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Motivated by empirical evidence that the utility of each product depends on the assortment of products

offered along with it, we propose an endogenous context-dependent multinomial logit model (Context-MNL)

under which the utility of each product depends on both the product’s intrinsic value and the deviation of

the intrinsic value from the expected maximum utility among all the products in the offered assortment.

Under the Context-MNL model, an assortment provides a context in which customers evaluate the utility of

each product. Our model generalizes the standard multinomial logit model and allows the utility of each

product to depend on the offered assortment. The model is parsimonious, requires only one parameter

more than the standard multinomial logit model, captures the assortment-dependent effect endogenously,

and does not require the decision-maker to determine in advance the relevant attributes of the assortment

that might affect the product utility. The Context-MNL model also admits tractable maximum likelihood

estimation and is operationally tractable, with efficient solution methods for solving assortment and price

optimization problems. Our numerical study, which is based on data from Expedia, shows that compared to

the standard multinomial logit model, the Context-MNL model substantially improves out-of-sample goodness

of fit and prediction accuracy.

1. Introduction

Discrete choice models describe how customers choose a product from an assortment of alternatives

presented to them. Choice models have been widely used in revenue management problems, such

as finding good assortments of products to offer to customers or determining product prices that

maximize total revenue. Most choice models used in the revenue management literature assume

that each customer assigns a utility to each product consisting of the product’s intrinsic value

plus an idiosyncratic noise. When a customer is offered an assortment of products, she chooses the

product from the assortment that maximizers her utility. Under this assumption, the probability

of selecting a particular product changes with an assortment, but the utility of each product is

independent of the assortment offered to each customer.

The marketing literature has provided ample evidence that a customer constructs a product’s

utility in real time based on the specific choice context, which corresponds to the assortment of

alternatives that are shown alongside the target product. Researchers have documented numerous

effects of offered assortments on customer preferences and choice behaviors; these effects are
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consistent with the theory that each product’s utility depends partly on the assortment within

which the product is offered. The prospect theory in economics also points to the effect of context,

and posits that the utility of a product depends on the product’s intrinsic value and the deviation

of the intrinsic value from some reference point. The deviation from the reference point can

correspond to the gain or loss a customer experiences when comparing a product to its alternatives

in the assortment.

Despite considerable evidence of assortment-dependent effects on each product’s utility, only a

few revenue management papers have examined choice models with assortment-dependent utility

specification. The existing literature has assumed that the impact of assortment on the utility of

each product is modeled as a function of prespecified assortment-specific attributes, such as the

cheapest price in the assortment, the assortment size, or the minimum quality among products

in the assortment. Relying on such prespecified attributes requires that the utility of a product is

formulated as a function of specific attributes, so the assortment and price optimization algorithms

developed under these choice models become ineffective when the utility of a product is formulated

in a different way. We formulate the utility of each product as a function of the utilities of all

other products in the assortment, so our approach is fully independent of how the utilities of the

products are formulated as a function of the product features.

1.1 Main Contributions

Our main contributions are the formulation of an endogenous context-dependent multinomial logit

model, the validation of the model on data, and the development of efficient methods for parameter

estimation, assortment and price optimization under this choice model.

Endogenous Context-Dependent Multinomial Logit Model: We propose an endogenous

context-dependent multinomial logit model, which we refer to as the Context-MNL model. Our

model does not require the decision-maker to determine in advance the relevant features of an

assortment. Rather, we define the utility of a product in an offered assortment as the sum of

three terms: (i) the product’s intrinsic value, (ii) the deviation of the intrinsic value from the

expected maximum utility among all the items in the offered assortment, and (iii) an idiosyncratic

noise with a Gumbel distribution. Under our Context-MNL model, the utility of each product in

an assortment depends partly on the expected maximum utility among all the products in the

offered assortment. The expected maximum utility serves as an endogenous reference point. By

defining each product’s utility as a function of the utility of all the products in the assortment,

we endogenously create a system of nonlinear equations whose unique solution defines the mean

utility of each product (Equation (2) and Theorem 2.2). Our model is parsimonious. Compared



3

to the standard multinomial logit model, the Context-MNL model has just one extra parameter α,

which measures the impact of the deviation of each product’s intrinsic value from the expected

maximum utility in the offered assortment and which ranges from negative one to infinity.

When α is zero, the Context-MNL model reduces to the standard multinomial logit model. Under

the Context-MNL model, products are substitutable (Corollary 2.4), and the selection probability

can be computed efficiently (Theorems 2.2 and 2.3).

Flexibility in Modeling Demand Spills and Recaptures: In a situation in which a customer’s

first-choice demand is unavailable, spills occur when the first-choice demand is redirected to the

no-purchase option, and recaptures occur when the first-choice demand is redirected to other

products. It is well-known that the standard multinomial logit model is overly optimistic about

recaptures (Gallego et al. 2015). The extra parameter α in our Context-MNL model provides

flexibility in modeling spills and recaptures. According to Theorem 2.5, the recapture-to-spill ratio

is strictly increasing in α, so when α is less than zero, the recaptures under the Context-MNL model

will be less optimistic than those under the standard multinomial logit model.

Improved Goodness of Fit and Prediction Accuracy: We validate our Context-MNL model using

data from Expedia, which provides the results of search queries for hotels on Expedia for each

customer and whether the customer chooses to book a hotel displayed in the queries. Our numerical

experiments show that by incorporating the context-dependent effect on product utility, the

Context-MNL model significantly improves the goodness of fit and prediction accuracy regarding

customer choice behavior. We generate multiple datasets based on the Expedia data by varying

no-purchase probabilities and the number of queries. In every dataset we generate, our experiment

shows that the expected maximum utility among the products in an offered assortment serves

as an important endogenous reference point and plays an important role in explaining customer

choice behavior in the data. The estimated parameter α is statistically significant, with p-values

less than 10−5 in all the datasets. The fitted Context-MNL model also improves the out-of-sample

log-likelihood over that of the standard multinomial logit, with an average improvement of 2.30%.

Compared to the standard multinomial logit model, our model also improves the ability to predict

the bookings made by customers, with an average improvement in prediction accuracy of 1.31%.

Efficient Assortment and Price Optimization: Revenue management problems can also be solved

efficiently under the Context-MNL model. We consider an assortment optimization problem under

a cardinality constraint. When α is nonnegative, letting n denote the number of problems, the

assortment optimization problem can be solved by evaluating the revenue of at most n2 assortments

(Corollary 3.2). For α strictly between negative one and zero, the assortment optimization problem

is NP-hard, and we develop a fully polynomial-time approximation scheme (Theorem 3.5). In
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numerical experiments, we validate the performance of our approximation scheme by choosing

the parameter to ensure that the resulting assortment has an expected revenue within 50% of

the optimal expected revenue. We observe that the approximation scheme yields solutions whose

expected revenues far exceed the theoretical performance guarantee, and the resulting expected

revenues are on average within 0.33% of the optimal expected revenue, with a maximum gap

of 2.30%. Under the Context-MNL model, we can also efficiently compute prices that maximize

the total expected profit. As Theorem 4.1 shows, the optimal prices exhibit the constant-markup

property, in which every product is charged the same markup above its marginal cost. We also

provide an explicit formula for the optimal markup that generalizes the formula in the standard

multinomial logit setting.

Tractable Estimation: Under the Context-MNL model, for each value of α, the negative

log-likelihood function is convex in the remaining parameters (Theorem 5.1). Because α is a

real number, we can create a grid of possible values of α, and for each value, we estimate the

remaining parameters by minimizing a convex function. We pick the value of α that gives the

highest log-likelihood value. Because α is a one-dimensional parameter, searching over α can be

done relatively efficiently, and we can increase the quality of the solution by using a finer grid of

values. Thus, maximum likelihood estimation is tractable for our choice model.

1.2 Literature Review

Our work is related to the literature in marketing, economics, and revenue management. We

describe the connection to each stream of literature below. The marketing literature has provided

ample evidence that the choice behavior of customers is driven partly by the offered assortment,

which provides a context on the basis of which customers construct the product utilities

(Payne 1982, Chakravarti and Lynch 1983, Ratneshwar et al. 1987, Prelec et al. 1997). These

assortment-dependent effects support the view that customers construct the utility of each product

in real time based on the particular assortment of items offered along with the target product

(Payne et al. 1992, Bettman et al. 1998, Simonson 1999). Researchers have proposed a number

of models that incorporate the assortment-dependent utility. Kamakura and Srivastava (1984)

propose a multinomial probit model with distance-dependent covariates to measure the similarity

between a product and its alternatives in the assortment. Tversky and Simonson (1993) develop

a componential context model that defines the value of a product as the sum of its intrinsic value

and the advantage (or disadvantage) that the product has over its alternatives in the assortment;

the advantage is computed by comparing each of the prespecified attributes of the target product

with the corresponding attributes of each alternative in the assortment. Kivetz et al. (2004)
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generalize the multinomial logit model and incorporate the assortment effect by computing the

distance between the product’s attributes and an anchor that consists of the minimum value of

each attribute among all the alternatives in the assortment. Rooderkerk et al. (2011) consider a

similar model but allow Gaussian idiosyncratic noise. A common theme across these models is

the need to predetermine the assortment-specific attributes that will contribute to the product

utility. The number of additional parameters in these models often increases with the number of

attributes chosen. Moreover, most of the marketing literature has focused on parameter estimation

and does not consider the tractability of the operational decisions. An exception is Orhun (2009),

which uses comparative valuation model to examine the problem of designing an optimal product

line when consumers exhibit assortment-dependent preferences, but the proposed model does not

admit efficient solutions for large-scale assortment and price optimization.

Our study is also related to the prospect theory in economics, pioneered by Kahneman and

Tversky (1979). Under the prospect theory, each customer evaluates a product against a reference

point, which might correspond to the cheapest product in the assortment, and the product utility

will depend partly on the deviation of the target product from the reference point. Kőszegi and

Rabin (2006) propose an additive form of the reference-dependent preference, under which the

utility of each product is the sum of the product’s intrinsic value and the gain–loss utility function

that measures the distance between the target product and the reference point. The reference-

dependent model of preferences has received increasing attention in the revenue management

literature. Researchers have investigated the dynamic pricing problem under reference effects

(Popescu and Wu 2007, Hu et al. 2016, Chen et al. 2017). In a recent paper, Cao et al. (2022)

propose a spiked multinomial logit model under which a product receives a boost in the assigned

utility if the product is the cheapest item in the assortment, and they consider various revenue

management problems under this model. Wang (2018) extends the standard multinomial logit

model by allowing each product’s utility to depend on the deviation of the product’s price from

the minimum price in the assortment, and he examines assortment and price optimization under

this model. These models assume that the reference attributes are prespecified, so they are tied to

a particular specification of the product utilities.

Our study is also related to the substantial research on assortment optimization under the

standard multinomial logit model. We show that for the unconstrained assortment optimization

problem under the Context-MNL model with a nonnegative α parameter, revenue-ordered

assortments are optimal. This result generalizes the classical result, which establishes that, under

the standard multinomial logit model, it is optimal to offer a revenue-ordered assortment, which

consists of products with the highest revenues (Gallego et al. 2004, Talluri and van Ryzin 2004).
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Rusmevichientong et al. (2010), Wang (2012), Jagabathula (2016), and Sumida et al. (2021)

examine the problem under various constraints on the offered assortment under the standard

multinomial logit model. Bront et al. (2009), Mendez-Diaz et al. (2014), Rusmevichientong et al.

(2014), and El Housni and Topaloglu (2023) consider the problem under a mixture of multinomial

logit models.

Regarding pricing under the standard multinomial logit model, Song and Xue (2007) show that

the expected revenue is concave in the product market shares. Hopp and Xu (2005) and Li and Huh

(2011) show that the optimal prices possess the constant mark-up property, according to which the

optimal price of each product exceeds its marginal cost by the same constant. Zhang et al. (2018)

show that both of these results hold under all generalized extreme value models. Like our study,

all of these papers assume that the products have the same price sensitivity. Our review is limited

to studies based on the multinomial logit model, but we refer the reader to Farias et al. (2013),

Davis et al. (2014), Gallego and Wang (2014), Aouad et al. (2021), Blanchet et al. (2016), Désir

et al. (2016), and Li and Webster (2017) for representative work based on other choice models.

The concavity of the log-likelihood function under the standard multinomial logit model is well-

known (Train 2003). Wang and Wang (2017) extend the standard multinomial logit model to

capture endogenous network effects, under which the market share of each product is implicitly

defined as a solution to a system of nonlinear equations. As a result of the implicitly defined market

shares, the log-likeliood function of their model is no longer concave, and they use a heuristic

to find a stationary point of the log-likelihood function. In contrast, although the utility in our

Context-MNL model is also implicitly defined, for each value of α, the log-likelihood function under

the Context-MNL model remains concave in all the other parameters.

Organization: In Section 2, we formulate our Context-MNL model, provide motivating examples,

establish properties of the model, and show how our model provides flexibility in modeling of

demand spills and recaptures. In Section 3, we develop efficient methods for solving the assortment

optimization problem under our model. Then, in Section 4, we consider the price optimization

problem and give a formula for the optimal markup. In Section 5, we show that for each value of α,

the negative log-likelihood function under the Context-MNL model is convex in all the remaining

parameters. Section 6 contains numerical experiments and we conclude in Section 7.

2. Model

We have a universe of n products indexed by N = {1,2, . . . , n} and we let 0 denote the no-purchase

option. Under the standard multinomial logit model, each customer assigns each product in N a
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random utility, consisting of a product-specific deterministic term plus a product-specific random

noise. As noted in Section 1, studies have documented many settings in which the utility assigned

by a customer to each product depends on the assortment of products offered alongside it. The

assortment provides a context on the basis of which customers evaluate the utility of each product.

For example, if the assortment contains similar products with favorable reviews by past buyers,

this may increase the customer’s assessment of the utility of the target product. On the other hand,

if the population of past buyers have negative opinions of related products, this may decrease the

customer’s assessment of the target product’s value.

2.1 Endogenous Context-Dependent Multinomial Logit

Our endogenous context-dependent multinomial logit (Context-MNL) model captures the

assortment-dependent effect by assuming that the random utility associated with each product

depends on the assortment of products containing it, as follows: for each assortment S ⊆N , the

random utility for each product in S is given by

Utili(S) = µi −αE
[

max
ℓ∈S∪{0}

Utilℓ(S)
]
+ ϵi for all i∈ S and Util0 = µ0 + ϵ0, (1)

where {ϵi : i∈N ∪{0}} are idiosyncratic noises and assumed to be independent and identically

distributed mean-zero Gumbel random variables with a scaling parameter of one.1 The parameter

α ∈R is the assortment-effect parameter, which captures the impact of the context on the utility

of each product.

We assume each customer follows the random utility maximization principle and chooses from an

assortment the product that maximizes her utility. Customers are also assumed to be independent.

Thus, the term E
[
maxℓ∈S∪{0}Utilℓ(S)

]
captures the population average of the maximum utility

among all the products shown in the assortment. By the random utility maximization principle,

given an assortment S ⊆N , the probability that a customer chooses product i ∈ S, denoted

by ϕi(S), is the probability that product i has the highest utility among the offered products; that

is, ϕi(S) = Pr{Utili(S)>Utilℓ(S) ∀ ℓ∈ S ∪{0}, ℓ ̸= i}. We refer to ϕi(S) as the choice probability

or the selection probability, and we use these two terms interchangeably.

The model in Equation (1) captures the idea that the random utility of each product i in an

assortment S depends on the sum of three terms: (i) the intrinsic value of product i, (ii) the

1 Recall that a random variable X follows a Gumbel distribution with a location parameter µ and a scaling

parameter β if for all x ∈ R, Pr{X ≤ x}= e−e−(x−µ)/β

. We denote this by X ∼Gumbel(µ,β). It is well-known that
E[X] = µ+βγEM where γEM = 0.57721... is the Euler–Mascheroni constant. Because ϵi has a mean of zero, it follows
that ϵi ∼Gumbel(−γEM,1) for all i∈N ∪{0}. The distribution of ϵi is the same as the distribution of the noise in the
utility specification in the standard multinomial logit model.
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deviation of the intrinsic value from the expected maximum utility among all the products in

the assortment, and (iii) idiosyncratic noise. To see this, letting ηi denote the intrinsic value of

product i, then the sum of the three terms correspond to ηi +β
(
E[maxℓ∈S∪{0}Utilℓ(S) ]− ηi

)
+ ϵi,

which is equivalent to (1−β)ηi +βE[maxℓ∈S∪{0}Utilℓ(S) ]+ ϵi, and this is an instance of the

Context-MNL model with µi = (1−β)ηi and α=−β.

Under Equation (1), the utility of each product now depends on the accompanying assortment.

As noted in the introduction, other context-dependent utility models assume that the utility

of each product depends on exogenous assortment-specific characteristics, such as the minimum

price of the products in the assortment, the assortment size, or other prespecified exogenous

characteristics. In many applications, however, it is unclear what these exogenous characteristics

should be. In contrast, our Context-MNL model incorporates the impact of the accompanying

assortment endogenously. Through Equation (1), the utility of each product depends on the utility

of all the products in the assortment. As we will demonstrate, this definition endogenously specifies

the mean utility of each product as the unique solution to a system of nonlinear equations.

The standard multinomial logit model is a special case of the Context-MNL where α = 0. The

Context-MNL model thus generalizes the standard multinomial logit model by introducing an

additional parameter α, which captures the effect of context on product utility. As the remainder

of the paper demonstrates, the Context-MNL model enjoys many advantages of the standard

multinomial logit model, such as ease of estimation, operational tractability, and structural insights.

More importantly, as our numerical experiments show, with the addition of a single parameter α,

the Context-MNL model provides a significantly better fit with real-world data and better prediction

accuracy than the standard multinomial logit model.

To ensure that the utility random variable is well-defined, we need to restrict the range of α.

The following example shows that if α≤−1, then the utility random variable can have an infinite

mean. We will later prove that if α>−1, then the utility has a finite mean and is well-defined.

Example 2.1 (Infinite Mean) Suppose α ≤ −1. For ease of notation, let β =−α; note that

β ≥ 1. Letting S = {1}, µ0 = 0, µ1 = 1, and X = Util1(S), it follows from Equation (1)

that X = 1+βE [max{ϵ0,X}] + ϵ1, and because E[ϵ1] = 0, we have E[X] = 1+βE [max{ϵ0,X}].

Because of Jensen’s inequality, E[ϵ0] = 0, and β ≥ 1, we have E[X] ≥ 1 + βmax{0,E[X]}}. This

implies that E[X]≥ 1, so we have E[X]≥ 1+ βE[X]. Repeated application of this equality shows

that for all k ∈ Z+, E[X] ≥
∑k−1

ℓ=0 β
ℓ + βkE[X] ≥

∑k

ℓ=0 β
ℓ, where the last inequality follows

because E[X]≥ 1. Because β ≥ 1, this shows that E[X] is infinite.
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Motivating Examples for Different Ranges of α: Example 2.1 motivates us to restrict the

range of α to be strictly higher than −1. Building on the intuition given in the beginning of this

section, we now describe two motivating examples for our Context-MNL model. The first example

focuses on the case in which α≥ 0 and the second example on the case in which α∈ (−1,0].

An Example for α≥ 0: Consider a platform that sells a single product from multiple sellers. When

a customer arrives to purchase the product, the platform’s goal is to decide on the assortment of

sellers to show to the customers. Although all the sellers offer the same product, the quality of

the products may differ slightly from seller to seller; some sellers may offer a brand new product,

whereas others may offer a slightly used one. The service provided may also differ from one seller

to the next; for example, some sellers may offer one-day shipping via UPS, whereas others may

require at least one week to deliver the product.

In this setting, N = {1,2, . . . , n} corresponds to the set of sellers. We assume that customers

are homogenous but independent. Each arriving customer assigns a value µ̃i to seller i, which can

depend on the various characteristics of the product and the service offered by seller i.

According to the prospect theory (Kahneman and Tversky 1979), it is well-known that consumers

exhibit an anchoring effect; they would thus compare the reputations of the sellers. For example,

if seller i’s reputation is worse than the reputation of other sellers shown in the assortment, this

information would negatively affect the utility the customer assigns to seller i. In other words, the

customer compares the utility of seller i to a reference point. If µ̃i is lower than this reference point,

the overall utility the customer assigns to seller i decreases, but if µ̃i is higher than the reference

point, the overall utility the customer assigns to seller i increases.

Because each customer independently chooses the seller that gives her the highest utility, the

population-level expected maximum utility that the population of customers derives from the

sellers in assortment S is E
[
maxℓ∈S∪{0}Utilℓ(S)

]
. Our Context-MNL model uses the population-level

expected maximum utility as a reference point, so the overall utility the customer assigns to

seller i∈ S is given by: for some β ≥ 0,

Utili(S) ≡ µ̃i −β
(
E
[

max
ℓ∈S∪{0}

Utilℓ(S)
]
− µ̃i

)
+ ϵi = (1+β)µ̃i −βE

[
max

ℓ∈S∪{0}
Utilℓ(S)

]
+ ϵi ,

which is an instance of the endogenous context-dependent utility model where α = β and

µi = (1+β)µ̃i.

An Example for α∈ (−1,0]: We now describe a setting in which α ∈ (−1,0] may be applicable.

Consider a firm selling n substitutable products indexed by N = {1,2, . . . , n}. We assume the
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customers are independent and homogenous. Each customer initially assigns a value µ̂i to product i

that depends on various characteristics of product i, which represent the product’s intrinsic

value. However, the utility the customer ultimately assigns to product i may also depend on the

population average of the utility that other customers obtain from purchasing products in the

assortment S. This is because products are substitutable and are offered by a single firm, so if

the other customers are unhappy with the products offered in the assortment, then this may

indicate inferior product quality or subpar support services offered by the firm. Customers choose

products that maximize their utility, and we capture the maximum expected utility with the

term E
[
maxℓ∈S∪{0}Utilℓ(S)

]
, which reflects the population-level expected utility other customers

obtain from purchasing the products in S. We model the customer’s final utility as a convex

combination of µ̂i and E
[
maxℓ∈S∪{0}Utilℓ(S)

]
. So, if the population-level expected utility is lower

than the customer’s initial assessment, the customer’s final utility will be lower than her initial

value. Thus, for some γ ∈ (0,1), the overall utility a customer assigns to product i ∈ S is given

by Utili(S) ≡ (1− γ)µ̂i + γE
[
maxℓ∈S∪{0}Utilℓ(S)

]
+ ϵi, which is an instance of the endogenous

context-dependent utility model where α=−γ ∈ (−1,0) and µi = (1− γ)µ̂i.

Preference Weights and Choice Probabilities: As in the standard multinomial logit model,

we can assume without loss of generality that the parameter µ0 for the no-purchase option is set

to zero; Appendix A provides a detailed account of how to transform a Context-MNL model with

nonzero µ0 to an equivalent model with µ0 = 0. The parameters of the Context-MNL model thus

consist of α>−1 and µ= (µ1, . . . , µn)∈Rn.

Determining the utility random variables directly from Equation (1) may not be straightforward.

Theorem 2.2 below provides an equivalent characterization of the utility random variables under

the Context-MNL model and gives an explicit formula for the selection probability. The theorem

also shows that we can express the selection probability in terms of the assortment-dependent

preference weight. The key difference in our problem is that the preference weight of each product

now depends on the assortment of other products offered alongside it. Given the parameters α>−1

and µ ∈ Rn of the Context-MNL model, we introduce the system of equations that defines the

“preference weight” associated with each product within each assortment. For each S ⊆N , letting

(vℓ(S) : ℓ∈ S) be the set of variables, consider the following system of nonlinear equations that

define the preference weights for products in the assortment S:

vi(S) = eµi−α log[1 +
∑

ℓ∈S vℓ(S)] ∀ i∈ S . (2)

The following theorem shows that the above system of equations has a unique solution and that

the solution can be used to describe the choice probability. As Theorem 2.2 shows, the formula
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for the selection probability under the Context-MNL model is the same as that under the standard

multinomial logit model; the only difference is that the preference weight (vℓ(S) : ℓ ∈ S) of each

product now depends on the assortment containing it. Noting that ϕi(S) = 0 for all i /∈ S, and

ϕ0(S)≡ 1−
∑

i∈S ϕi(S) is the probability that a customer does not select any product in S.

Theorem 2.2 (Equivalent Utility Specification via Preference Weights) Fix arbitrary

α > −1 and µ= (µ1, . . . , µn)∈Rn. For each S ⊆ N , the system of equations (2) has a unique

solution. Moreover, for all S ⊆N , the utility random variable Utili(S) in Equation (1) can be

equivalently expressed as follows:

Utili(S) = log vi(S) + ϵi ∀ i∈ S and Util0(S) = ϵ0 ,

and for all i ∈ S, the probability ϕi(S) that product i is selected when assortment S is offered, is

given by ϕi(S) = vi(S)/
(
1+

∑
ℓ∈S vℓ(S)

)
.

Proof: Fix an arbitrary µ ∈ Rn, α > −1, and S ⊆ N . Letting w =
∑

i∈S vi(S) and adding

Equation (2) over all i ∈ S, it follows that w=
∑

i∈S eµi

(1 + w)α
or, equivalently, w (1 + w)

α
=
∑

i∈S e
µi .

Because α>−1, by taking the derivative, it is easy to verify that the mapping x∈R+ → x (1+x)α

is strictly increasing, unbounded, and has a value of zero when x = 0. Thus, there exists a

unique w∗ such that w∗ (1 + w∗)
α
=
∑

i∈S e
µi . It follows that vi(S) = eµi−α log(1+w∗) for all i∈ S, so

(vi(S) : i∈ S) is uniquely defined.

Because the noises are i.i.d. mean-zero Gumbel random variables with a scaling parameter

of one, it follows from Equation (1) that {Utili(S) : i∈ S ∪{0}} are also independent Gumbel

random variables with a scaling parameter of one. Letting xi(S) =E[Utili(S)] for all i∈ S ∪{0} and

noting that x0(S) = 0, it follows that Utili(S)∼ Gumbel(xi(S)− γEM,1), where γEM = 0.57721... is

the Euler–Mascheroni constant. Because {Utili(S) : i ∈ S ∪{0}} are independent Gumbel random

variables with a scaling parameter of one, maxℓ∈S∪{0}Utilℓ(S) is still a Gumbel random variable

with a scaling parameter of one and a location parameter e−γEM +
∑

ℓ∈S e
xℓ(S)−γEM (Gumbel 2004),

which implies that E
[
maxℓ∈S∪{0}Utilℓ(S)

]
= γEM + log

(
e−γEM +

∑
ℓ∈S e

xℓ(S)−γEM
)
. Because E[ϵi] = 0

for all i, it follows from Equation (1) that

xi(S) = µi −α
(
γEM + log

(
e−γEM +

∑
ℓ∈S

exℓ(S)−γEM
))

= µi −α log
(
1+

∑
ℓ∈S

exℓ(S)
)
,

and thus (exi(S) : i ∈ S) satisfies the system of equations (2), which has a unique solution by

the proof we present in the previous paragraph. Therefore, xi(S) = log vi(S), which implies that

Utili(S) = log vi(S)+ ϵi for all i∈ S.
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To derive the choice probability, we use the fact that Utili(S) ∼ Gumbel(xi(S)− γEM,1) for all

i ∈ S ∪ {0}, and the utility random variables are independent. It follows from the property of the

Gumbel random variables that for i∈ S, Pr
{
Utili(S)>maxℓ∈S∪{0},ℓ̸=iUtilℓ(S)

}
= exi(S)∑

ℓ∈S∪{0} exℓ(S) =

vi(S)

1+
∑

ℓ∈S vℓ(S)
, where the last equality follows because xi(S) = log vi(S) and x0(S) = 0.

2.2 Properties of the Context-MNL Model

The expression for the choice probability in Theorem 2.2 requires solving a system of nonlinear

equations. We can give an equivalent expression in terms of the primitive parameters α and µ,

and this expression requires only the evaluation of a one-dimensional function. For each α >−1,

let f : [1,∞)→R+ and g :R+ → [1,∞) be defined by

f(x) = x−xα/(1+α) ∀ x∈ [1,∞) and g(y) = f−1(y) ∀ y ∈R+ . (3)

Because α>−1, by taking the derivative, it is easy to verify that f is strictly increasing over the

interval [1,∞) and that its range is the nonnegative real line (Corollary B.2); thus, its inverse g

is well-defined. Note that g is also strictly increasing and unbounded. The following theorem gives

an equivalent expression for the choice probability in terms of g.

Theorem 2.3 (Choice Probability for Context-MNL) For the Context-MNL model with

parameters α > −1 and µ ∈ Rn, for each S ⊆ N , we have ϕi(S) = eµi/g
(∑

ℓ∈S e
µℓ
)
for all i ∈ S

and ϕ0(S) = 1/
[
g
(∑

ℓ∈S e
µℓ
)]1/(1+α)

.

Proof: Fix α>−1, µ∈Rn, and S ⊆N . Let w=
∑

ℓ∈S vℓ(S |α,µ). It follows from Equation (2) that

w(1+w)α =
∑

ℓ∈S e
µℓ , which is equivalent to

∑
ℓ∈S

eµℓ = (1+w)1+α − (1+w)α
(a)
= f

(
(1+w)1+α

)
⇔ (1+w)1+α (b)

= g
(∑

ℓ∈S

eµℓ

)
,

where (a) and (b) follow from the definition of f and g in Equation (3). For all i∈ S, it follows from

Theorem 2.2 that ϕi(S) = vi(S)/(1+w) = eµi/(1+w)1+α = eµi/g
(∑

ℓ∈S e
µℓ
)
, which is the desired

result. Similarly, ϕ0(S) = 1/(1+w) = 1/
[
g
(∑

ℓ∈S e
µℓ
)]1/(1+α)

.

We will use the choice probability expression given in Theorem 2.3 extensively in our analysis

of assortment and price optimization problems in later sections. We note that it follows from

Theorem 2.3 that under the Context-MNL model, the products are substitutable; that is, the

removal of a product from an assortment increases the choice probability of the remaining items

in the assortment.
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Corollary 2.4 (Substitutability) For the Context-MNL model with parameters α>−1 and

µ∈Rn, each S ⊆N and i∈ S ∪{0}, j ∈ S with j ̸= i, we have ϕi(S \ {j})≥ ϕi(S).

Proof: By Theorem 2.3, ϕ0(S) = 1/
[
g
(∑

ℓ∈S e
µℓ
)]1/(1+α)

and ϕi(S) = eµi/g
(∑

ℓ∈S e
µℓ
)

for

all i∈ S. Because g is a strictly increasing function and 1/(1 + α) > 0, we have

g
(∑

ℓ∈S\{j} e
µℓ
)
≤ g
(∑

ℓ∈S e
µℓ
)
, and the desired result follows.

Flexibility in the Modeling of Demand Spill and Recapture: When a customer’s preferred choice

is unavailable, her first-choice demand is redirected to other alternatives. As defined in Gallego et al.

(2015), spill refers to redirected demand that is lost to the no-purchase option, and recapture refers

to redirected demand that results in sales of a different product. It is well-known that the standard

multinomial logit model is overly optimistic about the recaptured demand. Moreover, under the

standard multinomial logit model, when a particular product becomes unavailable, the relative

increase in the demand for other available products is constrained to be the same as the relative

increase in the spill. To see this, note that the standard multinomial logit model corresponds to a

special case of the Context-MNL model with α= 0, and it is easy to verify that

ϕi(S \ {k} |α= 0,µ)

ϕi(S |α= 0,µ)︸ ︷︷ ︸
Increase in Demand for

Product i from Recapture

=
ϕ0(S \ {k} |α= 0,µ)

ϕ0(S |α= 0,µ)︸ ︷︷ ︸
Increase in Demand for the

No-Purchase Option from Spill

∀ i∈ S \ {k} ,

where ϕi(S |α,µ) is the choice probability; we explicitly denote the dependence on the parameters

α and µ.

By allowing for nonzero α, our proposed Context-MNL model allows for more flexibility in the

modeling of demand spill and recapture. Fix µ ∈Rn. Consider an assortment S ⊆N and product

k ∈ S. If we remove k from S, some of the demand for product k will be recaptured by product i,

and the increase in the demand for product i∈ S \{k} from recapture is ϕi(S\{k} |α,µ)

ϕi(S |α,µ)
. The increase

demand for the no-purchase option from spill is ϕ0(S\{k} |α,µ)

ϕ0(S |α,µ)
. The recapture-to-spill ratio is

defined as ϕi(S\{k} |α,µ)

ϕi(S |α,µ)

/
ϕ0(S\{k} |α,µ)

ϕ0(S |α,µ)
. Under the standard multinomial logit model, this ratio is

always one. The following theorem shows that the recapture-to-spill ratio is strictly increasing in α.

As we vary α, we can have recapture-to-spill strictly less than one and strictly larger than one.

The proof is given in Appendix B.

Theorem 2.5 (Increasing Recapture-to-Spill Ratio) For each µ ∈ Rn, S ⊆ N , k ∈ S, and

i∈ S \ {k}, the function α 7→ ϕi(S\{k} |α,µ)

ϕi(S |α,µ)

/
ϕ0(S\{k} |α,µ)

ϕ0(S |α,µ)
is strictly increasing for all α>−1.
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The standard multinomial logit model, corresponding to α = 0, has a recapture-to-spill ratio

of exactly one. Choosing α ∈ (−1,0) makes the recapture-to-spill ratio less than one, allowing us

to model settings under which the increase in recapture demand is less than the increase in the

demand for the no-purchase option from spill. This property of the Context-MNL model provides

additional flexibility in the modeling of more realistic spills and recaptures.

3. Assortment Optimization

In this section, we fix the parameters α>−1 and µ∈Rn and consider the cardinality-constrained

assortment optimization problem under the Context-MNL model. Letting ri ∈ R be the marginal

profit of product i and K be the maximum assortment size, we are interested in the following

optimization problem:

Z∗ ≡ max
S⊆N : |S|≤K

∑
i∈S

riϕi(S) = max
S⊆N : |S|≤K

∑
i∈S ri e

µi

g(
∑

i∈S e
µi)

, (4)

where the equality follows because ϕi(S) = eµi/g
(∑

ℓ∈S e
µℓ
)
for all i ∈ S by Theorem 2.3 and g is

defined in Equation (3). We can assume without loss of generality that ri > 0 for all i∈N because

according to the substitutability property (Corollary 2.4), it is not optimal to include a product

with a nonpositive marginal profit.

The tractability of the assortment optimization problem depends on the value of α. In Section 3.1,

we show that for α ≥ 0, the assortment optimization problem can be solved by evaluating the

revenue of at most n2 assortments. For −1 < α < 0, however, the problem is NP-hard, and in

Section 3.2 we construct a fully polynomial-time approximation scheme for the problem.

3.1 Computing an Optimal Assortment when α≥ 0

The following theorem establishes an important relationship between Z∗ and the assortment

optimization problem under the standard multinomial logit model. We use this relationship to

design an algorithm for computing an optimal assortment.

Theorem 3.1 (Connection to the Standard Multinomial Logit Model) For each α ≥ 0

and µ∈Rn, there exist constants c0 ≥ 1 and c1 > 0 such that an assortment S∗ is an optimal

solution to the optimization problem in Equation (4) if and only if S∗ is an optimal solution to

the problem maxS⊆N : |S|≤K

(∑
i∈S rie

µic1
)
/
(
c0 +

∑
i∈S e

µic1
)
.

Proof: Fix an arbitrary α ≥ 0 and µ ∈ Rn. Let S∗ be an optimal assortment for the problem

associated with Z∗ in Equation (4), and note that |S∗| ≤ K. Define η∗ =
∑

i∈S∗ eµi . Because g :
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R+ → [1,∞) is concave by Corollary B.3, it follows that 1≤ g(x)≤ g(η∗)+ g′(η∗) (x− η∗) for all

x ∈ R+, where the last inequality follows from the subgradient inequality for concave functions.

Replacing g by its upper bound, it follows that

Z∗ ≥ max
S⊆N : |S|≤K

∑
i∈S ri e

µi

g(η∗)+ g′(η∗)
[∑

i∈S e
µi − η∗

] ≥
∑

i∈S∗ ri e
µi

g(η∗)
= Z∗ , (5)

where the second inequality follows from the fact that |S∗| ≤K, and from evaluating the function(∑
i∈S ri e

µi
)
/
(
g(η∗)+ g′(η∗)

[∑
i∈S e

µi − η∗
])

at S∗. The final equality follows from the definition

of η∗. Thus, all the inequalities above must hold as equalities.

Letting c0 = g(η∗)− g′(η∗)η∗ and c1 = g′(η∗), we note that 1 = g(0)≤ g(η∗) + g′(η∗) (0− η∗), so

c0 ≥ 1. Because g is strictly increasing by Corollary B.2, we have c1 > 0. It follows from (5) that

Z∗ = max
S⊆N : |S|≤K

∑
i∈S ri e

µi

c0 +
∑

i∈S e
µic1

=
1

c1
× max

S⊆N : |S|≤K

∑
i∈S ri e

µic1

c0 +
∑

i∈S e
µic1

,

and this completes the proof.

Computing an Optimal Assortment without Knowing c0 and c1: We emphasize that the values

of the constants c0 ≥ 1 and c1 > 0 in Theorem 3.1 are not known in advance because

they depend on S∗. However, because of the structure of the optimization problem, we

do not need to know their values to determine an optimal assortment. To see this,

letting W ∗ =maxS⊆N : |S|≤K

(∑
i∈S ri e

µic1
)/(

c0 +
∑

i∈S e
µic1

)
denote the optimization problem in

Theorem 3.1, then we can equivalently express W ∗ as follows

W ∗ = min
{
t
∣∣ t ≥ ∑

i∈S ri e
µic1

c0 +
∑

i∈S e
µic1

∀ S ⊆N , |S| ≤K
}

= min
{
t
∣∣ tc0 ≥ c1

∑
i∈S

(ri − t)eµi ∀ S ⊆N , |S| ≤K
}
=min

{
t
∣∣ c0t
c1

≥ max
S:|S|≤K

∑
i∈S

(ri − t)eµi

}
.

We construct a collection of assortments A with the following three properties: (i)

A has at most n2 assortments, (ii) each assortment in A has a cardinality of at most

K, and (iii) for all t ∈ R+, the optimization problem maxS⊆N : |S|≤K

∑
i∈S(ri − t)eµi

has an optimal solution in A. It then follows from the above equations that

W ∗ = min
{
t
∣∣ c0t

c1
≥ maxS∈A

∑
i∈S(ri − t)eµi

}
=maxS∈A

∑
i∈S ri e

µic1
c0+

∑
i∈S eµic1

. Thus, to find an optimal

assortment, it suffices to evaluate the revenue of at most n2 assortments in A.

The construction of the collection A has been discussed in the literature in other contexts

(Rusmevichientong et al. 2010, Gallego and Topaloglu 2014). For the sake of completeness, we give

a brief overview of the idea here. For each i ∈N , the function hi(t) = (ri − t)eµi represents a line

in the two-dimensional plane. These n lines intersect at no more than
(
n
2

)
= n(n−1)

2
intersection
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points. We use 0 = t0 ≤ t1 ≤ . . .≤ tK−1 ≤ tK =∞ with K =O(n2) to denote the x-coordinates of

the intersection points. These points divide the nonnegative real line into O(n2) intervals. If t

takes values in an interval [tk−1, tk], then the ordering between the values of the functions

{hi(t) : i ∈ N} remains constant; thus, within each interval, an optimal solution to the problem

maxS⊆N : |S|≤K

∑
i∈S(ri − t)eµi corresponds to the top K lines whose values are nonnegative. Let

A denote the collection of optimal assortments across O(n2) intervals. It follows that |A| ≤ n2 and

each set in A has a cardinality of at most K. Moreover, the collection contains an optimal solution

to the problem maxS⊆N : |S|≤K

∑
i∈S(ri − t)eµi for all t∈R+, which is the desired result.

Moreover, when there is no cardinality constraint (K = n), the assortment optimization problem

associated with Z∗ is the unconstrained assortment optimization under the multinomial logit model.

It is well-known that the optimal assortment is revenue-ordered (Talluri and van Ryzin 2004); that

is, if r1 ≥ r2 ≥ · · · ≥ rn, then S∗ is of the form {1,2, . . . , k} for some product k. The discussion above

is summarized in the following corollary.

Corollary 3.2 (Finding an Optimal Assortment) For each α ≥ 0, we can compute an

optimal assortment for the optimization problem associated with Z∗ by evaluating the revenue of

at most n2 assortments. Moreover, when K = n, the optimal assortment is revenue-ordered.

3.2 Computing an Optimal Assortment when −1<α< 0

We study the assortment optimization problem when −1 < α < 0. The following theorem shows

that when α=−1/2 and there is no constraint on the assortment size (K = n), the problem is NP-

hard. The proof of this result uses a reduction from the partition problem, which is a well-known

NP-complete problem (Garey and Johnson 1979), and the proof is presented in Appendix C.

Theorem 3.3 (Complexity) For α=−1/2 and K = n, the assortment optimization problem is

NP-hard.

Although the assortment optimization problem is NP-hard, it turns out that we can develop

a fully polynomial time approximation scheme (FPTAS) for it. The key idea behind our FPTAS

is the observation that we can find in polynomial time a feasible assortment whose revenue is

approximately within a certain target. This observation is stated in the following lemma; see also

Désir et al. (2022). We provide a proof in Appendix D. For each ϵ > 0 and (ν, ξ) ∈ R+ ×R+, let

Fϵ(ν, ξ) = {S ⊆N : |S| ≤K,
∑

i∈S rie
µi ≥ ν,

∑
i∈S e

µi ≤ ξ}.
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Lemma 3.4 (Targeted Assortment) For each ϵ > 0 and (ν, ξ) ∈ R+ × R+, there exists an

algorithm based on dynamic programming with a running time of O(n3/ϵ2) that is independent of

ν and ξ, such that whenever Fϵ(ν, ξ) ̸=∅, the algorithm outputs a subset Sϵ,ν,ξ such that |Sϵ,ν,ξ| ≤K,∑
i∈Sϵ,ν,ξ

rie
µi ≥ ν(1− 2ϵ), and

∑
i∈Sϵ,ν,ξ

eµi ≤ ξ(1+2ϵ).

To describe our FPTAS, we let rmax = max{ri : i ∈ N} and rmin = min{ri : i ∈ N} denote the

maximum and minimum revenues of the products, respectively. Also, let umax =max{eµi : i∈N}

and umin =min{eµi : i∈N}, and set R̄ = rmax/rmin and Ū = umax/umin. Given an approximation

accuracy ϵ > 0, define the following set of grid points:

Γϵ =

{
rminumin(1+ϵ)ℓ : ℓ= 0, . . . ,

⌈
log(nR̄Ū)

log(1+ ϵ)

⌉}
and ∆ϵ =

{
umin(1+ϵ)ℓ : ℓ= 0, . . . ,

⌈
log(nŪ)

log(1+ ϵ)

⌉}
.

We consider (ν, ξ)∈ Γϵ ×∆ϵ. Here is the description of our algorithm.

FPTAS for the Assortment Optimization Problem when −1<α< 0

Initialization: We choose an approximation parameter ϵ > 0.

Description: For each (ν, ξ)∈ Γϵ×∆ϵ, let S̃ϵ,ν,ξ be the output of the algorithm from Lemma 3.4.

Output: Among the assortments {S̃ϵ,ν,ξ : (ν, ξ) ∈ Γϵ × ∆ϵ}, return the assortment with the

largest expected revenue.

The main result of this section is stated in the following theorem.

Theorem 3.5 (FPTAS) Our FPTAS returns an assortment whose revenue is at least (1−6ϵ)Z∗

and has a running time of O
(
(n3/ϵ4) log(nR̄Ū) log(nŪ)

)
.

Proof: Fix an arbitrary −1 < α < 0. Let S∗ be the optimal solution to the assortment

optimization problem and (q1, q2) be such that rminumin(1+ ϵ)q1 ≤
∑

j∈S∗ rje
µj ≤ rminumin(1 + ϵ)q1+1

and umin(1 + ϵ)q2−1 ≤
∑

j∈S∗ eµj ≤ umin(1 + ϵ)q2 . For (ν, ξ) = (rminumin(1+ ϵ)q1 ,umin(1+ ϵ)q2), the

dynamic programming algorithm from Lemma 3.4 returns an assortment S̃ such that
∑

j∈S̃ rje
µj ≥

rminumin(1 + ϵ)q1(1 − 2ϵ) ≥ 1−2ϵ
1+ϵ

∑
j∈S∗ rje

µj , where the last inequality follows from the definition

of q1. A similar argument shows that
∑

j∈S̃ e
µj ≤ umin(1+ ϵ)q2(1+2ϵ)≤ (1+2ϵ)(1+ ϵ)

∑
j∈S∗ eµj .

There are two cases:
∑

j∈S̃ e
µj ≤

∑
j∈S∗ eµj and

∑
j∈S̃ e

µj >
∑

j∈S∗ eµj . In the first case, if∑
j∈S̃ e

µj ≤
∑

j∈S∗ eµj , then because g is increasing (Corollary B.2) and rj ≥ 0 for all j, we have∑
j∈S̃ rje

µj

g
(∑

j∈S̃ e
µj
) ≥

∑
j∈S̃ rje

µj

g
(∑

j∈S∗ eµj
) ≥ 1− 2ϵ

1+ ϵ

∑
j∈S∗ rje

µj

g
(∑

j∈S∗ eµj
) ≥ (1− 3ϵ)Z∗ ,

where the second inequality follows from the property of S̃ that
∑

j∈S̃ rje
µj ≥ 1−2ϵ

1+ϵ

∑
j∈S∗ rje

µj .
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In the second case,
∑

j∈S̃ e
µj >

∑
j∈S∗ eµj . Because −1 < α < 0, it follows from Lemma B.1

that 0 < g′(y) ≤ 1 for all y ≥ 0, so 0 < g
(∑

j∈S̃ e
µj
)
− g
(∑

j∈S∗ eµj
)
≤
∑

j∈S̃ e
µj −

∑
j∈S∗ eµj ≤(

(1+2ϵ)(1+ ϵ)− 1
)∑

j∈S∗ eµj = (3ϵ+2ϵ2)
∑

j∈S∗ eµj , where the second inequality follows from the

property of S̃ that
∑

j∈S̃ e
µj ≤ (1 + 2ϵ)(1 + ϵ)

∑
j∈S∗ eµj . Letting W =

∑
j∈S∗ eµj and noting that

if W ≤ 1, we have W ≤ g(W ) because the range of g is [1,∞); on the other hand, if W > 1, then

f(W ) <W by the definition of f in Equation (3), and thus W = g(f(W )) < g(W ). In all cases,

W ≤ g(W ), which implies that 0< g
(∑

j∈S̃ e
µj
)
−g
(∑

j∈S∗ eµj
)
≤ (3ϵ+2ϵ2)g

(∑
j∈S∗ eµj

)
, and thus

g
(∑

j∈S̃ e
µj
)
≤ (1+3ϵ+2ϵ2)g

(∑
j∈S∗ eµj

)
= (1+2ϵ)(1+ ϵ)g

(∑
j∈S∗ eµj

)
. Therefore,∑

j∈S̃ rje
µj

g
(∑

j∈S̃ e
µj
) ≥

((1− 2ϵ)/(1+ ϵ))
∑

j∈S∗ rje
µj

(1+2ϵ)(1+ ϵ)g
(∑

j∈S∗ eµj
) ≥ (1− 6ϵ)Z∗ ,

where the first inequality also uses the property that
∑

j∈S̃ rje
µj ≥ 1−2ϵ

1+ϵ

∑
j∈S∗ rje

µj .

The above argument establishes a performance guarantee for S̃. Our proposed FPTAS returns

a set whose revenue is at least as large as S̃, so we have established that it returns an assortment

that is a (1− 6ϵ)-approximation to the assortment optimization problem.

For the running time, there are
(⌈

log(nR̄Ū)

log(1+ϵ)

⌉
+1
)(⌈

log(nŪ)

log(1+ϵ)

⌉
+1
)
=O

(
(1/ϵ2) log(nR̄Ū) log(nŪ)

)
guesses for (ν, ξ). For each guess, we run the dynamic program algorithm from Lemma 3.4

with a running time of O(n3/ϵ2), and the total running time of the algorithm is thus

O
(
(n3/ϵ4) log(nR̄Ū) log(nŪ)

)
.

4. Price Optimization

We consider the price optimization problem under the Context-MNL model, which assumes that

the parameter µi(pi) for each product i∈N is an affine function of its price, with µi(pi) = γi−βpi

where γi ∈R is the product-specific parameter and β > 0 is the price sensitivity parameter. Like in

earlier studies (Hopp and Xu 2005, Song and Xue 2007, Li and Huh 2011, Zhang et al. 2018), we

assume that all products have the same price sensitivity parameter. Given a price vector p ∈Rn,

the probability ϕi(p) that product i is chosen is given by

ϕi(p) =

 vi(p)/
(
1+

∑
ℓ∈N vℓ(p)

)
if i∈N

1/
(
1+

∑
ℓ∈N vℓ(p)

)
if i= 0

,

where (vℓ(p) : ℓ∈N ) is the unique solution to the following system of nonlinear equations:

vi(p) = eγi−βpi−α log(1+
∑

ℓ∈N vℓ(p)) for all i∈N .

Letting ci ≥ 0 be the marginal cost of product i, the price optimization problem is given by:

Y ∗ ≡ max
p∈Rn

∑
i∈N

(pi − ci)ϕi(p) , (6)
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and let p∗ = (p∗1, . . . , p
∗
n) denote an optimal price. The following theorem shows that for all α>−1,

the optimal price p∗ has the constant-markup property according to which the optimal price of

each product exceeds its marginal cost by the same constant. We also give the formula for the

optimal markup. To state our result, for each α>−1, we let the function Q : [1,∞)→R be defined

as follows: for each x≥ 1, Q(x) =− f(x)

x
log
( f(x)∑

i∈N eγi−βci

)
, where f is defined in Equation (3).

Theorem 4.1 (Constant Markup is Optimal) For each α>−1, we have that

(a) The function Q is quasi-concave and has a unique maximizer h∗ such that

h∗ < g
(∑

i∈N eγi−βci
)
, where g is defined in Equation (3).

(b) The optimal price is given by p∗i = ci +
1
β
log
(∑

ℓ∈N eγℓ−βcℓ

f(h∗)

)
for all i∈N , and Y ∗ = 1

β
Q(h∗).

Before proceeding to the proof, we discuss the implication of the theorem. Let A=
∑

i∈N eγi−βci .

The markup of product i under the optimal price is p∗i − ci, which is the optimal amount to charge

for product i beyond its marginal cost. By Theorem 4.1(b), under the optimal price p∗, the markup

is the same for all the products and is equal to 1
β
log
(

A
f(h∗)

)
. Moreover, it follows from Theorem

4.1(a) that h∗ < g(A), which implies that f(h∗)< f(g(A)) =A because f is strictly increasing and

g is the inverse of f , so 1
β
log
(

A
f(h∗)

)
> 0 and the optimal markup is positive. Moreover, the theorem

allows us to reduce the n-dimensional optimization problem to a maximization of a one-dimensional

quasi-concave function Q over a compact interval [0, g(A)], which can be done efficiently using a

method like the golden-section search (Press et al. 2007).

We note that in the special case of α = 0, the formula in Theorem 4.1 reduces to the optimal

pricing formula for the standard multinomial logit model. In particular, when α = 0, we have

f(x) = x− 1, Q(x) =−x−1
x

log(x−1
A

), and Q′(x) = 1
x2

(log(A)− log(x− 1)−x). This implies that

Q′(h∗) = 0 ⇔ A

h∗ − 1
= eh

∗
⇔ (h∗ − 1)eh

∗−1 =Ae−1 ⇔ f(h∗) = h∗ − 1 = LW(Ae−1) ,

where LW(·) is the Lambert-W function. Then, the optimal markup is given by

1

β
log
( A

f(h∗)

)
=

logA− logLW(Ae−1)

β
=

logA− log(Ae−1)+ LW(Ae−1)

β
=

1+ LW(Ae−1)

β
,

and we have Z∗ = 1
β
Q∗(h∗) = 1

β
LW(Ae−1). We thus recover the optimal pricing formula for the

standard multinomial logit model (Aydin and Ryan 2000, Li and Graves 2012).

Here is the proof of Theorem 4.1.

Proof: Fix α>−1. Let A=
∑

i∈N eγi−βci . The proof of part (a) is a straightforward application of

calculus and is given in Appendix E. We focus on part (b). Using the same argument as in Theorem

2.3, we can show that ϕi(p) = eγi−βpi/g
(∑

ℓ∈S e
γℓ−βpℓ

)
for all i∈N . Thus,

Y ∗ = max
p∈Rn

∑
i∈N (pi − ci)e

γi−βpi

g
(∑

i∈N eγi−βpi
) = max

h≥1
max
p∈Rn

{
1

h

∑
i∈N

(pi − ci)e
γi−βpi : g

(∑
i∈N

eγi−βpi
)
= h

}
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= max
h≥1

max
p∈Rn

{
1

h

∑
i∈N

(pi − ci)e
γi−βpi :

∑
i∈N

eγi−βpi = f(h)

}
,

where the last equality follows because f is the inverse function of g. Using the

change of variables qi = eγi−βpi , it follows that pi = 1
β
(γi − log qi), which implies that

Y ∗ =maxh≥1 maxq∈Rn
+

{
1
hβ

∑
i∈N (γi −βci − log qi)qi :

∑
i∈N qi = f(h)

}
. Note that the mapping

x 7→ (a− logx)x is concave on the nonnegative real line, so for each h≥ 1, the inner maximization

maxq∈Rn
+

{
1
hβ

∑
i∈N (γi −βci − log qi)qi :

∑
i∈N qi = f(h)

}
is a concave maximization subject to

a linear constraint, and thus strong duality holds (Boyd and Vandenberghe 2004). Thus, for each

h≥ 1,

max
q∈Rn

+

{
1

hβ

∑
i∈N

(γi − log qi)qi :
∑
i∈N

qi = f(h)

}
= min

λ∈R
max
q∈Rn

+

{
1

hβ

∑
i∈N

(γi − log qi)qi + λ
(
f(h) −

∑
i∈N

qi

)}

= min
λ∈R

{
λf(h)+max

q∈Rn
+

1

hβ

∑
i∈N

(γi −βci −βhλ− log qi)qi

}

= min
λ∈R

{
λf(h)+

1

hβ

∑
i∈N

max
qi≥0

(γi −βci −βhλ− log qi)qi

}

= min
λ∈R

{
λf(h)+

e−1A

hβ
e−βhλ

}
,

where the second equality follows from algebra and the third equality follows because the

optimization over q is separable. The final equality follows because maxx≥0(a− logx)x= ea−1 and

the unique maximizer is at x∗ = ea−1. Thus, for each i ∈N , maxqi≥0 (γi − βci − βhλ− log qi)qi =

eγi−βci−βhλ−1, and the unique maximizer q∗i (h,λ) is given by

q∗i (h,λ) = eγi−βci−βhλ−1 ⇔ p∗i (h,λ)− ci =
1

β
+hλ . (7)

Moreover, summing over all i ∈N yields 1
hβ

∑
i∈N (γi − βci − βhλ− log qi)qi =

e−1A
hβ

e−βhλ. Putting

everything together, we have Y ∗ =maxh≥1minλ∈R λf(h) + e−1A
hβ

e−βhλ.

For each h ≥ 1, the mapping λ 7→ λf(h) + e−1A
βh

e−βhλ is strictly convex in λ, and its unique

minimizer λ∗(h) is given by λ∗(h) =
1

βh
log

(
e−1A

f(h)

)
and

min
λ∈R

λf(h) +
e−1A

βh
e−βhλ =

f(h)

βh
log

(
e−1A

f(h)

)
+

f(h)

βh
=

f(h)

βh
log

(
A

f(h)

)
=

1

β
Q(h) .

Thus, Y ∗ = maxh≥1
1
β
Q(h) = 1

β
Q(h∗) , where the last equality follows from part (a). Then, we

have λ∗(h∗) = 1
βh∗ log

(
e−1A
f(h∗)

)
, and by Equation (7), we have established that for all i∈N ,

p∗i (h
∗, λ∗)− ci =

1

β
+h∗λ∗ =

1

β
+

1

β
log

(
e−1A

f(h∗)

)
=

1

β
log

(
A

f(h∗)

)
,

which completes the proof.
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5. Estimation

We want to show that the parameters of the Context-MNL model can be estimated efficiently by

showing that the maximum likelihood estimate can be computed efficiently. Here is the setup

for our estimation problem. The dataset is given by {(St, ct) : t= 1, . . . , T}, which consists of

the assortment St shown to each customer t and the selection ct of customer t, including the

no-purchase option. We assume that the customers’ selections are independent and identically

distributed. By Theorem 2.3, for each customer t, the probability of observing the selection ct

is given by eµct/gα(
∑

ℓ∈St
eµℓ) if ct ̸= 0, and is 1/

[
gα
(∑

ℓ∈St
eµℓ
)]1/(1+α)

if ct = 0. Instead of g,

we write gα with an explicit dependence on α to emphasize that the function depends on the

parameter α. The negative log-likelihood function associated with the dataset is then given by

NLL(α,µ) =
T∑

t=1

{
1l{ct ̸=0} log

(
gα
(∑
ℓ∈St

eµℓ
))

+ 1l{ct=0}
log
(
gα
(∑

ℓ∈St
eµℓ
))

1+α

}
−

T∑
t=1

1l{ct ̸=0}µct . (8)

The maximum likelihood estimate is obtained by solving the optimization problem

minα>−1, µ∈Rn NLL(α,µ), where we are minimizing because we are working with the negative

log-likelihood. The main result is stated in the following theorem.

Theorem 5.1 (Convexity) For each α>−1, the function µ 7→NLL(α,µ) is convex in µ.

Theorem 5.1 gives us the following method for computing the maximum likelihood estimate.

We first discretize α by creating a one-dimensional grid on the interval (−1,−∞). For each α on

the grid, we can solve the problem minµ∈Rn NLL(α,µ) efficiently because it is an unconstrained

convex minimization problem. Then, we simply choose the value of the α in the grid that gives the

minimum objective value. Because α is a one-dimensional parameter, the grid search can be done

relatively efficiently, and we can improve the quality of our solution by refining the grid.

The above result also implies that if each µi is parameterized as a linear combination of product

features, then for each α, the negative log-likelihood function remains convex in the product-feature

coefficients, and we can estimate these coefficients efficiently by minimizing the convex negative

log-likelihood function.

We emphasize that the convexity result of Theorem 5.1 is the first such result for a choice

model with endogenous effects whose preference weights are defined implicitly through a system

of nonlinear equations. Wang and Wang (2017) was the first paper to consider a variant of the

standard multinomial logit model with an endogenous network effect. The choice probabilities in

their model are also defined as a solution to a system of nonlinear equations, but in their model, the
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negative log-likelihood function is not convex in the problem parameters, and they are thus unable

to determine the maximum likelihood estimate. They offer a heuristic that yields a stationary point

under certain technical conditions, with no guarantee on how close their estimate is to the true

maximum likelihood estimate.

The fact that our model admits an efficient method for computing the maximum likelihood

estimate gives further support to our formulation. With an efficient estimation procedure, we

can calibrate the model’s parameters from real data to determine whether there are statistically

significant assortment-dependent effects on the utility of each product.

The proof of Theorem 5.1 makes use of a series of lemmas. The first lemma establishes a lower

bound on the derivative of the composition of the natural logarithm and gα. The proof is in

Appendix F. Recall that gα is the inverse of the function fα defined in Equation (3). Because α is

a parameter that we need to estimate, we write the functions f and g as fα and gα, respectively, to

denote the explicit dependence of these functions on α. Note that for each α>−1, gα :R+ → [1,∞);

it is clear that gα is a strictly increasing function because fα is.

Lemma 5.2 For each α>−1, if hα = log ◦gα, then h′′
α(y)+

h′
α(y)

y
≥ 0 for all y > 0.

The next lemma uses the property of the derivative of gα to establish the convexity of the

mapping µ 7→ log(gα(
∑n

ℓ=1 e
µℓ)). This result can be viewed as a generalization of the convexity of

the log-sum-exp function because when α= 0, we have gα(y) = y, and this function reduces to the

classical log-sum-exp function, which is known to be convex. This result is key to establishing the

convexity of our negative log-likelihood function.

Lemma 5.3 (Convexity of Generalized Log-Sum-Exp) For each α > −1, the mapping

µ 7→ log(gα(
∑n

ℓ=1 e
µℓ)) is convex in µ.

Proof: Fix an arbitrary α>−1. Let h= log ◦gα denote the composition of the natural log and gα.

Let W :Rn →R be defined by: for each µ∈Rn, W (µ) = h(
∑n

ℓ=1 e
µℓ). Then, for all i and j,

∂W

∂µi

(µ) = eµi h′
( n∑

ℓ=1

eµℓ

)
and

∂2W

∂µi∂µj

(µ) =

 eµieµi h′′
(∑n

ℓ=1 e
µℓ

)
+ eµi h′

(∑n

ℓ=1 e
µℓ

)
if i= j

eµieµj h′′
(∑n

ℓ=1 e
µℓ

)
if i ̸= j

,

which implies that the n-by-n Hessian matrix ∇2W (µ) of W is given by

∇2W (µ) = h′′
( n∑

ℓ=1

eµℓ

)
eµ1

eµ2

...
eµn

 [eµ1eµ2 · · ·eµn ] + h′
( n∑

ℓ=1

eµℓ

)
diag (eµ1 , eµ2 , . . . , eµn) ,
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where diag (a1, . . . , an) is a diagonal matrix with entries a1, . . . , an.

To complete the proof, it suffices to show that ∇2W (µ) is positive semidefinite for all µ; that

is, x⊤∇2W (µ)x≥ 0 for all x∈Rn. Letting s=
∑n

ℓ=1 e
µℓ and noting that s > 0, it follows from the

above equality that

x⊤∇2W (µ)x = h′′(s)

(
n∑

i=1

eµixi

)2

+h′(s)
n∑

i=1

eµix2
i .

If (
∑n

i=1 e
µixi)

2
= 0, then we have x⊤∇2W (µ)x≥ 0 because h′(s)≥ 0 since h is a composition of

logarithm and g, both of which are increasing. So, suppose that (
∑n

i=1 e
µixi)

2
> 0. It follows that

x⊤∇2W (µ)x =

(
n∑

i=1

eµixi

)2(
h′′(s) +

h′(s)

s
·
(
∑n

i=1 e
µix2

i ) (
∑n

ℓ=1 e
µℓ)

(
∑n

i=1 e
µixi)

2

)
(a)

≥

(
n∑

i=1

eµixi

)2(
h′′(s) +

h′(s)

s

)
(b)

≥ 0 ,

where (a) follows from h′(s)> 0 and the Cauchy–Schwarz inequality, which shows that

( n∑
i=1

eµixi

)2

=
( n∑

i=1

eµi/2eµi/2xi

)2

≤
( n∑

i=1

eµix2
i

)( n∑
i=1

eµi

)
.

The last inequality (b) follows from Lemma 5.2. This completes the proof.

We are now ready to give the proof of the main theorem.

Proof of Theorem 5.1: The second term in the expression for the negative log likelihood

in Equation (8) is −
∑T

t=1 1l{ct ̸=0}µct , which is linear in µ. The first term is equal to∑T

t=1

{
1l{ct ̸=0} log

(
gα
(∑

ℓ∈St
eµℓ
))

+ 1l{ct=0}
log

(
gα

(∑
ℓ∈St

eµℓ
))

1+α

}
. For each α > −1, it follows from

Lemma 5.3 that the function inside the braces is convex in µ, so the first term is also convex in µ.

This gives the desired result.

6. Numerical Experiments

We provide two sets of computational experiments. First, we use a dataset from Expedia to compare

our Context-MNL model with the standard multinomial logit model in terms of their abilities

to predict customer purchases. Second, we test the performance of the FPTAS we construct in

Section 3.2, where we develop upper bounds on the optimal expected revenue and use the upper

bounds to check optimality gaps attained by our FPTAS.
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6.1 Prediction Accuracy of the Context-MNL Model on the Expedia Dataset

Using the publicly available dataset provided by Expedia as part of a Kaggle competition

(Kaggle 2013), we conduct numerical experiments to test the accuracy with which the

Context-MNL model predicts customer purchases.

Description of Dataset: The dataset provides the results of search queries for hotels on Expedia.

In the dataset, the rows correspond to different hotels displayed in different search queries

performed by different customers, and the columns present information on the characteristics of

the displayed hotels in a search query, the characteristics of the requested stay, and the booking

decision of the customer. The dataset has fifteen columns. The first column in the dataset is the

unique code for each query, and this information allows us to identify all the hotels displayed in

each search query, which represent the assortment of products from which a customer chooses. The

second column indicates whether the customer booked the hotel in the search query, allowing us

to identify the customer’s purchase. Each customer books at most one hotel in a search query, but

she may choose not to book a hotel. The remaining columns show the display position of the hotel

in the search query, the star rating and the average review score for the hotel, an indicator for

whether the hotel is part of a chain, two location desirability scores, the average price of the hotel

over the last trading period, the displayed price, an indicator for whether the hotel is on promotion,

the number of days until the day of stay, the number of adults and children in the search query,

and an indicator for whether the requested stay is over the weekend.

We preprocessed the dataset to remove values that were either missing or uninterpretable; this

procedure resulted in a final dataset with 15 columns and 595,965 rows, representing 34,561 queries.

Among all the queries, 5,848 queries (about 17%) resulted in a booking, and we refer to these as

booking queries; the remaining 28,713 queries (about 83%) did not result in a booking, and we

refer to these as nonbooking queries. The average number of hotels displayed in a search query

is 17.24, and the the maximum number of hotels displayed is 37. In Appendix G, we explain our

approach to preprocessing the dataset.

Parameter Estimation: To enrich our experimental setup, we use bootstrapping to generate

multiple datasets based on the Expedia dataset. We ensure that each dataset we generate has n

queries and that a fraction p0 of the n queries do not result in a booking, where n and p0 are values

chosen such that np0 is an integer. To obtain such dataset, we randomly sample n(1− p0) queries

from the booking queries with replacement and randomly sample np0 queries from the nonbooking

queries with replacement. Putting the two samples together, we obtain a dataset with n queries,

and a fraction p0 of these queries do not result in any booking. The value of p0 controls the balance
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in the dataset between the number of customers who book a hotel and those who do not. For each

value of n and p0, we repeat the bootstrapping procedure 10 times to obtain 10 datasets. We vary

n= {10000,20000,30000} and p0 = {0.3,0.5,0.7}, which results in 90 datasets in our experiment.

Under our Context-MNL model, we assume that the parameter µi of hotel i is given by

µi = β0 +
∑12

ℓ=1 βℓxi,ℓ, where xi = (xi,1, . . . , xi,12) are the values in the dataset of the last

12 columns giving the characteristics of hotel i and the corresponding requested stay, and

β= (β0, β1, . . . , β12)∈R13 are the coefficients that capture the impact of each characteristic.

Therefore, the parameters of our Context-MNL model are the coefficients β and parameter α>−1.

In our estimation, we represent α= eγ−1 where γ ∈R. As noted in the discussion that immediately

follows Theorem 5.1, for each α, the negative log-likelihood function is convex in β. For each

dataset, we randomly split 80% of the data as the training dataset and use the remaining 20%

as the test dataset. We obtain the maximum likelihood estimate by using the fminunc function

in MATLAB to minimize the negative log-likelihood function. By setting α= 0, we also estimate

the parameters of the standard multinomial logit model. Throughout this section, we refer to our

Context-MNL model as “CML” and the standard multinomial logit model as “SML”.

Results on Prediction Accuracy: We use two performance measures to compare CML and SML.

The first performance measure is the out-of-sample log-likelihood evaluated on the test dataset,

which is then normalized by dividing by the number of queries n in the test dataset. The normalized

log-likelihood allows for apple-to-apple comparison across different-sized datasets. The second

performance measure is the k-hit score on the test dataset. To compute the k-hit score of the fitted

CML model, for each query that results in a booking in the test dataset, we compute the selection

probability of each offered hotel based on the estimated parameters computed from the training

dataset. If the actual hotel booked by a customer is among the the hotels with the k-highest

probabilities, then we say that the query is a k-hit under the CML model. The k-hit score for the

CML model is the fraction of the k-hit queries among all the queries that result in a booking. The

k-hit score of the fitted SML model is similar. We use k ∈ {1,2,3}. For the k-hit score, we focus

only on the search queries resulting in a booking, because a large fraction of the customers do

not book. If we included the nonbooking search queries in the k-hit score, then the k-hit scores

would be driven mainly by the customers who do not book, which would undermine our objective

of testing the accuracy with which we can predict the specific hotel booked.

Table 1 presents computational results. Each row in the table corresponds to a different value of

(n,p0). Recall that we generate 10 datasets for each value of (n,p0). In the top portion, we compare

the out-of-sample log-likelihoods of CML and SML, normalized by the number of queries n. The
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Out-of-Sample log-likelihood (Normalized by n)
(n,p0) CML CML SML Avg. Std.

≻ SML LogLik. LogLik. % Gap Err.

(10000, 0.3) 10 -2.3470 -2.3945 1.99% 0.13%
(10000, 0.5) 10 -1.9135 -1.9663 2.69% 0.15%
(10000, 0.7) 10 -1.3617 -1.3922 2.20% 0.30%
(20000, 0.3) 10 -2.3428 -2.3916 2.04% 0.07%
(20000, 0.5) 10 -1.9320 -1.9807 2.46% 0.08%
(20000, 0.7) 10 -1.3609 -1.3930 2.31% 0.20%
(30000, 0.3) 10 -2.3490 -2.4005 2.14% 0.08%
(30000, 0.5) 10 -1.9206 -1.9694 2.48% 0.08%
(30000, 0.7) 10 -1.3528 -1.3859 2.39% 0.15%

1-Hit Score 2-Hit Score 3-Hit Score
CML CML Avg. Std. CML CML Avg. Std. CML CML Avg. Std.

(n,p0) ≻ SML 1-hit % Gap. Err. ≻ SML 2-hit % Gap Err. ≻ SML 3-hit % Gap. Err.

(10000, 0.3) 8 0.23 1.09% 0.41% 9 0.36 0.96% 0.25% 9 0.46 1.31% 0.25%
(10000, 0.5) 10 0.23 1.29% 0.29% 9 0.36 1.54% 0.45% 9 0.46 1.61% 0.37%
(10000, 0.7) 7 0.23 0.78% 0.42% 8 0.35 0.96% 0.36% 8 0.45 1.38% 0.71%
(20000, 0.3) 8 0.23 0.79% 0.22% 9 0.35 1.02% 0.17% 10 0.46 1.03% 0.11%
(20000, 0.5) 8 0.22 0.85% 0.28% 10 0.36 1.42% 0.17% 10 0.46 1.28% 0.20%
(20000, 0.7) 10 0.23 1.80% 0.25% 10 0.36 1.91% 0.28% 9 0.46 1.85% 0.32%
(30000, 0.3) 10 0.23 0.72% 0.14% 10 0.35 0.98% 0.12% 10 0.46 1.07% 0.11%
(30000, 0.5) 10 0.23 1.20% 0.17% 8 0.35 0.93% 0.30% 10 0.46 1.00% 0.18%
(30000, 0.7) 10 0.23 1.46% 0.24% 10 0.36 2.27% 0.26% 10 0.46 2.76% 0.25%

Table 1 Performance comparison of the fitted CML and SML models using the Expedia dataset.

second column shows the number of datasets out of 10 in which the normalized out-of-sample

log-likelihood of the fitted CML model is larger than that of SML. The third and fourth columns,

respectively, show the average normalized out-of-sample log-likelihood of the fitted CML and SML

models, under which the average is over the 10 datasets. The fifth and sixth columns, respectively,

show the average and standard error of the percentage gaps between the normalized out-of-sample

log-likelihoods of the two fitted choice models, under which the standard error is the standard

deviation of the percentage gaps over the 10 datasets divided by
√
10.

In the bottom portion of Table 1, we compare the k-hit scores. The second column shows the

number of datasets out of 10 in which the 1-hit score of the fitted CML model is larger than

that of SML. The third column shows the average 1-hit score of the fitted CML model over the

10 datasets. The fourth and fifth columns, respectively, show the average and standard error of

the percentage gaps between the 1-hit scores of the two fitted choice models. Positive values favor

CML. We compare the 2-hit and 3-hit scores similarly.

The fitted CML model improves the out-of-sample log-likelihoods of the fitted SML model in 90

out of 90 datasets, with an average improvement of 2.30%. To further quantify the improvements in

the prediction accuracies, we turn to k-hit scores. The fitted CML model improves the 1-hit score

of the fitted SML model in 81 out of 90 datasets. The fitted CML model improves the 1-hit score by

1.11% on average. The gaps between the k-hit scores are maintained for k ∈ {2,3}, with our CML

providing an average improvement of 1.33% and 1.48% for the 2-hit and 3-hit scores, respectively.
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The average improvement across 1-hit, 2-hit, and 3-hit scores is 1.31%. Noting the 3-hit scores, one

of the three alternatives with the largest purchase probabilities ends up being the hotel booked

by the customer about 46% of the time. Our bootstrapped datasets are independent samples. In

testing the hypothesis that the CML yields higher out-of-sample log-likelihoods and k-hit scores,

all the average gaps in the out-of-sample log-likelihoods and k-hit scores are statistically significant

in a one-sided paired t-test at the 95% level (see Goulden (1939), Chapter 4.6).

We also conduct tests of the statistical significance of the estimated coefficients β and α. All

the estimated coefficients are statistically significant, with p-values less than 10−5 when we test

the null hypothesis that a coefficient is zero. In particular, using both likelihood-ratio and Quasi-t

tests, we can reject the null hypothesis that α= 0 in all 90 of the datasets used in our experiments,

with both methods yielding p-values less than 10−5. We present details of the procedure for testing

the statistical significance of α in Appendix H.

6.2 Assortment Optimization when α∈ (−1,0)

We test the practical performance of the FPTAS given in Section 3.2 for the unconstrained

assortment optimization problem when α∈ (−1,0), which is NP-hard by Theorem 3.3.

Upper Bound: To assess the optimality gap of the solutions obtained by our FPTAS, we give

an efficiently computable upper bound on the optimal objective value Z∗ of the unconstrained

assortment optimization problem, where Z∗ = maxx∈{0,1}n
(∑

i∈N rie
µixi

)
/g
( ∑

i∈N eµixi

)
by Equation (4). For each product i, the binary variable xi determines whether

product i is offered. We upper bound Z∗ by solving the continuous relaxation

W ∗ =maxx∈[0,1]n
(∑

i∈N rie
µixi

)
/g
( ∑

i∈N eµixi

)
, allowing each xi to be any real number between

zero and one. We can compute W ∗ using bisection search because for each t≥ 0,

W ∗ ≥ t ⇔ max
x∈[0,1]n

∑
i∈N

rie
µixi − t g

(∑
i∈N

eµixi

)
≥ 0 .

Because g is convex for α ∈ (−1,0) by Corollary B.3, the optimization problem

maxx∈[0,1]n
∑

i∈N rie
µixi − t g

( ∑
i∈N eµixi

)
is a concave maximization problem, which can be

solved efficiently for each t≥ 0. We can then use bisection search to determine W ∗ by iteratively

guessing different values of t. Starting with an initial interval [0,maxi∈N ri], each iteration of the

bisection search maintains an interval that is guaranteed to contain W ∗. By checking whether

or not W ∗ is greater than or equal to the midpoint of the interval in the current iteration, the

interval is reduced by half in the next iteration. We stop the bisection search when the length of

the interval is less than 10−8.
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To solve the optimization problem maxx∈[0,1]n
∑

i∈N rie
µixi − t g

( ∑
i∈N eµixi

)
, we exploit the

convexity of g and replace g by its lower bound, which is a piecewise-linear function on a grid of

increment 0.01. The slope of the lower bounding function corresponds to g′(y) for different values

of y on a grid. When replacing g by its piecewise-linear lower bound, it is easy to verify that the

resulting optimization problem can be written as a linear program. Moreover, because we work with

a lower bound on g, the value of t that we find through this process remains an upper bound on W ∗.

Experimental Setup: We randomly generate a large number of test problems and compare the

expected revenue from the solution obtained by our FPTAS with the upper bound on the optimal

expected revenue. In all of our test problems, the number of products is n= 32. For each product i,

we generate ri from the uniform distribution over the interval [1,10]. We then reindex {r1, . . . , rn} so

that r1 ≥ r2 ≥ · · · ≥ rn. We generate the parameter α from a uniform distribution over the interval

[γ1, γ2], where γ1, γ2 are parameters we vary. To come up with the parameter µ∈Rn, we generate

ξi from the uniform distribution over the interval [1,10] for each i ∈N . For all i ∈N , we set µi =

log(δξi) or, equivalently, e
µi = δξi, where δ is the scaling parameter chosen so that the probability

of choosing the no-purchase option under the full assortment is p0, and p0 is another parameter

we vary. It follows from Theorem 2.3 that δ satisfies the equation 1/
[
g
(∑

ℓ∈N δξℓ
)]1/(1+α)

= p0.

After generating µ, we process them to come up with two problem classes. In the first problem

class, we leave {µ1, . . . , µn} untouched. In the second problem class, we reindex {µ1, . . . , µn} so

that µ1 ≤ µ2 ≤ · · · ≤ µn. Recall that r1 ≥ r2 ≥ · · · ≥ rn; in the second problem class, the products

with larger revenue have smaller preference weights, so expensive products are less attractive. We

refer to the first and second problem class, respectively, as “U” and “O”, where “U” stands for

unordered and “O” stands for ordered.

Letting T denote the ordering of the preference, we vary p0 ∈ {0.1,0.3,0.5},

[γ1, γ2]∈ {[−0.9,0], [−0.9,−0.5], [−0.5,0]}, and T ∈ {U,O}, giving a total of 18 parameter

configurations. For each parameter configuration, we generate 10 test problems.

Computational Results: We execute our FPTAS with ϵ = 0.5/6 to obtain a solution to the

unconstrained assortment optimization problem with a theoretical performance guarantee of

1− 6ϵ= 1/2 (Theorem 3.5). Table 2 shows our computational results. The first column shows the

parameter configuration (p0, [γ1, γ2]). The rest of the table consists of two blocks of three columns.

The first and second blocks correspond, respectively, to problems with unordered preference weights

(T =U) and problems with ordered preference weights (T =O). In each block, the three columns

show the average, maximum, and standard deviation of the percent gap between the upper bound

on the optimal expected revenue and the expected revenue from the solution produced by our
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Unordered (T =U) Ordered (T =O)
Param. Config. Avg. Max. Stdev. Avg. Max. Stdev.
(p0, [γ1, γ2]) Gap Gap Gap Gap Gap Gap

(0.1, [-0.5, 0.0]) 0.22% 0.75% 0.23% 0.28% 1.61% 0.49%
(0.1, [-0.9, -0.5]) 0.34% 1.24% 0.40% 0.53% 2.30% 0.73%
(0.1, [-0.9, 0.0]) 0.22% 0.88% 0.28% 0.49% 1.79% 0.66%
(0.3, [-0.5, 0.0]) 0.28% 0.69% 0.19% 0.38% 1.50% 0.52%
(0.3, [-0.9, -0.5]) 0.34% 0.92% 0.35% 0.28% 0.90% 0.35%
(0.3, [-0.9, 0.0]) 0.43% 1.14% 0.37% 0.58% 2.17% 0.86%
(0.5, [-0.5, 0.0]) 0.43% 0.79% 0.24% 0.39% 1.85% 0.57%
(0.5, [-0.9, -0.5]) 0.18% 0.68% 0.24% 0.02% 0.16% 0.05%
(0.5, [-0.9, 0.0]) 0.31% 1.04% 0.41% 0.21% 0.74% 0.27%

Table 2 Performance of our FPTAS for unconstrained assortment optimization when α∈ (−1,0).

FPTAS. The average, maximum, and standard deviation are computed over 10 problem instances

in each parameter configuration. Over all of our test problems, the average gap is 0.33% and the

maximum gap is 2.30%. Problems with ordered preference weights have only slightly larger average

and maximum gaps. The performance of our FPTAS is substantially stronger than the theoretical

guarantee of 1/2. The average running time of our FPTAS is 104.52 seconds per instance using

Python 3.9 on a Macbook Pro with 16 GB RAM.

7. Conclusion

We propose an endogenous context-dependent multinomial logit model. Our Context-MNL model

parsimoniously captures the impact of assortment on the utility of each product through an extra

parameter that measures the impact of the deviation of the product’s intrinsic utility from the

expected maximum utility among all the alternatives in the assortment. When tested on real

data from Expedia, the model offers substantial improvements in terms of the goodness of fit

and prediction accuracy. The model can be efficiently calibrated because maximum likelihood

estimation is tractable. Assortment and price optimization under the model also admit efficient

solution methods. Incorporating the Context-MNL model into network revenue management

problems represents an exciting direction for future research. It would also be interesting to explore

whether we can generalize other choice models to endogenously capture the assortment effect on

the utility of each product and whether such extensions lead to tractable choice models.
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Online Appendix

Assortment and Price Optimization under an
Endogenous Context-Dependent Multinomial Logit Model

Appendix A: Normalizing µ0 to Zero

Consider a Context-MNL model with parameters α > −1, µ ∈ Rn, and µ0 ̸= 0. For each

assortment S, let ṽi(S |α,µ, µ0) denote the preference weight of product i when it is offered

in assortment S, where we explicitly show the dependence on α, µ, and µ0. Using the same argument

as in Theorem 2.2, the utility of product i when it is offered within an assortment S is given by

Utili(S) = log ṽi(S |α,µ, µ0) + ϵi, where the preference weights
(
ṽi(S |α,µ, µ0) : i ∈ S

)
satisfy the

following system of equations:

ṽi(S |α,µ, µ0) = eµi−α log

[
eµ0+

∑
ℓ∈S ṽℓ(S |α,µ,µ0)

]
∀ i∈ S ,

and the same argument also shows that ϕi(S |α,µ, µ0) = ṽi(S |α,µ, µ0)
/(

eµ0 +
∑

ℓ∈S ṽℓ(S |α,µ, µ0)
)

for all i ∈ S, and ϕ0(S |α,µ, µ0) = 1−
∑

i∈S ϕi(S |α,µ, µ0). The following proposition shows the

relationship between ṽi(S |α,µ, µ0) in the above equation and the “normalized” preference weight

in Equation (2) where we set µ0 = 0.

Proposition A.1 (Normalizing µ0 to Zero) For each α > −1, µ = (µ1, . . . , µn) ∈ Rn,

and µ0 ∈ R, if µ̄= (µ1 − (1+α)µ0, . . . , µn − (1+α)µ0), then for all S ⊆ N and i ∈ S,

ṽi(S |α,µ, µ0)e
−µ0 = vi(S |α, µ̄) and ϕi(S |α,µ, µ0) = ϕi(S |α, µ̄), where (vi(S |α, µ̄) : i ∈ S) is

defined in Equation (2) and ϕi(S |α, µ̄) is given in Theorem 2.2.

Proof: Fix α >−1, µ ∈ Rn, and µ0 ∈ R. Consider an arbitrary S. For ease of exposition, we will

write ṽi = vi(S |α,µ, µ0) and v̄i = vi(S |α, µ̄). By definition of ṽi, we have ṽi = eµi−α log(eµ0+
∑

ℓ∈S ṽℓ)

for all i∈ S, which implies that

ṽie
−µ0 = eµi−µ0−α log(eµ0+

∑
ℓ∈S ṽℓ) = eµi−(1+α)µ0−α log

[
e−µ0×

(
eµ0+

∑
ℓ∈S ṽℓ

)]
= eµ̄i−α log

(
1+

∑
ℓ∈S ṽℓe

−µ0

)
,

and by Theorem 2.2, the above system of equation has a unique solution, so ṽie
−µ0 = v̄i. Finally,

for all i∈ S, ϕi(S |α,µ, µ0) =
ṽi

eµ0+
∑

ℓ∈S ṽℓ
= ṽie

−µ0

1+
∑

ℓ∈S ṽℓe
−µ0

= v̄i
1+

∑
ℓ∈S v̄ℓ

= ϕi(S |α, µ̄).
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Appendix B: Properties of f and g and Proof of Theorem 2.5

In this section, we prove properties of the functions f and g defined in Equation (3). The functions

f and g were defined for each α, and we will need to understand how these functions change as the

parameter α changes. So, we will write fα and gα to highlight the dependence on α. Recall from

Equation (3) that fα : [1,∞)→R+ and gα :R+ → [1,∞) are defined by:

fα(x) = x−xα/(1+α) ∀ x∈ [1,∞) and gα(y) = f−1
α (y) ∀ y ∈R+ .

The first lemma provides expressions for the first derivatives of fα and gα.

Lemma B.1 (First Derivatives) For all α>−1, x≥ 1 and y≥ 0,

∂

∂x
fα(x) = 1− α

1+α
x−1/(1+α) and

∂

∂α
fα(x) = − xα/(1+α) logx

(1+α)2

∂

∂y
gα(y) =

[
∂

∂x
fα(x)

∣∣∣
x=gα(y)

]−1

and
∂

∂α
gα(y) =

gα(y) log gα(y)

(1+α)2
[
gα(y)1/(1+α) − α

1+α

] .

Proof: The derivatives of fα with respect to x and α follow from calculus and we omit the details.

The derivative of gα with respect to y follows from the Inverse Function Theorem. We will thus

focus on the partial derivative of gα with respect to α. Because fα(gα(y)) = y, taking the derivative

with respect to α on both sides, it follows from the Chain Rule that(
∂

∂x
fα(x)

∣∣∣
x=gα(y)

× ∂

∂α
gα(y)

)
+

∂

∂α
fα(gα(y)) = 0 ⇔ ∂

∂α
gα(y) = − ∂

∂α
fα(gα(y))

/
∂

∂x
fα(x)

∣∣∣
x=gα(y)

.

It then follows from the partial derivative of fα that

∂

∂α
gα(y) = − gα(y)

α/(1+α) log gα(y)

(1+α)2
[
1− α

1+α
gα(y)−1/(1+α)

] = − gα(y) log gα(y)

(1+α)2
[
gα(y)1/(1+α) − α

1+α

] ,

which is the desired result.

The following corollaries follow immediately from the above lemma.

Corollary B.2 (Monotonicity) For each α > −1, fα(x) is strictly increasing in x and

unbounded, and gα(y) is strictly increasing in y and unbounded.

Corollary B.3 (Convexity) For each α≥ 0, fα(x) is convex in x and gα(y) is concave in y. For

each −1<α< 0, fα(x) is concave in x and gα(y) is convex in y.

Here is a proof of Theorem 2.5.
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Proof of Theorem 2.5: Fix µ∈Rn, S ⊆N , k ∈ S, and i∈ S \{k}. Let y0 =
∑

ℓ∈S\{k} e
µℓ and y1 = eµk .

It follows from Theorem 2.3 that

ϕi(S \ {k} |α,µ)
ϕi(S |α,µ)

/ ϕ0(S \ {k} |α,µ)
ϕ0(S |α,µ)

=
gα(y1 + y0)

gα(y0)

/(gα(y1 + y0)

gα(y0)

)1/(1+α)

=

(
gα(y1 + y0)

gα(y0)

)α/(1+α)

,

and thus, to prove the desired result, it suffices to show that the functionH(α)≡ α
1+α

log
(

gα(y1+y0)

gα(y0)

)
is strictly increasing for α>−1. We will do this by taking the derivative with respect to α. Using

the product rule and the derivative formula from Lemma B.1, we have that

H ′(α) =
α

1+α

( ∂
∂α

gα(y1 + y0)

gα(y1 + y0)
−

∂
∂α

gα(y0)

gα(y0)

)
+

1

(1+α)2
log

(
gα(y1 + y0)

gα(y0)

)

=
α

1+α

 log gα(y1 + y0)

(1+α)2
[
gα(y1 + y0)1/(1+α) − α

1+α

] − log gα(y0)

(1+α)2
[
gα(y0)1/(1+α) − α

1+α

]


+
1

(1+α)2
log

(
gα(y1 + y0)

gα(y0)

)
=

1

(1+α)2

(
α/(1+α)

gα(y1 + y0)1/(1+α) − α
1+α

+ 1

)
log gα(y1 + y0)

− 1

(1+α)2

(
α/(1+α)

gα(y0)1/(1+α) − α
1+α

+1

)
log gα(y0)

=
1

(1+α)2

(
G(gα(y1 + y0))−G(gα(y0))

)
,

where the function G : [1,∞) → R is defined as follows: letting a = α/(1 + α), for all x ≥ 1,

G(x) =
(

a
x1−a − a

+1
)
logx. To show that H ′(α)> 0, it suffices to show that G is strictly increasing

in x because gα(y1 + y0)> gα(y0). Note that a< 1 and

G′(x) =
1

x

(
a

x1−a − a
+1

)
− a(1− a)x−a logx

(x1−a − a)2
=

a(x1−a − a)+ (x1−a − a)2 − a(1− a)x1−a logx

x(x1−a − a)2

=
ax1−a − a2 +x2(1−a) − 2ax1−a + a2 − a(1− a)x1−a logx

x(x1−a − a)2

=
x1−a (x1−a − a− a(1− a) logx)

x(x1−a − a)2
=

x1−a − a− a(1− a) logx

xa(x1−a − a)2
,

and observe that the denominator is always nonnegative. We will now show that the numerator is

strictly positive by showing that x1−a > a+ a(1− a) logx for all x≥ 1. The inequality is trivially

true if a≤ 0, so consider the case where 0< a < 1. The inequality is true at x= 1 because 1> a.

Moreover, the derivative of the lefthand side is 1−a
xa

and the the derivative of the righthand side is

a(1−a)

x
. Because x≥ 1 and 0< a< 1, we have 1−a

xa
> a(1−a)

x
> 0. This shows that x1−a > a+ a(1−

a) logx for all x≥ 1, which implies that G′(x)> 0 for all x≥ 1, completing the proof.
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Appendix C: Proof of Theorem 3.3

The proof of Theorem 3.3 makes use of a series of lemmas. In this section, we are interested in

assortment optimization problem where α=−1/2 and there is no cardinality constraint (K = n),

so Z∗ =maxS⊆N
∑

i∈S riϕi(S) = maxS⊆N
(∑

i∈S rivi(S
)
/
(
1 +

∑
i∈S vi(S)

)
, where the last equality

follows from Theorem 2.2. The first lemma establishes an important property of an optimal solution.

Lemma C.1 For each α ∈ (−1,0), there is an optimal assortment that contains the product with

the highest revenue.

Proof: Let h∗ ∈N denote the product with the highest revenue; that is, rh∗ ≥ ri for all i ∈N . For

each assortment S ⊆N such that h∗ /∈ S, we will show that adding h∗ to S does not decrease the

revenue. Because 1 = ϕ0(S ∪{h∗})+ϕh∗(S ∪{h∗})+
∑

i∈S ϕi(S ∪{h∗}), we have∑
i∈S∪{h∗}

riϕi(S ∪{h∗}) = rh∗

(
1−ϕ0(S ∪{h∗})−

∑
i∈S

ϕi(S ∪{h∗})
)
+
∑
i∈S

riϕi(S ∪{h∗})

= rh∗

(
1−ϕ0(S ∪{h∗})

)
+
∑
i∈S

(ri − rh∗)ϕi(S ∪{h∗})

≥ rh∗

(
1−ϕ0(S)

)
+
∑
i∈S

(ri − rh∗)ϕi(S) =
∑
i∈S

riϕi(S) ,

where the inequality follows from the substitutability of the Context-MNL model in Corollary 2.4,

so ϕ0(S ∪ {h∗}) ≤ ϕ0(S), which implies that rh∗
(
1 − ϕ0(S ∪ {h∗})

)
≥ rh∗

(
1 − ϕ0(S)

)
. By

substitutability, we also have ϕi(S ∪ {h∗}) ≤ ϕi(S) and because ri − rh∗ ≤ 0, it follows that

(ri − rh∗)ϕi(S ∪{h∗})≥ (ri − rh∗)ϕi(S) for all i∈ S. This completes the proof.

The next lemma focuses on a one-dimensional function that will show up in our proof.

Lemma C.2 Let A and B be two positive real numbers such that B <A and A2 <B2+4. Consider

a function q :R+ →R+ defined as follows: for each x≥ 0,

q(x) =
A+x

B+x+
√
4+ (B+x)2

.

Then, q has a unique maximizer at x∗ = 2
A−B

− A+B
2

= 4+B2−A2

2(A−B)
and q(x∗) = 4+(A−B)2

8
.

Proof: By definition,

q′(x) =

[
B+x+

√
4+ (B+x)2

]
− (A+x)

[
1+ B+x√

4+(B+x)2

]
[
B+x+

√
4+ (B+x)2

]2
=

√
4+ (B+x)2

[
B+x+

√
4+ (B+x)2

]
− (A+x)

[
B+x+

√
4+ (B+x)2

]
√
4+ (B+x)2

[
B+x+

√
4+ (B+x)2

]2
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=

√
4+ (B+x)2 − (A+x)√

4+ (B+x)2
[
B+x+

√
4+ (B+x)2

] .

Because the denominator is strictly positive, the sign of q′(x) is determined by the numerator.

Note that√
4+ (B+x)2 − (A+x)≥ 0 ⇔ 4+ (B+x)2 ≥ (A+x)2 ⇔ 4+B2 +2Bx≥A2 +2Ax

⇔ x≤ 4+B2 −A2

2(A−B)
= x∗ .

This shows that q′(x)> 0 for all x< x∗, q′(x∗) = 0, and q′(x)< 0 for all x> x∗. Therefore, q achieves

a unique maximum over the nonnegative real line at x∗. Moreover, note that

A+x∗ = A+
4+B2 −A2

2(A−B)
=

4+ (A−B)2

2(A−B)

B+x∗ = B+
4+B2 −A2

2(A−B)
=

4− (A−B)2

2(A−B)√
4+ (B+x∗)2 =

√
4+

[
4− (A−B)2

]2
4(A−B)2

=

√[
4+ (A−B)2

]2
4(A−B)2

=
4+ (A−B)2

2(A−B)

q(x∗) =
4+ (A−B)2

4− (A−B)2 +4+ (A−B)2
=

4+ (A−B)2

8
,

which is the desired result.

We are now ready to give a proof of Theorem 3.3.

Proof: Fix α = −1/2 and K = n. For ease of exposition, we will drop the subscript α from fα

and gα, and write f and g. Recall that

Z∗ = max
S⊆N

∑
i∈S

riϕi(S) = max
S⊆N

∑
i∈S rie

µi

g
(∑

i∈S e
µi
) = max

S⊆N

∑
i∈S 2 ri e

µi∑
i∈S e

µi +
√

4 +
(∑

i∈S e
µi
)2 , (9)

where the second equality follows from Theorem 2.3 and the last equality follows because for

α=−1/2, we have f(x) = x− 1
x
, which implies that g(y) = (y+

√
4+ y2 )/2.

To show that Z∗ is NP-hard, we will use a reduction from PARTITION, which is a well

known NP-complete problem (Garey and Johnson 1979). Consider an arbitrary instance of the

PARTITION problem given by

PARTITION

Inputs: A collection of n positive integers w1,w2, . . . ,wn.

Question: Is there a subset X ⊆ {1,2, . . . , n} such that
∑

i∈X wi =
∑

i/∈X wi?

Let T = 1
2

∑n

i=1wi. Note that
∑

i∈X wi =
∑

i/∈X wi if and only if
∑

i∈X wi = T . Thus, we can

assume without loss of generality that T is a positive integer. Given an arbitrary instance of the
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PARTITION problem, we will construct the following instance of the Context-MNL model. We

will have n+1 products indexed by 1,2, . . . , n+1, and the parameters of these products are given

as follows:

ri =

{
1
2

if i= 1,2, . . . , n,
1
2
× 3T + 1

4T

3T − 1
4T

if i= n+1
and eµi =

{
wi if i= 1,2, . . . , n,
3T − 1

4T
if i= n+1 .

Because T is a positive integer, 3T − 1
4T

> 0, so all the parameters are well defined. Let Z∗ denote

the maximum expected revenue under the above Context-MNL model. Letting R∗ ≡ 1
2
+ 1

32T2 , to

prove the theorem, it suffices to prove the following claim.

Claim: There is a subset X ⊆ {1,2, . . . , n} such that
∑

i∈X wi = T if and only if Z∗ ≥R∗.

To prove this claim, let q :R+ →R+ be defined by: for all x≥ 0,

q(x) =
3T + 1

4T
+x

3T − 1
4T

+ x +
√

4+
(
3T − 1

4T
+ x

)2 .

Then, it follows from Equation (9) that

Z∗ = max
S⊆{1,2,...,n,n+1}

∑
i∈S 2 ri e

µi∑
i∈S e

µi +
√

4+
(∑

i∈S e
µi
)2

(a)
= max

S⊆{1,2,...,n}

2 rn+1 e
µn+1 +

∑
i∈S 2 ri e

µi

eµn+1 +
∑

i∈S e
µi +

√
4+

(
eµn+1 +

∑
i∈S e

µi
)2

(b)
= max

S⊆{1,2,...,n}

3T + 1
4T

+
∑

i∈S wi

3T − 1
4T

+
∑

i∈S wi +
√

4+
(
3T − 1

4T
+
∑

i∈S wi

)2
(c)
= max

S⊆{1,2,...,n}
q
(∑

i∈S

wi

)
, (10)

where (a) follows because rn+1 =
1
2
× 3T + 1

4T

3T − 1
4T

> 1
2
= ri for all i= 1, . . . , n, so product n+1 has the

highest revenue, and by Lemma C.1, there is an optimal assortment that contains product n+1.

Equality (b) follows from our construction of the parameters so that

2rn+1e
µn+1 = 3T +

1

4T
, eµn+1 = 3T − 1

4T
, 2rie

µi =wi ∀ i= 1, . . . , n, and eµi =wi ∀ i= 1, . . . , n.

The last equality (c) follows from the definition of q(·).

Let A = 3T + 1
4T

and B = 3T − 1
4T
. By definition, we have that q(x) = A+x

B+x+
√

4+(B+x)2
for all

x≥ 0. Note that B <A and A2 = 9T 2+ 6
4
+ 1

16T2 < 4+9T 2− 6
4
+ 1

16T2 = 4+B2 because 6
4
< 4− 6

4
.

Therefore, the hypothesis of Lemma C.2 is satisfied. Note that A−B = 1
2T

and A+B = 6T . By

Lemma C.2, q has a unique maximizer at x∗ = 2
A−B

− A+B
2

= 4T − 3T = T and

q(x∗) =max
x≥0

q(x) =
4+ (A−B)2

8
=

4+
(

1
2T

)2
8

=
1

2
+

1

32T 2
= R∗ .
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From Equation (10), we have Z∗ =maxS⊆{1,2,...,n} q
(∑

i∈S wi

)
. Therefore, Z∗ ≥R∗ if and only

if there exists a subset S ∈ {1,2, . . . , n} such that
∑

i∈S wi = T , which is the desired claim.

Appendix D: Proof of Lemma 3.4

Fix ϵ > 0 and (ν, ξ) ∈ R+ ×R+. For each i ∈ N , let r̃i =

⌊
ri e

µi

ϵ ν/n

⌋
and ũi =

⌈
eµi

ϵ ξ/n

⌉
. Noting that

r̃i ∈Z+ and ũi ∈Z+ for all i and letting G=
⌊
n
ϵ

⌋
−n and H =

⌈
n
ϵ

⌉
+n, we will develop a dynamic

programming algorithm for solving the following optimization problem:

Y ∗ ≡ min
S⊆N

{
|S| : |S| ≤K,

∑
i∈S

r̃i ≥G, and
∑
i∈S

ũi ≤H

}
,

and if there is no feasible solution, we set Y ∗ = ∞. For each (g,h, p) ∈

{0,1, ...,G} × {0,1, ...,H} × {1,2, . . . , n}, let F (g,h, p) denote the minimum cardinality

among all sets S ⊆ {1,2, . . . , p} such that
∑

ℓ∈S r̃ℓ ≥ g and
∑

ℓ∈S ũℓ ≤ h; that is,

F (g,h, p) =minS⊆{1,2,...,p}{|S| :
∑

ℓ∈S r̃ℓ ≥ g and
∑

ℓ∈S ũℓ ≤ h}. We can compute F (i, j, p) using

the following dynamic programming recursion:

F (g,h,1) =

 1 if g≤ r̃1 and ũ1 ≤ h
0 if g= 0
∞ otherwise

F (g,h, p+1) = min{F (g,h, p),1+F (g− r̃p+1, h− ũp+1, p)} ,

with boundary conditions that for each g < 0, F (g,h, p) = F (0, h, p), and for each h < 0,

F (·, h, ·) =∞. It is easy to check that F (G,H,n) = Y ∗.

If F (G,H,n) ≤ K, then output the corresponding subset; otherwise, if F (G,H,n) > K, then

output an empty set. Note that computing F (G,H,n) requires O(GHn) = O(n3/ϵ2) operations

and it is independent of ν and ξ.

Recall that Fϵ(ν, ξ) = {S ⊆N : |S| ≤K,
∑

i∈S rie
µi ≥ ν,

∑
i∈S e

µi ≤ ξ}. To prove the first part

of Lemma 3.4, assume that Fϵ(ν, ξ) ̸=∅. Pick an arbitrary S ∈ Fϵ(ν, ξ). For each S ∈ Fϵ(ν, ξ), we

have that

∑
ℓ∈S

r̃ℓ =
∑
ℓ∈S

⌊
rℓe

µℓ

ϵ ν/n

⌋
≥
∑
ℓ∈S

rℓe
µℓ

ϵ ν/n
−n ≥

⌊∑
ℓ∈S

rℓe
µℓ

ϵ ν/n

⌋
−n

(a)

≥
⌊n
ϵ

⌋
−n = G

∑
ℓ∈S

ũℓ =
∑
ℓ∈S

⌈
eµℓ

ϵ ξ/n

⌉
≤
∑
ℓ∈S

eµℓ

ϵ ξ/n
+n ≤

⌈∑
ℓ∈S

eµℓ

ϵ ξ/n

⌉
+n

(b)

≤
⌈n
ϵ

⌉
+n = H ,

where inequalities (a) and (b) follow because S ∈ Fϵ(ν, ξ). The above chains of inequalities imply

that F (G,H,n)≤K. Because F (G,H,n)≤K, let S̃ be the corresponding subset determined by
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the dynamic program. It follows that |S̃| ≤K,
∑

ℓ∈S̃ r̃ℓ ≥G, and
∑

ℓ∈S̃ ũℓ ≤H, and thus, using the

definition of r̃ℓ and ũℓ, we have

∑
ℓ∈S̃

rℓe
µℓ

ϵ ν/n
≥
∑
ℓ∈S̃

⌊
rℓe

µℓ

ϵ ν/n

⌋
=
∑
ℓ∈S̃

r̃ℓ ≥ G and
∑
ℓ∈S̃

eµℓ

ϵ ξ/n
≤
∑
ℓ∈S̃

⌈
eµℓ

ϵ ξ/n

⌉
=
∑
ℓ∈S̃

ũℓ ≤ H ,

which implies that

∑
ℓ∈S̃

rℓe
µℓ ≥ ϵ ν

n
G ≥ ϵ ν

n

(n
ϵ
− 1−n

)
≥ ν(1− 2ϵ) and

∑
ℓ∈S̃

eµℓ ≤ ϵ ξ

n
H ≤ ϵ ξ

n

(n
ϵ
+1+n

)
≤ ξ(1+2ϵ) ,

which is the desired result.

Appendix E: Proof of Theorem 4.1(a)

It follows from the definition of Q(x) that

Q′(x) = −
[
f(x)

x

A

f(x)

f ′(x)

A
+ log

(
f(x)

A

)(xf ′(x)− f(x)

x2

)]
= −

[
f ′(x)

x
+ log

(
f(x)

A

)(xf ′(x)− f(x)

x2

)]
(a)
= −

[
1

x
− α/(1+α)

x(2+α)/(1+α)
+ log

(
f(x)

A

)
1/(1+α)

x(2+α)/(1+α)

]
= − 1/(1+α)

x(2+α)/(1+α)

[
(1+α)x1/(1+α) −

(
α + logA− log f(x)

)]
=

1/(1+α)

x(2+α)/(1+α)

[(
α + logA− log f(x)

)
− (1+α)x1/(1+α)

]
,

where (a) follows because f ′(x) = 1− α/(1+α)

x1/(1+α) , so

f ′(x)

x
=

1

x
− α/(1+α)

x(2+α)/(1+α)
and

xf ′(x)− f(x)

x2
=

1
1+α

xα/(1+α)

x2
=

1/(1+α)

x(2+α)/(1+α)
.

So, the sign of Q′(x) is determined by the sign of
(
α + logA − log f(x)

)
− (1 + α)x1/(1+α).

Note that the function x 7→
(
α + logA − log f(x)

)
is a strictly decreasing function and

the value as x ↓ 1 is equal to ∞, and the value as x ↑ ∞ is −∞. On the other hand, the

function x 7→ (1 + α)x1/(1+α) is strictly increasing with a value of (1 + α) at x = 1, and its

value as x ↑ ∞ is ∞. So, these two functions intersect each other at exactly a single point,

say h∗, and we have Q′(x) > 0 for all x < h∗, Q′(h∗) = 0, and Q′(x) < 0 for all x > h∗.

This shows that Q is quasi-concave and has a unique maximizer at h∗. Moreover, note that

Q′(f−1(A)) = 1/(1+α)

(f−1(A))
(2+α)/(1+α)

[
α − (1+α) (f−1(A))

1/(1+α)
]
< 0 because f−1(A)≥ 1. Therefore,

h∗ < f−1(A), which completes part (a).
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Appendix F: Proof of Lemma 5.2

The proof of Lemma 5.2 uses the following lemma that establishes an important property of the

derivatives of gα.

Lemma F.1 (Derivatives of gα) For each α>−1 and y ∈R+, y

(
g′α(y)

gα(y)
− g′′α(y)

g′α(y)

)
≤ 1 .

Proof: Fix an arbitrary α > −1. For ease of exposition, we will drop the reference to α and just

write f and g. Because f(x) = x−xα/(1+α) and f(g(y)) = y, it follows from the the Inverse Function

Theorem and the Chain Rule that

g′(y) =
1

f ′(g(y))
=

1

1− α/(1+α)

g(y)1/(1+α)

g′′(y) = − f ′′(g(y))g′(y)[
f ′(g(y))

]2 = − α/(1+α)2

g(y)(2+α)/(1+α)
× g′(y)(

1− α/(1+α)

g(y)1/(1+α)

)2 ,

where we use the fact that f ′(x) = 1− α/(1+α)

x1/(1+α) and f ′′(x) = α/(1+α)2

x(2+α)/(1+α) . Therefore, it follows that

g′(y)

g(y)
=

1

g(y)− α
1+α

g(y)α/(1+α)

g′′(y)

g′(y)
= − α/(1+α)2

g(y)(2+α)/(1+α)
× 1(

1− α/(1+α)

g(y)1/(1+α)

)2

= − α/(1+α)2

g(y)1/(1+α)
× 1(

g(y)− α
1+α

g(y)α/(1+α)

)(
1− α/(1+α)

g(y)1/(1+α)

)
= − α/(1+α)2(

g(y)− α
1+α

g(y)α/(1+α)

)(
g(y)1/(1+α) − α

1+α

) .

Because y= f(g(y)) = g(y)− g(y)α/(1+α), it follows that

y

(
g′(y)

g(y)
− g′′(y)

g′(y)

)
=

g(y)− g(y)α/(1+α)

g(y)− α
1+α

g(y)α/(1+α)

(
1 +

α/(1+α)2

g(y)1/(1+α) − α
1+α

)

=
g(y)− g(y)α/(1+α)

g(y)− α
1+α

g(y)α/(1+α)
× g(y)1/(1+α) − [α/(1+α)]

2

g(y)1/(1+α) − α
1+α

. (11)

Because g(y) ≥ 1 and α > −1, the denominator in the expression on the righthand side of

Equation (11) is always positive. So,

y

(
g′(y)

g(y)
− g′′(y)

g′(y)

)
≤ 1

⇔
(
g(y)− g(y)α/(1+α)

)(
g(y)1/(1+α) − α2

(1+α)2

)
≤
(
g(y)− α

1+α
g(y)α/(1+α)

)(
g(y)1/(1+α) − α

1+α

)
(a)⇔ − g(y)

(
1+

α2

(1+α)2

)
≤−g(y)

2α

1+α
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⇔ 0≤ 1− 2α

1+α
+

α2

(1+α)2

⇔ 0≤
(
1− α

1+α

)2

,

where (a) follows by multiplying out the expressions on both sides and canceling common terms.

This establishes the desired result.

Here is the proof of Lemma 5.2.

Proof of Lemma 5.2: Fix an arbitrary α>−1. For ease of exposition, we will drop the reference to

α and just write g. It follows from the definition that

h′(y) =
g′(y)

g(y)
and h′′(y) =

g(y)g′′(y)− [g′(y)]2

g(y)2
,

which implies that

h′′(y)+
h′(y)

y
≥ 0 ⇔ g(y)g′(y)+ y ( g(y)g′′(y) − [g′(y)]2 )

y [g(y)]2
≥ 0

(a)⇔ g(y)g′(y)≥ y
(
[g′(y)]2 − g(y)g′′(y)

)
(b)⇔ 1≥ y

(
g′(y)

g(y)
− g′′(y)

g′(y)

)
,

where (a) follows because g(y)≥ 1 and y > 0, and (b) follows because g(y) is strictly increasing so

g′(y)> 0. The desired result then follows from Lemma F.1.

Appendix G: Preprocessing the Dataset from Expedia

Our approach for preprocessing the dataset is similar to the method used by Gao et al. (2021),

and we provide the details here for completeness. The raw dataset includes about ten million rows

and 54 columns. In some of the search queries, the price is given as the total amount over the

whole length of the stay, whereas in some others, the price is given as the amount per night. It

is not possible to reliably tell which approach is used in each search query. To avoid ambiguity,

we focused our attention on the search queries for a single night stay and dropped the remaining

search queries. Furthermore, we dropped the columns for which the entries are missing for more

than 25% of the rows. Considering the remaining columns, we dropped the search queries for which

the entries were missing in one of the remaining columns. Lastly, some rows in the dataset included

entries that are too large or too small. We dropped all search queries which had an entry in a

column that falls outside the 0.5th and 99.5th percentile band of the entries in the corresponding

column. After preprocessing the dataset, we end up with 595,965 rows representing 34,561 search

queries and 15 columns.



ec11

Appendix H: Testing the Statistical Significance of α

In each of the 90 datasets that we generate, we test the null hypothesis that α= 0 using both the

Likelihood-Ratio (Severini 2000) and Quasi-t tests (Ben-Akiva and Lerman 1985, pages 23-26). We

describe the two tests below.

Under the Likelihood-Ratio test, the test statistic is −2(LogLik∗
SML − LogLik∗

CML) where

LogLik∗
CML is the maximum log-likelihood of our Context-MNL model under the training dataset

and LogLik∗
SML is the maximum log-likelihood value of the standard multinomial logit model under

the same training dataset. Because the standard multinomial logit model corresponds to α = 0

in our model, under the null hypothesis, the test statistic −2(LogLik∗
SML − LogLik∗

CML) has a

chi-squared distribution with one degree of freedom. We can then reject the null hypothesis by

comparing the value of the test statistics and critical value of chi-squared distribution with one

degree of freedom.

In our estimation, we represent α = eγ − 1 where γ ∈ R. The null hypothesis that α = 0 is

thus equivalent to γ = 0. Under the Quasi-t test, the test statistic is γ̂/
√

Var(γ̂), where γ̂ is the

maximum likelihood estimates of γ and Var(γ̂) denotes its variance. Under fairly general conditions,

maximum likelihood estimators are asymptotically normal, thus we use test statistic γ̂/
√
Var(γ̂)

and t-test with N −K degrees, where N is number of training samples and K is total number

of parameters we estimate. Since N −K is very large under our case, we directly use a normal

test. We can then reject the null hypothesis by comparing the value of the test statistics and

critical value of standard normal distribution. To compute
√
Var(γ̂), we use the Cramer-Rao bound

to estimate it, by numerically computing the Hessian matrix of log-likelihood function of the

Context-MNL model at maximum likelihood estimates, and the inverse of negative Hessian matrix

gives an approximation to the covariance matrix. In this case, the element in the corresponding

diagonal entry would be our estimated Var(γ̂). In our experiments, we use two ways to compute

the Hessian matrix: (1) we compute the Hessian directly using the finite difference method, and

(2) we use the estimated Hessian obtained from the fminunc function in MATLAB. Both ways of

computing the Hessian matrix give very similar results.


