757%

5 0.7 76,541 56,267 74,315 26.488% 2.908%

νH
25 0.4 76,819 63,738 74,910 17.028% 2.485%

25 0.7 76,067 56,267 74,069 26.030% 2.627%

50 0.4 75,264 63,738 73,286 15.314% 2.628%

1.6
50 0.7 75,385 56,267 73,413 25.361% 2.616%

5 0.4 74,220 71,411 72,162 3.786% 2.773%

5 0.7 73,606 69,289 71,597 5.865% 2.729%

νL
25 0.4 73,943 71,411 72,013 3.424% 2.610%

25 0.7 73,497 69,289 71,600 5.725% 2.581%

50 0.4 73,540 71,411 71,633 2.895% 2.593%

50 0.7 73,303 69,289 71,467 5.476% 2.505%

expensive fare class customers arrive later than the low-fare customers and the retain probability is high,

FCM rejects the early commitment requests to keep seats for expensive fare class customers. Hence, it

loses the potential revenue obtained from commitment reservations. Moreover, when pb is low, we observe

that allowing commitment arrivals during the whole planning period is not advantageous for FCM. Since

the purchase probability is low, customers accepted towards the end of the booking horizon may result

in empty seats.

Next, we investigate the effect of the commitment period on the total expected revenue. Figure 5

plots the changes in optimal objective values of FCM and LCM with respect to different lengths of the

commitment interval and the commitment period when pb is low. Let τ
∗ denote the commitment interval

value at which the maximum total expected revenue is obtained either by FCM or LCM in Figure 5. As

the length of the commitment period (s) increases, the value of τ∗ for FCM shifts to the beginning of

the reservation period. Recall that the retain probability is positively correlated with the length of the
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(a) pb = 0.25 (b) pb = 0.75

Figure 4: The effect of commitments on the total expected revenue for various buy probabilities

commitment period. Therefore, as s increases, the probability of waiting until the end of the reservation

horizon (retain probability of a contingent commitment) also increases. As a result when pb is low, it

becomes more profitable for FCM to accept the commitment requests early in the reservation period

and reserve seats for the late arrivals of expensive fare class customers. Similarly when s is high, it is

more profitable for LCM to limit the commitment arrivals and τ∗ for LCM shifts towards the end of

the reservation period. However, even in this case, offering contingent commitment options can provide

additional revenue compared to only offering standard booking products (when the commitment interval

is 0).

(a) Total expected revenue of FCM (b) Total expected revenue of LCM

Figure 5: Change in the total expected revenue with respect to different s values (pb=0.25)

In summary, Figure 4 depicts that accepting the commitment requests up to a certain time period is

more profitable than accepting them during the whole reservation period when the purchase probability pb

of the contingent commitment option is low. As the purchase probability increases, allowing commitment

arrivals during the whole period becomes more advantageous. In addition, offering a commitment option

towards the end of the reservation period is more beneficial than offering it at the beginning of the

reservation period when the purchase probability is high. Moreover, Figure 5 shows the effect of the

length of the commitment period on the total revenue. We observe that as the length of the commitment

period increases, it becomes more profitable to decrease the length of the time period during which the
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commitment option is offered.

6.3 An Alternate Simulation with Flexible Commitment Options. In this simulation study,

we relax the assumption related to the purchase decision of the committed seats. In our proposed models,

we assumed that the customers who committed to a seat make the buy or leave decision at the end of

the commitment period. Although this is quite often the case, sometimes those customers may purchase

the seat or leave at any time within the commitment period. In this section, we simulate such a setting.

We implement ADM as in Section 4 without any changes. In our simulation, we assume that after

committing to a seat, it is equally likely for a customer to make a decision in each one of the s periods.

Since we compare the benchmark strategies for long commitment periods, we were not able to solve

the DM model in this analysis. Our results are summarized in Table 4. The commitment fee is set to

f c = 80. Comparing the total expected revenues in Table 3 against those given in Table 4, we notice that

the total net revenues obtained by the policies of all solution methods slightly improve in this alternate

simulation. Since customers more frequently exercise options in the alternate simulation, the expected

revenues obtained from the commitments increase. It is important to note that the percentage gaps

between ADM and the other solution methods tend to increase when we allow customers to exercise their

options at any time period. ADM adjusts the booking limits by taking into account the reservations and

not exercised options that have already taken place. Therefore, it ends up accepting more reservation

requests from lower fare classes than the deterministic model, and consequently, the revenue loss due to

empty seats is counteracted by the gains from the committed seats.

We also analyze how our approximation performs. Figure 6 presents the gap between the optimal

objective value of the approximate dynamic model and the average revenue obtained by its policy when

regular and alternate simulations are run. The first observation we have is that the percentage gaps

are small when the length of commitment period is short. The intuition behind this result is that, as

the length increases, ADM fails to predict the dynamics of the commitment process. As a result, the

number of empty seats increases and hence, its performance deteriorates. We caution the reader to the

performances under the two simulation approaches. As Figure 6(a) depicts total revenue obtained in

the alternate simulation is always higher than the one obtained in the regular simulation. Moreover,

as the length of the commitment period increases, the performance of ADM worsens more than we

expected. This result was more striking with our regular simulation. This behavior can be attributed

to the structure of the alternate simulation. Since our approximation allows contingent commitments to

exercise their options at any time, it performs better in the alternate simulation.

We conclude the presentation of our numerical results by reporting the CPU times of the proposed

solution methods. We used a computer with 2.13 GHz Intel Pentium P6200 processor and 2 GB of RAM.

The codes are written in MATLAB R2012b running under Windows 7 operating system. The intractable

dynamic model requires on average 230 seconds for the problems where the length of commitment period

is 5. It takes on average 120 seconds to solve the approximate dynamic model. DLP requires on average

less than a second.

7. Conclusions. In this study, we introduce the concept of a commitment option. Recently such

options have been offered by airline companies. By offering this option, they aim to attract price sensitive
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Table 4: Computational results for the test problems in the alternate simulation (f c = 80)

Instances % Gap with ADM

ρ ν• s pb ADM SBS DLP SBS DLP

5 0.4 68,368 51,455 66,554 24.737% 2.653%

5 0.7 66,488 42,685 64,667 35.800% 2.739%

νH
25 0.4 67,939 51,455 66,369 24.262% 2.311%

25 0.7 66,465 42,685 64,693 35.779% 2.666%

50 0.4 67,351 51,455 65,873 23.602% 2.194%

1.2
50 0.7 66,220 42,685 64,540 35.541% 2.537%

5 0.4 64,333 60,362 62,607 6.172% 2.683%

5 0.7 63,598 58,056 61,924 8.714% 2.632%

νL
25 0.4 64,249 60,362 62,574 6.050% 2.607%

25 0.7 63,560 58,056 61,883 8.661% 2.638%

50 0.4 64,114 60,362 62,476 5.852% 2.554%

50 0.7 63,504 58,056 61,842 8.579% 2.617%

5 0.4 78,151 63,738 75,931 18.442% 2.840%

5 0.7 76,595 56,267 74,328 26.540% 2.960%

νH
25 0.4 77,499 63,738 75,338 17.756% 2.788%

25 0.7 76,379 56,267 74,228 26.332% 2.816%

50 0.4 76,650 63,738 74,360 16.844% 2.988%

1.6
50 0.7 76,014 56,267 73,880 25.979% 2.807%

5 0.4 74,246 71,411 72,168 3.819% 2.800%

5 0.7 73,615 69,289 71,599 5.877% 2.739%

νL
25 0.4 74,129 71,411 72,120 3.667% 2.710%

25 0.7 73,590 69,289 71,648 5.844% 2.638%

50 0.4 73,933 71,411 71,933 2.411% 2.705%

50 0.7 73,496 69,289 71,627 5.724% 2.543%

customers as well as customers who have uncertainty in their travel time. We analyze the consequences

of selling this option along with standard bookings of the products. We derive dynamic and static

models for the capacity allocation problem. In the dynamic case, finding the optimal policy for the

actual problem would require solving a dynamic program with a high-dimensional state vector. Thus,

we propose an approximate dynamic programming formulation. In the deterministic case, we present

a linear programming model leading to an upper bound on the optimal objective value of the actual

problem.

We conduct a computational study to evaluate how offering options affects the airline’s revenue. To

assess the effect of commitment decisions, we compare the performances of our model against different

policies. Our numerical results confirm the intuitive expectation that offering a commitment option is

most beneficial when the purchase probability is high and the length of the commitment period is short.

Furthermore, considering a policy that ignores the contingent option altogether, explicitly modeling the
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(a) Total expected revenue (b) Percentage gap

Figure 6: The results related to optimal objective value of ADM and the average revenue obtained by

the optimal policy of ADM

commitment option can bring significant revenue improvements even when the customer arrival intensity

for this option is low. Also, making the contingent commitment option available up to only a certain time

period can be more profitable than making it available during the whole sales horizon, especially when

the purchase probability of the contingent commitment option is low. As the length of the commitment

period increases, limiting the availability of the commitment option may be more beneficial to reap the

most benefit from this option. Moreover, in our computational study we also evaluate the performance

of our approximate dynamic model. When we compare our proposed model with the actual dynamic

model, we see that there is no significant difference between their performances for the short commitment

period length. This shows that our approximation performs very well.

An immediate extension of this work would be to include the overbooking option. Since commitment

customers may not purchase their options and leave the system, the revenue loss due to the resulting empty

seats can be filled by overbooking the flight. In this case, the overbooking limit should be determined

by considering not exercising the option possibility of contingent commitments. Another future research

direction is the application of the contingent commitment option to network problems. Network problems

are quite difficult to solve due to the intractable state space. To overcome this difficulty, approximation

methods based on decomposition are frequently proposed. However, in this case adverse effects of offering

a contingent commitment option on the shared legs of the flight should be carefully investigated.
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Appendix A. Omitted Proofs. We reserve this appendix for the proofs that we omitted in the

main document.

Proposition 4.1 Suppose the probability of a request being a commitment is class independent; that is,

ν1 = ν2 = · · · = νm. Then, given the fare ordering f1 ≥ f2 ≥ ... ≥ fm, and hence, the ordering of the

expected commitment revenues, ϕ1 ≥ ϕ2 ≥ ... ≥ ϕm, we have u∗
1t ≥ u∗

2t ≥ ... ≥ u∗
mt, t = 1, ..., T .

Proof. For given x and y, to maximize Vt(xt, yt) we accept a booking or commitment request

(u∗
it = 1) if

pit(fi+EVt+1(xt + 1−Ml(yt),Mr(yt))) + qit(ϕi + EVt+1(xt + 1−Ml(yt),Mr(yt) + 1))

≥ pitEVt+1(xt −Ml(yt),Mr(yt)) + qitEVt+1(xt −Ml(yt),Mr(yt)).

Let ν := ν1 = ν2 = · · · = νm. Then, by using pit = (1− ν)αit and qit = ναit, we obtain

(1− ν)(fi+EVt+1(xt + 1−Ml(yt),Mr(yt))) + ν(ϕi + EVt+1(xt + 1−Ml(yt),Mr(yt) + 1))

≥ EVt+1(xt −Ml(yt),Mr(yt)). (17)

Since fi−1 ≥ fi and ϕi−1 ≥ ϕi, if relation (17) holds for a fare class i request (u∗
it = 1), then it also holds

for the fare class i− 1 request u∗
(i−1)t = 1. Similarly, if relation (17) does not hold for the expensive fare

class i− 1, then it does not hold for the cheaper fare class i either. This means that, if u∗
(i−1)t = 0 then

u∗
it = 0. Therefore, we obtain the desired result. �

Proposition 5.1 The optimal objective value of the DLP model gives an upper bound on the dynamic

programming model (1a)-(1b). That is, J1(0,0) ≤ Z∗
DLP .

Proof. Suppose the random variables Wit, ∀i, t denote the number of reservations accepted over the

planning horizon under the optimal policy of the dynamic programming model. Each accepted reservation

for fare class i either buys the contingent commitment option with probability νi or books the seat with

probability (1 − νi). Let Xit and Zit be the random numbers of bookings and commitments accepted

for fare class i at time period t, respectively. Since an accepted commitment request can leave with

probability pl, we also let Sit and Lit be the binary random numbers denoting the sold (exercised) and

not exercised commitments, respectively. That is, Sit takes value 1, if there is a commitment reservation

for fare class i at time period t and this commitment customer decides to exercise the option, and Lit

takes value 1 if this commitment reservation leaves. As a result, Xit + Zit = Wit and Sit + Lit = Zit for

all i, t.

Let now Dit be the random number of reservation requests for fare class i at time period t. Then, we

have,

V1 = C, (18)

Vt = Vt−1 −
m∑
i=1

Xi(t−1) −
m∑
i=1

Zi(t−1), 2 ≤ t ≤ s+ 1, (19)

Vt = Vt−1 −
m∑
i=1

Xi(t−1) −
m∑
i=1

Zi(t−1) +
m∑
i=1

Li(t−s−1), s+ 2 ≤ t ≤ T, (20)
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VT+1 = VT −
m∑
i=1

XiT −
m∑
i=1

ZiT +

T∑
k=T−s

m∑
i=1

Lik, (21)

Xit + Zit ≤ Dit, i = 1, ...,m; t = 1, ..., T, (22)

m∑
i=1

Xit +
m∑
i=1

Zit ≤ Vt, t = 1, ..., T, (23)

where (18)-(21) ensure that the balance equations in each time period holds, (22) ensures that total num-

ber of bookings and commitments that we accept under the optimal policy do not exceed the reservation

requests. Similarly, (23) guarantees that the total number of bookings and commitments that we accept

do not exceed the available capacity. Consequently, the total revenue under the optimal policy of the

dynamic programming is
T∑

t=1

m∑
i=1

fiXit +
T∑

t=1

m∑
i=1

f cZit +
T∑

t=1

m∑
i=1

fiSit.

By conditioning on Wit we trivially obtain E(Zit) = νE(Wit). Since Xit = Wit − Zit, we have

E(Xit) = (1 − νi)E(Wit). Similarly, conditioning on Zit leads to E(Sit) = pbνiE(Wit). Therefore, the

total expected revenue is given by

J1(0,0) =
T∑

t=1

m∑
i=1

fi(1− νi)E(Wit) +
T∑

t=1

m∑
i=1

f cνiE(Wit) +
T∑

t=1

m∑
i=1

fipbνiE(Wit).

Taking the expectations (18)-(23) and noting that E(Dit) = αit, the solution given by wit = E(Wit) and

ϑt = E(Vt) is feasible for the DLP model (4)-(12). Therefore, we have

Z∗
DLP ≥ J1(0,0) =

T∑
t=1

m∑
i=1

fi(1− νi)E(Wit) +
T∑

t=1

m∑
i=1

ϕiνiE(Wit),

and the desired result holds. �

To prove the asymptotic bound result in Proposition 5.2, we first define a lower bound on the rate of

convergence. Let dib and dic denote the random numbers of total fare class i requests for bookings and

commitments, respectively. Then, the expected demands are computed as µb
i := E(dib) = (1−νi)

∑T
t=1 αit

and µc
i := E(dic) = νi

∑T
t=1 αit. Likewise, σib and σic denote the corresponding standard deviations.

Then, the coefficient of variation of the number of requests for bookings and commitments are given as

CV b
i =

√
σ2
ib

µb
i

and CV c
i =

√
σ2
ic

µc
i

, for i = 1, ...,m.

We also define

CV = max
1≤i≤m

{
CV b

i , CV c
i

}
,

as the maximum coefficient of variation.

Proposition A.1 Let CV denote the maximum coefficient of variation over bookings and commitments

for all fare classes. Then for ϵ ∈ [1− pb, 1], we have J1(0,0) ≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB.

Proof. Let {w∗
it : ∀i, t} be the optimal value of the decision variables in problem (13)-(16). We

consider a policy π that accepts at most (1− ϵ)(1− νi)
∑T

t=1 w
∗
it booking requests and (1− ϵ)νi

∑T
t=1 w

∗
it

contingent commitment requests for fare class i for ϵ ∈ (0, 1). Due to the capacity constraint (14) in

DLP-UB model, the policy π is feasible if (1− ϵ) ≤ pb. The expected revenue Pπ is given by

Pπ = E[
m∑
i=1

fi min(dib, (1− ϵ)
T∑

t=1

(1− νi)w
∗
it) +

m∑
i=1

f c min(dic, (1− ϵ)
T∑

t=1

νiw
∗
it)+
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m∑
i=1

fiS(min(dic, (1− ϵ)

T∑
t=1

νiw
∗
it))],

where S(k) is a binomial random variable with k independent trials with success probability pb and it

gives the number of purchased committed seats. A lower bound to the generic term in the expression for

Pπ is then given by

E[min(dic, (1− ϵ)

T∑
t=1

νiw
∗
it)] ≥ (1− ϵ)

T∑
t=1

νiw
∗
itP(dic ≥ (1− ϵ)

T∑
t=1

νiw
∗
it) (24)

≥ (1− ϵ)

T∑
t=1

νiw
∗
itP(dic ≥ (1− ϵ)

T∑
t=1

νiαit) (25)

≥ (1− ϵ)
T∑

t=1

νiw
∗
it

(
1− CV c

i
2

CV c
i
2 + ϵ2

)
(26)

≥ (1− ϵ)
T∑

t=1

νiw
∗
it

(
1− CV 2

ϵ2

)
. (27)

The inequality (25) holds since νiw
∗
it ≤ νiαit, (26) follows from the Marshall’s inequality and (27) holds

due to the definition of CV . Since E[S(min(dic, (1− ϵ)
∑T

t=1 νiw
∗
it))] = pbE[min(dic, (1− ϵ)

∑T
t=1 νiw

∗
it)],

we can give a lower bound to Pπ by using the inequality (27) as follows:

Pπ ≥ (1− ϵ)
(
1− CV 2

ϵ2

)
(

m∑
i=1

T∑
t=1

fi(1− νi)w
∗
it +

m∑
i=1

T∑
t=1

f cνiw
∗
it +

m∑
i=1

T∑
t=1

fipbνiw
∗
it)

≥ (1− ϵ)
(
1− CV 2

ϵ2

)
Z∗
DLP−UB

≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB

This implies

J1(0,0) ≥ Pπ ≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB .

�

To tighten the lower bound in the above inequality, we maximize it over ϵ and obtain ϵ∗ =

max{(2CV 2)1/3, 1 − pb}. Since ϵ ∈ [1 − pb, 1], this tighter bound is only obtained when 2CV 2 < 1.

Consequently we have,

J1(0,0) ≥ Pπ ≥
(
1− ϵ∗ − CV 2

ϵ∗2

)
Z∗
DLP−UB .

Next we examine the structure of the lower bound as the problem size gets large.

Proposition 5.2 Given ϵ ∈ [1− pb, 1] and κ > 0, we have

Zκ
DLP−UB ≥ Zκ

DLP ≥ Jκ
1 (0,0) ≥

(
1− ϵ− CV 2

κϵ2

)
Zκ
DLP−UB ,

where CV denotes the maximum coefficient of variation over bookings and commitments for all fare

classes. Therefore,

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP

≤ 1.

Proof. We observe that if {w∗
it : ∀i, t} is an optimal solution to problem (13)-(16). Then {w∗

i⌈t/κ⌉ :

∀i, t} is an optimal solution for the scaled problem. Thus, it follows that Zκ
DLP−UB = κZDLP−UB . For



Aydın, Birbil, Topaloglu: Delayed Purchases in ARM 25

the scaled problems, the expected demand and the variance are scaled with κ. If µ and σ2 denote the

mean demand and variance for problem P1, then the mean demand is κµ and the variance is κσ2 for the

problem Pκ. Therefore the maximum coefficient of variation of the scaled problem is

CV κ = max
1≤i≤m

{√
κσ2

ib

κµb
i

,

√
κσ2

ic

κµc
i

}
=

CV
√
κ

κ

By following the result of Proposition A.1 and replacing CV κ with CV
√
κ

κ , we have

Jκ
1 (0,0) ≥

(
1− ϵ− CV 2

κϵ2

)
Zκ
DLP−UB .

When κ goes to infinity, the expression
(
1 − ϵ − CV 2

κϵ2

)
approaches to (1 − ϵ). Since ϵ ∈ [1 − pb, 1],

this bound is tighter when ϵ = 1 − pb. Therefore, as pb goes to 1, the upper bound obtained from

Z∗
DLP−UB becomes asymptotically tight. Following the result of Proposition A.1, we obtain the following

convergence rate

κZDLP−UB ≥ Zκ
DLP ≥ Jκ

1 (0,0) ≥
(
1− ϵ− CV 2

κϵ2

)
κZDLP−UB ,

Dividing the chain of inequalities by κZDLP−UB and taking the limit as κ goes to infinity, we get

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP−UB

≤ lim
κ→∞

Zκ
DLP

Zκ
DLP−UB

≤ 1

which implies,

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP

≤ 1.

�
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