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Abstract: We present a new deterministic linear program for the network revenue management problem with customer choice
behavior. The novel aspect of our linear program is that it naturally generates bid prices that depend on how much time is left
until the time of departure. Similar to the earlier linear program used by van Ryzin and Liu (2004), the optimal objective value
of our linear program provides an upper bound on the optimal total expected revenue over the planning horizon. In addition, the
percent gap between the optimal objective value of our linear program and the optimal total expected revenue diminishes in an
asymptotic regime where the leg capacities and the number of time periods in the planning horizon increase linearly with the same
rate. Computational experiments indicate that when compared with the linear program that appears in the existing literature, our
linear program can provide tighter upper bounds, and the control policies that are based on our linear program can obtain higher
total expected revenues. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 563–580, 2008
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1. INTRODUCTION

A prevalent assumption in the revenue management liter-
ature is that each customer arrives into the system with the
intention of purchasing a particular itinerary. If its intended
itinerary is available for purchase, then the customer pur-
chases this itinerary. Otherwise, it does not purchase any-
thing at all. In reality, however, there may be many different
itineraries that are acceptable to a particular customer and
the customer makes a choice among the acceptable itiner-
aries that are available for purchase. This type of customer
choice behavior is especially true nowadays with the Internet
bringing a variety of itinerary choices to the customers.

Recently, [9] utilized a deterministic linear program that
was first proposed by [4] to develop control policies for the
network revenue management problem with customer choice
behavior. This linear program includes one constraint for
each flight leg and the right side of these constraints are the
remaining leg capacities. Consequently, [9] used the optimal
values of the dual variables associated with these capacity
constraints to estimate the opportunity cost of a unit of capac-
ity. They employ these opportunity costs to extend the popular
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bid pricing and dynamic programming decomposition ideas
to the network revenue management problem with customer
choice behavior.

In this article, we propose a new deterministic linear pro-
gram for the network revenue management problem with
customer choice behavior. Although one should intuitively
expect the opportunity costs to decrease as the departure time
of the flight legs approaches and fewer opportunities to uti-
lize the leg capacities remain, the earlier linear program used
by [9] essentially assumes that the opportunity costs of the
leg capacities stay constant throughout the planning horizon.
Our main objective in this article is to remedy this shortcom-
ing. In particular, we propose a linear program that naturally
generates opportunity costs that depend on the number of
time periods left until the departure time. The hope is that
our linear program captures the characteristics of the prob-
lem more accurately and obtains more refined opportunity
costs.

The method that we use to construct our linear program
is also of interest in and of itself. The linear program that
appears in the existing literature is a deterministic and contin-
uous approximation to the original problem. It is based on the
a priori assumption that the random quantities take on their
expected values and the itineraries can be sold in fractional
amounts, in which case the network revenue management
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problem can be formulated as a linear program. The usual
approach is to analyze how this linear program relates to the
original problem through a posteriori analyses. On the other
hand, we construct our linear program directly by using the
dynamic programming formulation of the network revenue
management problem. The fundamental idea is to relax the
capacity availability constraints in the dynamic programming
formulation by associating Lagrange multipliers with them,
in which case the dynamic programming formulation decom-
poses by the time periods and we obtain simple expressions
for the value functions. A good set of values for the Lagrange
multipliers can be obtained by minimizing a dual function.
The linear program that we propose in this paper essentially
solves the problem of minimizing the dual function.

Our linear program shares the appealing features of the
earlier linear program used by [9]. In particular, the opti-
mal objective value of our linear program provides an upper
bound on the optimal total expected revenue over the planning
horizon. In an asymptotic regime where the leg capacities and
the number of time periods in the planning horizon increase
linearly with the same rate, the percent gap between the opti-
mal objective value of our linear program and the optimal
total expected revenue diminishes. Our linear program also
allows us to extend the popular bid pricing and dynamic
programming decomposition ideas to the network revenue
management problem with customer choice behavior. On the
other hand, when compared with the earlier linear program
used by [9], computational experiments indicate that our lin-
ear program provides tighter upper bounds on the optimal
total expected revenues and the performances of the control
policies that are based on our linear program tend to be better.
Furthermore, although we do not pursue here, it is straightfor-
ward to generalize our approach to incorporate cancellations
by using the approach followed by [8]. This strengthens
the links between the dynamic programming and linear pro-
gramming formulations of the network revenue management
problem.

Customer choice behavior is an active area of research.
Belobaba and Weatherford [2] extend the expected marginal
seat revenue heuristics of Belobaba [1] to incorporate the
possibility that a customer buys a more expensive itinerary
when the cheaper itinerary is closed. Talluri and van Ryzin [7]
give a careful analysis of the single-leg revenue management
problem with customer choice behavior and characterize the
conditions under which protection level policies are optimal.
Zhang and Cooper [12] consider parallel flights and pro-
vide decomposition methods to compute upper and lower
bounds on the optimal total expected revenue over the plan-
ning horizon. Gallego et al. [4] analyze the benefits from
selling flexible itineraries that allow the airlines to assign
a customer to one of the alternative itineraries right before
the departure time. The authors develop a linear program to

approximate the optimal total expected revenue over the plan-
ning horizon. This linear program plays a crucial role in the
network revenue management literature and it is subsequently
used in [9] to develop control policies for the network rev-
enue management problem with customer choice behavior.
The particular focus of the latter paper is on using the linear
program developed by Gallego et al. [4] to extend the bid
pricing and dynamic programming decomposition ideas to
deal with the customer choice behavior. Zhang and Adelman
[11] developed the control policies by using the linear pro-
gramming representation of the dynamic programming for-
mulation of the network revenue management problem. Their
approach is related to our linear program in the sense that
it generates opportunity costs that depend on the number
of time periods left until the departure time, but our lin-
ear program is considerably simpler. Finally, van Ryzin and
Vulcano [10] compute protection levels by using a stochastic
approximation method that avoids parametric assumptions
about the model that governs the choice behavior of the
customers.

We make the following research contributions in this
article. (1) We present a new deterministic linear program
for the network revenue management problem with customer
choice behavior. The novel aspect of our linear program is
that it naturally generates opportunity costs that depend on
how much time is left until the time of departure. (2) We prove
that the optimal objective value of our linear program pro-
vides an upper bound on the optimal total expected revenue
over the planning horizon. In an asymptotic regime where the
leg capacities and the number of time periods in the planning
horizon increase linearly with the same rate, we establish
that the percent gap between the optimal objective value
of our linear program and the optimal total expected rev-
enue diminishes. (3) The number of decision variables in our
linear program increases exponentially with the number of
itineraries, but we show that it is possible to solve our linear
program efficiently by using standard column generation. (4)
When compared with the deterministic linear program used
by van Ryzin and Liu [9], computational experiments indi-
cate that our linear program provides tighter upper bounds
on the optimal total expected revenues and the performances
of the control policies that are based on our linear program
tend to be better.

The rest of the article is organized as follows. Section 2
formulates the problem as a dynamic program. Section 3
presents the earlier linear program used by van Ryzin and
Liu [9]. Section 4 derives our linear program and shows that
it provides an upper bound on the optimal total expected rev-
enue. Section 5 compares the upper bounds provided by the
two linear programs. This section also shows that the percent
gap between the upper bound provided by our linear pro-
gram and the optimal total expected revenue diminishes as
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the leg capacities and the number of time periods in the plan-
ning horizon increase linearly with the same rate. Section 6
describes different control policies that are based on the lin-
ear programs in Sections 3 and 4. Section 7 shows that our
linear program can be solved efficiently as long as the cus-
tomer choice behavior is governed by the multinomial logit
model with disjoint consideration sets. Section 8 presents
computational experiments.

2. PROBLEM FORMULATION

We have a set of flight legs to serve the customers that
arrive over time with the intention of purchasing itineraries.
At each time period, we need to decide which itineraries to
offer to the customers. Each customer reviews the offered
itineraries and purchases at most one of them according to a
probability distribution defined over the set of offered itiner-
aries. A sold itinerary generates a revenue and consumes the
capacities on the relevant flight legs.

The set of flight legs in the airline network is L and the set
of itineraries that can be offered to the customers is J . The
initial capacity on flight leg i is ci . If a customer purchases
itinerary j , then we generate a revenue of rj and consume aij

units of capacity on flight leg i. Naturally, we have aij = 0
when itinerary j does not include flight leg i. The problem
takes place over the planning horizon T = {1, . . . , τ } and all
flight legs depart at time period τ + 1. We assume that the
time periods correspond to small time intervals so that there is
at most one customer arrival at each time period. The prob-
ability that there is a customer arrival at each time period
is λ. If the set of itineraries that we offer to the customers
is S, then a customer purchases itinerary j with probabil-
ity Pj (S). Naturally, we have Pj (S) = 0 when j �∈ S. We
use Pφ(S) = 1 − ∑

j∈S Pj (S) to denote the probability that
a customer does not purchase an itinerary. We assume that
the arrivals in different time periods and the purchasing deci-
sions of different customers are independent of each other.
As evident from our notation, we also assume that the proba-
bility that there is a customer arrival and the probability that
a customer purchases a particular itinerary do not depend
on the time period. This assumption is only for notational
brevity and it is straightforward to allow these probabilities
to depend on the time period. The objective is to maximize
the total expected revenue over the planning horizon.

Using xit to denote the remaining capacity on flight leg
i at time period t , xt = {xit : i ∈ L} captures the state of
the system. As a function of the remaining leg capacities, we
need to decide which itineraries to offer at each time period.
Since it is feasible to offer an itinerary only if we have enough
capacity on all of the flight legs that are included in this itin-
erary, the set of itineraries that we can offer at time period t

is

O(xt ) = {S ⊂ J : 1(j ∈ S) aij ≤ xit ∀ i ∈ L, j ∈ J },
where 1(·) is the indicator function. In this case, the opti-
mal policy can be found by computing the value functions
through the optimality equation

Vt(xt ) = max
S∈O(xt )




∑
j∈J

λ Pj (S)

[
rj + Vt+1

(
xt −

∑
i∈L

aij ei

)]

+ [1 − λ + λ Pφ(S)]Vt+1(xt )




= max
S∈O(xt )




∑
j∈J

λ Pj (S)

[
rj + Vt+1

(
xt −

∑
i∈L

aij ei

)

− Vt+1(xt )




 + Vt+1(xt ), (1)

where ei is the |L|-dimensional unit vector with a one in
the element corresponding to i ∈ L and the second equal-
ity follows from the fact that Pφ(S) = 1 − ∑

j∈S Pj (S);
see van Ryzin and Liu [9]. Throughout the rest of the
paper, we assume that λ = 1 for notational brevity. We
note that this is equivalent to letting P̃j (S) = λ Pj (S) and
P̃φ(S) = 1−λ+λ Pφ(S) and working with the probabilities
{P̃j (S) : j ∈ S, S ⊂ J } and {P̃φ(S) : S ⊂ J }.

In the optimality equation above, the number of possible
values for the state variable xt increases exponentially with
the number of flight legs and the number of possible val-
ues for the decision variable S increases exponentially with
the number of itineraries. Therefore, it is quite difficult to
solve this optimality equation. In the next two sections, we
describe approximate methods that can be used to decide
which itineraries to offer to the customers at each time period.

3. DETERMINISTIC LINEAR PROGRAM

An alternative to solving the optimality equation in (1) is
to employ a deterministic and continuous approximation to
the problem. This approximation assumes that the random
quantities take on their expected values and the itineraries
can be sold in fractional amounts. As a result, we obtain
the linear programming formulation used by van Ryzin and
Liu [9].

To formulate the linear program, we let ht (S) be the fre-
quency with which we offer set S at time period t . In this
case, the expected revenue at time period t is∑

S⊂J

∑
j∈S

Pj (S) rj ht (S) =
∑
S⊂J

R(S) ht (S),
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where R(S) = ∑
j∈S Pj (S) rj is the expected revenue when

we offer set S. Similarly, using Qi(S) = ∑
j∈S Pj (S) aij

to denote the expected capacity consumption on flight leg i

when we offer set S, the expected capacity consumption on
flight leg i at time period t is∑

S⊂J

∑
j∈S

Pj (S) aij ht (S) =
∑
S⊂J

Qi(S) ht (S).

Therefore, we can use the optimal objective value of the linear
program

ZLP = max
∑
t∈T

∑
S⊂J

R(S) ht (S) (2)

subject to
∑
t∈T

∑
S⊂J

Qi(S) ht (S) ≤ ci

∀ i ∈ L (3)∑
S⊂J

ht (S) = 1 ∀ t ∈ T (4)

ht (S) ≥ 0 ∀ S ⊂ J , t ∈ T (5)

as an approximation to the optimal total expected revenue
over the planning horizon; see [9]. The decision variables
in problem (2)–(5) are {ht (S) : S ⊂ J , t ∈ T }. The first
set of constraints ensure that the total expected capacity con-
sumptions over the planning horizon do not exceed the leg
capacities. The second set of constraints ensure that the total
frequency with which we offer the sets at each time period is
equal to one. Since the empty set is a subset of J , the second
set of constraints allow not offering an itinerary with a certain
frequency.

We emphasize that by using the approach followed by
van Ryzin and Liu [9], it is possible to reduce the num-
ber of decision variables in problem (2)–(5) by a factor of
|T |, but the way we present this problem is more useful
for the subsequent development in the article. In addition,
problem (2)–(5) allows time dependent probabilities of the
form {Pjt (S) : j ∈ S, S ⊂ J , t ∈ T } simply by using
Rt(S) = ∑

j∈S Pjt (S) rj and Qit (S) = ∑
j∈S Pjt (S) aij

instead of R(S) and Qi(S).
The number of decision variables in problem (2)–(5)

increases exponentially with the number of itineraries. How-
ever, the number of constraints is only |L| + |T | and this
suggests solving problem (2)–(5) by using column genera-
tion. In Section 7, we briefly revisit solving problem (2)–(5)
by using column generation under a particular choice of the
probabilities {Pj (S) : j ∈ S, S ⊂ J }.

There are two primary uses of problem (2)–(5). First, this
problem can be used to decide which itineraries to offer. In
particular, letting {π̂i : i ∈ L} be the optimal values of
the dual variables associated with constraints (3), the idea
is to use π̂i as the estimate of the opportunity cost of a

unit of capacity on flight leg i. If the set of itineraries that
we offer is S, then the expected revenue that we obtain is∑

j∈S Pj (S) rj and the total expected opportunity cost of the
consumed capacities is

∑
j∈S

∑
i∈L Pj (S) aij π̂i . Therefore,

it is sensible to offer the feasible set of itineraries that max-
imize the difference between the expected revenue and the
total expected opportunity cost of the consumed capacities.
In other words, we can solve the problem

max
S∈O(xt )




∑
j∈S

Pj (S)

[
rj −

∑
i∈L

aij π̂i

]
 (6)

to decide which itineraries to offer at time period t . In revenue
management language, these estimates of the opportunity
costs are called bid prices. Letting Ṽt (xt ) = ∑

i∈L π̂i xit for
all t ∈ T and noting that Ṽt+1(xt )−Ṽt+1(xt −∑

i∈L aij ei) =∑
i∈L aij π̂i , it is easy to see that solving problem (6) to decide

which itineraries to offer is equivalent to approximating
Vt+1(xt ) on the right side of (1) by Ṽt+1(xt ).

Second, Gallego et al. [4] show that the optimal objec-
tive value of problem (2)–(5) provides an upper bound on
the optimal total expected revenue. In other words, letting
c = {ci : i ∈ L}, we have V1(c) ≤ ZLP . This informa-
tion can be useful when assessing the optimality gap of a
suboptimal decision rule such as the one in (6).

The decision rule in (6) implicitly assumes that the oppor-
tunity costs of the leg capacities stay constant through-
out the planning horizon. In reality, however, one should
expect the opportunity costs to decrease as the departure time
approaches and fewer opportunities to utilize the leg capac-
ities remain. In practical implementations, as the departure
time approaches, the time dependent nature of the opportu-
nity costs is “mimicked” by resolving problem (2)–(5) with
the remaining number of time periods in the planning hori-
zon and the remaining leg capacities. In the next section, we
develop an alternative linear program that naturally gener-
ates bid prices that depend on the number of time periods left
until the departure time. The hope is that this linear program
captures the characteristics of the problem more accurately
and is able to obtain more refined bid prices.

4. AN ALTERNATIVE DETERMINISTIC LINEAR
PROGRAM

In this section, we develop a new linear program that gen-
erates bid prices that depend on the number of time periods
left until the departure time. Noting the constraints captured
by the set O(xt ) in the optimality equation in (1), the fun-
damental idea is to relax these constraints by associating the
Lagrange multipliers α = {αijt : i ∈ L, j ∈ J , t ∈ T } with
them. In other words, this idea suggests solving the optimality
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equation

V α
t (xt ) = max

S⊂J




∑
j∈J

Pj (S)
[
rj + V α

t+1

(
xt − ∑

i∈L aij ei

)

−V α
t+1(xt )

]
−

∑
i∈L

∑
j∈J

αijt 1(j ∈ S) aij




+
∑
i∈L

∑
j∈J

αijt xit + V α
t+1(xt ), (7)

where the superscripts in the value functions emphasize that
the solution to the optimality equation above depends on the
Lagrange multipliers. The next proposition shows that we
obtain upper bounds on the value functions by solving the
optimality equation in (7).

PROPOSITION 1: If the Lagrange multipliers are positive,
then we have Vt(xt ) ≤ V α

t (xt ).

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t+1 and letting
Ŝ be an optimal solution to problem (1), we have

V α
t (xt ) ≥

∑
j∈J

Pj (Ŝ)

[
rj + V α

t+1

(
xt − ∑

i∈L
aij ei

)]

+

1 −

∑
j∈J

Pj (Ŝ)


V α

t+1(xt )

−
∑
i∈L

∑
j∈J

αijt1(j ∈ Ŝ) aij +
∑
i∈L

∑
j∈J

αijt xit

≥
∑
j∈J

Pj (Ŝ)

[
rj + Vt+1

(
xt − ∑

i∈L
aij ei

)]

+

1 −

∑
j∈J

Pj (Ŝ)


Vt+1(xt ),

where the first inequality follows from the fact that Ŝ is a fea-
sible but not necessarily an optimal solution to problem (7)
and the second inequality follows from the induction assump-
tion and the fact that Ŝ ∈ O(xt ) and αijt ≥ 0 for all i ∈ L,
j ∈ J . The result follows by noting that the last expression
above is equal to Vt(xt ). �

The next proposition shows that there is a simple solution
to the optimality equation in (7). For notational brevity, in
this proposition and throughout the rest of the article, we let

Lα
it =

∑
j∈J

αijt + · · · +
∑
j∈J

αijτ (8)

Mα
t = max

S⊂J




∑
j∈J

Pj (S)

[
rj −

∑
i∈L

aij Lα
i,t+1

]

−
∑
i∈L

∑
j∈J

αijt 1(j ∈ S) aij


 . (9)

We note that both Lα
it and Mα

t are straightforward functions of
the Lagrange multipliers as long as we can solve problem (9)
efficiently. We are now ready to show the next proposition.

PROPOSITION 2: The solution to the optimality equation
in (7) is given by

V α
t (xt ) = Mα

t + · · · + Mα
τ +

∑
i∈L

Lα
it xit .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, we
have V α

t+1(xt −∑
i∈L aij ei)−V α

t+1(xt ) = −∑
i∈L Lα

i,t+1 aij .
Using this expression and the induction assumption in (7),
we obtain

V α
t (xt ) = max

S⊂J




∑
j∈J

Pj (S)

[
rj −

∑
i∈L

Lα
i,t+1 aij

]

−
∑
i∈L

∑
j∈J

αijt 1(j ∈ S) aij




+
∑
i∈L

∑
j∈J

αijt xit + Mα
t+1 + · · · + Mα

τ +
∑
i∈L

Lα
i,t+1 xit .

The result follows by noting the definition of Mα
t in (9) and

the fact that Lα
it = ∑

j∈J αijt + Lα
i,t+1. �

The optimal total expected revenue is V1(c). By Propo-
sition 1, V1(c) is bounded from above by V α

1 (c) as long as
the Lagrange multipliers are positive. Therefore, to obtain
the tightest possible upper bound on V1(c), we can solve the
problem

min
α≥0

{
V α

1 (c)
}
. (10)

It turns out that we can obtain an optimal solution to the
problem above by solving a linear program that very much
resembles problem (2)–(5). To see this, we first note that

V α
1 (c) =

∑
t∈T

Mα
t +

∑
i∈L

Lα
i1 ci (11)

Naval Research Logistics DOI 10.1002/nav
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Mα
t = max

S⊂J

{
R(S) −

∑
i∈L

Qi(S) Lα
i,t+1

−
∑
i∈L

∑
j∈J

αijt 1(j ∈ S) aij


 , (12)

where the first equality is by Proposition 2 and the second
equality is by the definitions of Mα

t , R(S) and Qi(S). In this
case, the next proposition shows that the linear program

ζLP = min
∑
t∈T

µt +
∑
i∈L

ci �i1 (13)

subject to µt ≥ R(S) −
∑
i∈L

Qi(S) �i,t+1

−
∑
i∈L

∑
j∈J

1(j ∈ S) aij αij t ∀ S ⊂ J , t ∈ T \ {τ }

(14)

µτ ≥ R(S) −
∑
i∈L

∑
j∈J

1(j ∈ S) aij αijτ ∀ S ⊂ J

(15)

�it =
∑
j∈J

αijt + . . . +
∑
j∈J

αijτ ∀ i ∈ L, t ∈ T

(16)

µt and �it are free, αijt ≥ 0 ∀ i ∈ L, j ∈ J , t ∈ T
(17)

is equivalent to problem (10).

PROPOSITION 3: We have ζLP = minα≥0{V α
1 (c)}.

PROOF: If α̂ = {α̂ij t : i ∈ L, j ∈ J , t ∈ T } is an opti-
mal solution to problem (10), then the definition of Lα

it in (8)
and the definition of Mα

t in (12) imply that {Mα̂
t : t ∈ T },

{Lα̂
it : i ∈ L, t ∈ T }, {α̂ij t : i ∈ L, j ∈ J , t ∈ T }

is a feasible solution to problem (13)–(17) with the objec-
tive value

∑
t∈T Mα̂

t + ∑
i∈L ci L

α̂
i1. Therefore, we have

ζLP ≤ ∑
t∈T Mα̂

t +∑
i∈L ci L

α̂
i1 = V α̂

1 (c) = minα≥0{V α
1 (c)},

where the first equality follows from (11).
On the other hand, if {µ̂t : t ∈ T }, {�̂it : i ∈ L, t ∈ T },

{α̂ij t : i ∈ L, j ∈ J , t ∈ T } is an optimal solution to problem
(13)–(17), then we have �̂it = Lα̂

it for all i ∈ L, t ∈ T by con-
straints (16). Noting the definition of Mα

t in (12), constraints
(14)–(15) together with the fact that problem (13)–(17) is a
minimization problem imply that µ̂t = Mα̂

t for all t ∈ T .
Therefore, we have ζLP = ∑

t∈T Mα̂
t + ∑

i∈L Lα̂
i1 ci =

V α̂
1 (c) ≥ minα≥0{V α

1 (c)}. �

We emphasize that the discussion in the proof of Proposi-
tion 3 also shows that if {µ̂t : t ∈ T }, {�̂it : i ∈ L, t ∈ T },
{α̂ij t : i ∈ L, j ∈ J , t ∈ T } is an optimal solution to problem

(13)–(17), then {α̂ij t : i ∈ L, j ∈ J , t ∈ T } is an optimal
solution to problem (10).

Associating the dual variables {yt (S) : S ⊂ J , t ∈ T }
with constraints (14)–(15) and the dual variables {zit : i ∈
L, t ∈ T } with constraints (16), the dual of problem (13)–(17)
is

ζLP = max
∑
t∈T

∑
S⊂J

R(S) yt (S)

subject to
∑
S⊂J

1(j ∈ S) aij yt (S)

≤ zi1 + . . . + zit ∀ i ∈ L, j ∈ J , t ∈ T
zi1 = ci ∀ i ∈ L
zit = −

∑
S⊂J

Qi(S) yt−1(S)

∀ i ∈ L, t ∈ T \ {1}∑
S⊂J

yt (S) = 1 ∀ t ∈ T

yt (S) ≥ 0, zit is free ∀ S ⊂ J , i ∈ L, t ∈ T .

Substituting for the decision variables {zit : i ∈ L, t ∈ T } by
using the second and third sets of constraints, we can drop
these decision variables and the problem above becomes

ζLP = max
∑
t∈T

∑
S⊂J

R(S) yt (S) (18)

subject to
∑
S⊂J

Qi(S) y1(S) + · · ·

+
∑
S⊂J

Qi(S) yt−1(S)

+
∑
S⊂J

1(j ∈ S) aij yt (S) ≤ ci

∀ i ∈ L, j ∈ J , t ∈ T (19)∑
S⊂J

yt (S) = 1 ∀ t ∈ T (20)

yt (S) ≥ 0 ∀ S ⊂ J , t ∈ T . (21)

Problem (18)–(21) is the deterministic linear program that
we propose in this article. We have ζLP = minα≥0{V α

1 (c)}
by Proposition 3 and minα≥0{V α

1 (c)} ≥ V1(c) by Proposition
1. Therefore, similar to the optimal objective value of prob-
lem (2)–(5), the optimal objective value of problem (18)–(21)
provides an upper bound on V1(c).

Problems (2)–(5) and (18)–(21) are similar to each other.
As a matter of fact, the only difference between them is in the
way in which they capture the capacity availabilities. Con-
straints (3) in problem (2)–(5) are relatively straightforward
and they ensure that the total expected capacity consumptions
over the planning horizon do not exceed the leg capacities.
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The interpretation of constraints (19) in problem (18)–(21) is
a bit more intricate. We begin by noting that the right side of
the constraints

1(j ∈ S) aij ≤ ci −
∑

S ′⊂J
Qi(S ′) y1(S ′) − · · ·

−
∑

S ′⊂J
Qi(S ′) yt−1(S ′)

∀ S ⊂ J , i ∈ L, j ∈ J , t ∈ T (22)

is the expected remaining capacity on flight leg i at time
period t . Therefore, constraints (22) ensure that if we offer
a set that includes itinerary j at time period t , then the
capacity consumed by itinerary j on flight leg i should not
exceed the expected remaining capacity on flight leg i. Con-
straints (22) can be interpreted as capacity constraints, but
they apply to each time period, each itinerary, each flight
leg and each set. In contrast, constraints (3) are in aggre-
gate form in the sense that they apply only to each flight
leg. If we multiply constraints (22) with yt (S), add over all
S ⊂ J and note that

∑
S⊂J yt (S) = 1, then we obtain con-

straints (19) in problem (18)–(21). This discussion suggests
that constraints (19) are in a more disaggregate form than
constraints (3), and hence, they may be stronger. However,
in the next section, we give two examples to show that it is
possible to find {yt (S) : S ⊂ J , t ∈ T } that satisfy con-
straints (19), but not constraints (3), and it is possible to find
{ht (S) : S ⊂ J , t ∈ T } that satisfy constraints (3), but not
constraints (19). Therefore, neither of constraints (3) and (19)
are provably stronger. In practice, however, since constraints
(19) operate at a more disaggregate level than constraints (3),
the upper bounds obtained by problem (18)–(21) tend to be
tighter than the upper bounds obtained by problem (2)–(5).

The number of decision variables in problem (18)–(21)
increases exponentially with the number of itineraries. How-
ever, the number of constraints is |L| |J | |T | + |T | and this
suggests solving problem (18)–(21) by using column gen-
eration. In Section 7, we discuss solving problem (18)–(21)
by using column generation under a particular choice of the
probabilities {Pj (S) : j ∈ S, S ⊂ J }.

5. COMPARISON OF THE DETERMINISTIC
LINEAR PROGRAMS

The optimal objective values of problems (2)–(5) and (18)–
(21) both provide upper bounds on the optimal total expected
revenue. In this section, we begin by presenting two exam-
ples that show that neither of these upper bounds is provably
tighter than the other one. After this inconclusive result, we
consider an asymptotic regime where the leg capacities and
the number of time periods in the planning horizon increase
linearly with the same rate. In this asymptotic regime, we

establish a result that roughly shows that the upper bound
obtained by problem (18)–(21) tends to be tighter than the
upper bound obtained by problem (2)–(5).

Noting that ZLP and ζLP are respectively the optimal
objective values of problems (2)–(5) and (18)–(21), we begin
with an example that shows that it is possible to have ZLP <

ζLP . We consider a problem instance with T = {1}, L = {1},
J = {1, 2}, r1 = r2 = 10, c1 = 1 and a1j = 2 for all
j ∈ {1, 2}. Letting S1, S2 and S3 respectively be the sets
{1}, {2} and {1, 2}, we use the probabilities P1(S1) = 0.9,
P2(S2) = 0.9, P1(S3) = 0.2 and P2(S3) = 0.6. Omitting the
nonnegativity constraints, problem (2)–(5) for this problem
instance becomes

ZLP = max 9 h1(S1) + 9 h1(S2) + 8 h1(S3)

subject to 1.8 h1(S1) + 1.8 h1(S2) + 1.6 h1(S3) ≤ 1

h1(S1) + h1(S2) + h1(S3) + h1(∅) = 1.

It is easy to see that ZLP = 5. On the other hand, problem
(18)–(21) is

ζLP = max 9 y1(S1) + 9 y1(S2) + 8 y1(S3)

subject to 2 y1(S1) + 2 y1(S3) ≤ 1

2 y1(S2) + 2 y1(S3) ≤ 1

y1(S1) + y1(S2) + y1(S3) + y1(∅) = 1.

We have ζLP = 9 so that ZLP < ζLP for this problem
instance.

Our second example shows that it is possible to have
ZLP > ζLP . We consider a problem instance with T = {1},
L = {1}, J = {1}, r1 = 10, c1 = 1, a11 = 2 and
P1({1}) = 0.5. Problem (2)–(5) for this problem instance
becomes

ZLP = max 5 h1({1})
subject to h1({1}) ≤ 1 and h1({1}) + h1(∅) = 1

so that we have ZLP = 5. On the other hand, problem
(18)–(21) is

ζLP = max 5 y1({1})
subject to 2 y1({1}) ≤ 1 and y1({1}) + y1(∅) = 1.

We have ζLP = 5/2 so that ZLP > ζLP for this problem
instance.

In the remainder of this section, we consider an asymptotic
regime where the leg capacities and the number of time peri-
ods in the planning horizon increase linearly with the same
rate. For this purpose, we consider a family of network rev-
enue management problems {Pθ : θ ∈ Z+} parameterized
by the scaling parameter θ . Problem Pθ takes place over the
planning horizon T θ = {1, . . . , θτ } and the initial capacity
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on flight leg i in this problem is θci . All other parameters
of problem Pθ are the same as those described in Section 2.
This is a standard way of scaling the problem in the revenue
management literature to obtain asymptotic results; see [6].

We let Zθ
LP and ζ θ

LP respectively be the optimal objec-
tive values of problems (2)–(5) and (18)–(21) when these
problems are solved with planning horizon T θ and leg
capacities {θci : i ∈ L}. The next proposition shows that
limθ→∞ ζ θ

LP /Zθ
LP ≤ 1.

PROPOSITION 4: We have limθ→∞ ζ θ
LP /Zθ

LP ≤ 1.

PROOF: The dual of problem (2)–(5) is

ZLP = min
∑
i∈L

ci πi +
∑
t∈T

σt

subject to
∑
i∈L

Qi(S) πi + σt ≥ R(S)

∀ S ⊂ J , t ∈ T
πi ≥ 0, σt is free ∀ i ∈ L, t ∈ T .

The decision variables {σt : t ∈ T } take the same value
maxS⊂J {R(S) − ∑

i∈L Qi(S) πi} in the optimal solution to
the problem above. Therefore, we can replace these deci-
sion variables with a single decision variable and write the
problem above as

ZLP = min
∑
i∈L

ci πi + τ σ (23)

subject to
∑
i∈L

Qi(S) πi + σ ≥ R(S)

∀ S ⊂ J (24)

πi ≥ 0, σ is free ∀ i ∈ L. (25)

We let {π̂i : i ∈ L}, σ̂ be an optimal solution to problem
(23)–(25). We note that if we solve this problem with plan-
ning horizon T θ and leg capacities {θci : i ∈ L}, then an
optimal solution to this problem is still {π̂i : i ∈ L}, σ̂ .
This implies that Zθ

LP = θZLP and if we let σ̂t = σ̂ for all
t ∈ T θ , then {π̂i : i ∈ L}, {σ̂t : t ∈ T θ } is still an optimal
dual solution to problem (2)–(5) when we solve this problem
with planning horizon T θ and leg capacities {θci : i ∈ L}.
In this case, by using the duality theory on problem (2)–(5),
we have

Zθ
LP = max

∑
t∈T θ

∑
S⊂J

R(S) ht (S)

+
∑
i∈L

π̂i

[
θci −

∑
t∈T θ

∑
S⊂J

Qi(S) ht (S)

]
(26)

subject to (4), (5). (27)

We let Q̂i = maxS⊂J Qi(S) for all i ∈ L and {ŷt (S) :
S ⊂ J , t ∈ T θ } be an optimal solution to problem (18)–(21)
when we solve this problem with planning horizon T θ and
leg capacities {θci : i ∈ L}. Since

∑
S⊂J ŷθτ (S) = 1 and

ŷθτ (S) ≥ 0 for all S ⊂ J , we have

∑
t∈T θ

∑
S⊂J

Qi(S) ŷt (S) − Q̂i ≤
∑
t∈T θ

∑
S⊂J

Qi(S) ŷt (S)

−
∑
S⊂J

Qi(S) ŷθτ (S) ≤
∑
t∈T θ

∑
S⊂J

Qi(S) ŷt (S)

−
∑
S⊂J

Qi(S) ŷθτ (S) +
∑
S⊂J

1(j ∈ S) aij ŷθτ (S) ≤ θci

(28)

for all i ∈ L, where the third inequality follows from con-
straints (19) for time period θτ and any itinerary j . Since
{ŷt (S) : S ⊂ J , t ∈ T θ } is a feasible but not necessarily an
optimal solution to problem (26)–(27), we obtain

θZLP = Zθ
LP ≥

∑
t∈T θ

∑
S⊂J

R(S) ŷt (S)

+
∑
i∈L

π̂i

[
θci −

∑
t∈T θ

∑
S⊂J

Qi(S) ŷt (S)

]
≥ ζ θ

LP −
∑
i∈L

π̂i Q̂i ,

where the second inequality follows from (28) and the fact
that π̂i ≥ 0 for all i ∈ L. The final result follows by dividing
the expression above by θZLP and taking the limit. �

Therefore, we have limθ→∞[ζ θ
LP −Zθ

LP ]/Zθ
LP ≤ 0 and the

percent gap between ζ θ
LP and Zθ

LP becomes negative as the
leg capacities and the number of time periods in the planning
horizon increase linearly with the same rate.

Letting {Vt(· | θ) : t ∈ T θ } be the value func-
tions obtained by solving the optimality equation in (1)
with planning horizon T θ , Gallego et al. [4] show that
limθ→∞ Zθ

LP /V1(θc | θ) = 1. In other words, the percent
gap between the optimal objective value of problem (2)–(5)
and the optimal total expected revenue diminishes as the leg
capacities and the number of time periods in the planning
horizon increase linearly with the same rate. An immediate
corollary to Proposition 4 is that the same property holds for
the optimal objective value of problem (18)–(21).

COROLLARY 5: We have limθ→∞ ζ θ
LP /V1(θc | θ) = 1.

6. CONTROL POLICIES FROM THE
DETERMINISTIC LINEAR PROGRAMS

In this section, we describe several ways in which the lin-
ear programs in Sections 3 and 4 can be used to decide which
itineraries to offer at each time period.
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6.1. Bid Price Policy from the Deterministic Linear
Program

This is the approach described in Section 3. Letting {π̂i :
i ∈ L} be the optimal values of the dual variables associ-
ated with constraints (3) in problem (2)–(5), we solve prob-
lem (6) to decide which itineraries to offer at time period
t ; see [9]. As mentioned before, this approach is equiva-
lent to approximating Vt+1(xt ) on the right side of (1) by
Ṽt+1(xt ) = ∑

i∈L π̂i xit .

6.2. Decomposition from the Deterministic
Linear Program

This approach decomposes the network revenue manage-
ment problem into a number of single-leg revenue manage-
ment problems. In particular, letting {π̂i : i ∈ L} be the
optimal values of the dual variables associated with con-
straints (3) in problem (2)–(5), we consider the single-leg
revenue management problem that takes place over flight leg
i under the assumption that rj −∑

k∈L\{i} akj π̂k is the revenue
associated with itinerary j . We can obtain the optimal total
expected revenue for this single-leg revenue management
problem by solving the optimality equation

vit (xit ) = max
S∈Oi (xit )




∑
j∈J

Pj (S)
[
rj −

∑
k∈L\{i}

akj π̂k

+vi,t+1(xit − aij ) − vi,t+1(xit )
]}

+ vi,t+1(xit ), (29)

where we let Oi (xit ) = {S ⊂ J : 1(j ∈ S) aij ≤ xit ∀ j ∈
J } and use an optimality equation that is similar to the one
in (1), but focus only on flight leg i. Zhang and Adelman [11]
show that

V1(c) ≤ vi1(ci) +
∑

k∈L\{i}
π̂k ck ≤ ZLP . (30)

Therefore, we can solve the optimality equation in (29) to
obtain an upper bound on the optimal total expected rev-
enue that is tighter than the one provided by problem (2)–(5).
In Appendix A, we give an alternative proof for the second
inequality above that provides additional insight.

Repeating this approach for all i ∈ L, the tightest possible
upper bound on V1(c) is

min
i∈L


vi1(ci) +

∑
k∈L\{i}

π̂k ck


 .

Furthermore, we can collect the one-dimensional value func-
tions {vit (·) : i ∈ L, t ∈ T } together to construct the sepa-
rable value function approximation Ṽt (xt ) = ∑

i∈L vit (xit )

for all t ∈ T . In this case, we can decide which itineraries to
offer at time period t by replacing Vt+1(xt ) on the right side
of (1) with Ṽt+1(xt ) and solving this problem.

6.3. Bid Price Policy from the Alternative
Deterministic Linear Program

This approach is similar to the one in Section 6.1. Let-
ting α̂ be an optimal solution to problem (10), we replace
Vt+1(xt ) on the right side of (1) with V α̂

t+1(xt ) = Mα̂
t+1 +

· · · + Mα̂
τ +∑

i∈L Lα̂
i,t+1 xit and solve this problem to decide

which itineraries to offer at time period t .

6.4. Decomposition from the Alternative
Deterministic Linear Program

The idea behind this approach is similar to the one in
Section 6.2, but this approach uses the linear program that we
propose in the current paper. We let {α̂ij t : i ∈ L, j ∈ J , t ∈
T } be the optimal values of the dual variables associated with
constraints (19) in problem (18)–(21). We choose a flight leg
i and relax constraints (19) for all other flight legs by associ-
ating the dual multipliers {α̂kj t : k ∈ L \ {i}, j ∈ J , t ∈ T }
with them. In this case, the objective function of problem
(18)–(21) becomes

∑
t∈T

∑
S⊂J

R(S) yt (S) −
∑
t∈T

∑
j∈J

∑
k∈L\{i}

α̂kj t

×
[∑

S⊂J
Qk(S) y1(S) + · · · +

∑
S⊂J

Qk(S) yt−1(S)

+
∑
S⊂J

1(j ∈ S) akj yt (S) − ck

]
.

In Appendix B, we show that simply by arranging the
terms and using the definitions of R(S), Qi(S) and Lα

it , the
expression above can be written as

∑
t∈T

∑
S⊂J

∑
j∈S

Pj (S)


rj −

∑
k∈L\{i}

akj Lα̂
k,t+1

−
∑

k∈L\{i}
[ α̂kj t 1(j ∈ S) akj /Pj (S)]




yt (S) +
∑

k∈L\{i}
Lα̂

k1 ck ,

where we use the convention that Pj (S)[1(j ∈ S)/Pj (S)] =
1(j ∈ S) when Pj (S) = 0. Therefore, the duality theory
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implies that the linear program

ζLP = max
∑
t∈T

∑
S⊂J

∑
j∈S

Pj (S)
[
rj −

∑
k∈L\{i}

akj Lα̂
k,t+1

−
∑

k∈L\{i}
[ α̂kj t 1(j ∈ S) akj /Pj (S)]

]
yt (S)

+
∑

k∈L\{i}
Lα̂

k1 ck

subject to (20), (21)∑
S⊂J

Qi(S) y1(S) + · · · +
∑
S⊂J

Qi(S) yt−1(S)

+
∑
S⊂J

1(j ∈ S) aij yt (S) ≤ ci ∀ j ∈ J , t ∈ T

has the same optimal objective value as problem (18)–(21).
We consider the single-leg revenue management problem

that takes place over flight leg i under the assumption that
rj−∑

k∈L\{i} akj Lα̂
k,t+1−

∑
k∈L\{i}[ α̂kj t 1(j ∈ S) akj /Pj (S)]

is the revenue associated with itinerary j when we offer
set S at time period t . If we compare the last problem
above with problem (18)–(21) and ignore the constant term∑

k∈L\{i} Lα̂
k1 ck in the objective function, then it is easy to

see that the last problem above is the linear program for the
single-leg revenue management problem that takes place over
flight leg i. Therefore, ζLP − ∑

k∈L\{i} Lα̂
k1 ck is an upper

bound on the optimal total expected revenue for this single-
leg revenue management problem. On the other hand, we can
obtain the optimal total expected revenue for the single-leg
revenue management problem that takes place over flight leg
i by solving the optimality equation

ϑit (xit ) = max
S⊂Oi (xit )

{∑
j∈S

Pj (S)

[
rj −

∑
k∈L\{i}

akj Lα̂
k,t+1

−
∑

k∈L\{i}
[ α̂kj t 1(j ∈ S) akj /Pj (S)]

+ ϑi,t+1(xit − aij ) − ϑi,t+1(xit )

]}
+ ϑi,t+1(xit ).

(31)

We have ϑi1(ci) ≤ ζLP − ∑
k∈L\{i} Lα̂

k1 ck by the discus-
sion above. Furthermore, the next proposition shows that
V1(c) ≤ ϑi1(ci) + ∑

k∈L\{i} Lα̂
k1 ck . Therefore, we have

V1(c) ≤ ϑi1(ci) +
∑

k∈L\{i}
Lα̂

k1 ck ≤ ζLP

and we can solve the optimality equation in (31) to obtain an
upper bound that is tighter than the one provided by problem
(18)–(21). We note that the inequality above is analogous to
the one in (30).

PROPOSITION 6: Letting α̂ = {α̂ij t : i ∈ L, j ∈
J , t ∈ T } be the optimal values of the dual variables asso-
ciated with constraints (19) in problem (18)–(21), we have
Vt(xt ) ≤ ϑit (xit ) + ∑

k∈L\{i} Lα̂
kt xkt .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, we let
Ŝ be an optimal solution to problem (1). We have

Vt(xt ) =
∑
j∈Ŝ

Pj (Ŝ)

[
rj + Vt+1

(
xt −

∑
i∈L

aij ei

)]

+
[

1 −
∑
j∈J

Pj (Ŝ)

]
Vt+1(xt )

≤
∑
j∈Ŝ

Pj (Ŝ)

[
rj + ϑi,t+1(xit − aij )

+
∑

k∈L\{i}
Lα̂

k,t+1 [xkt − akj ]
]

+
[

1 −
∑
j∈J

Pj (Ŝ)

]

×
[
ϑi,t+1(xit ) +

∑
k∈L\{i}

Lα̂
k,t+1 xkt

]

=
∑
j∈Ŝ

Pj (Ŝ)

[
rj −

∑
k∈L\{i}

akj Lα̂
k,t+1

+ ϑi,t+1(xit − aij ) − ϑi,t+1(xit )

]

+ ϑi,t+1(xit ) +
∑

k∈L\{i}
Lα̂

kt xkt −
∑

k∈L\{i}

∑
j∈J

α̂kj t xkt

≤
∑
j∈Ŝ

Pj (Ŝ)

[
rj −

∑
k∈L\{i}

akj Lα̂
k,t+1

+ ϑi,t+1(xit − aij ) − ϑi,t+1(xit )

]
+ ϑi,t+1(xit )

+
∑

k∈L\{i}
Lα̂

kt xkt −
∑

k∈L\{i}

∑
j∈J

α̂kj t 1(j ∈ Ŝ) akj

≤ ϑit (xit ) +
∑

k∈L\{i}
Lα̂

kt xkt ,

where the first inequality follows from the induction assump-
tion, the second equality follows from arranging the terms and
using the definition of Lα

it in (8), the second inequality fol-
lows from the fact that Ŝ ∈ O(xt ) and α̂ij t ≥ 0 for all i ∈ L,
j ∈ J and the third inequality follows from the fact that Ŝ is
a feasible but not necessarily an optimal solution to problem
(31). �
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Similar to Section 6.2, we can repeat this approach for
all i ∈ L and construct the separable value function
approximation Ṽt (xt ) = ∑

i∈L ϑit (xit ) for all t ∈ T .

7. APPLICATIONS OF THE LOGIT MODEL

The essence of the four control policies described in
Section 6 is to construct approximations to the value functions
and to decide which itineraries to offer by plugging the value
function approximations into the right side of the optimal-
ity equation in (1). However, the number of possible values
for the decision variable S in the optimality equation in (1)
increases exponentially with the number of itineraries, and it
may not be easy to decide which itineraries to offer even if we
have approximations to the value functions. In this section,
we begin by briefly reviewing a result shown by Gallego et al.
[4] that establishes that deciding which itineraries to offer is
tractable as long as the probabilities {Pj (S) : j ∈ S, S ⊂ J }
are characterized by the multinomial logit model with disjoint
consideration sets. This result also implies that the column
generation subproblem for problem (2)–(5) is tractable. After
reviewing the result shown by Gallego et al. [4], we establish
that the column generation subproblem for problem (18)–(21)
can be formulated as an integer program under the multino-
mial logit model with disjoint consideration sets. Throughout
the rest of the paper, we refer to the multinomial logit model
with disjoint consideration sets simply as the logit model.

The logit model assumes that there are multiple customer
types and customers of different types are interested in dis-
joint sets of itineraries. The set of customer types is C. At
each time period, a customer of type l arrives with proba-
bility λl . The set of itineraries that a customer of type l is
interested in is Jl . In other words, a customer of type l either
purchases an itinerary in Jl or does not purchase an itinerary
at all. We assume that Jl ∩ Jl′ = ∅ for all l �= l′ so that
customers of different types are interested in disjoint sets of
itineraries. We use binary decision variables, rather than sets,
to represent which itineraries are offered and define

zj =
{

1 if itinerary j is offered
0 otherwise.

We let Pj (z) be the probability that a customer purchases
itinerary j whenever the set of offered itineraries is given by
z = {zj : j ∈ J }.

The logit model associates the preference weights {ρj :
j ∈ J } with the itineraries. If the set of offered itineraries
is given by z = {zj : j ∈ J } and a customer of type l

arrives, then this customer purchases itinerary j with proba-
bility 1(j ∈ Jl) ρj zj /[∑m∈Jl

ρm zm + ρl
0], where ρl

0 is the
strictly positive preference weight associated with purchasing

nothing for customer type l. Therefore, we have

Pj (z) = λl

ρj zj∑
m∈Jl

ρm zm + ρl
0

for all j ∈ Jl under the logit model.

7.1. Applications of the Logit Model to the
Deterministic Linear Program

If we use the bid price policy described in Section 6.1, then
we decide which itineraries to offer by solving problem (6).
Under the logit model, this problem becomes

max
z∈Z(xt )




∑
l∈C

∑
j∈Jl

λl

ρj zj∑
m∈Jl

ρm zm + ρl
0

[
rj −

∑
i∈L

aij π̂i

]


=
∑
l∈C

max
zl∈Z l (xt )




∑
j∈Jl

λl ρj zj

[
rj − ∑

i∈L aij π̂i

]
∑

m∈Jl
ρm zm + ρl

0


 , (32)

where we let zl = {zj : j ∈ Jl} and capture the set of itin-
eraries that we can offer at time period t by Z(xt ) = {z ∈
{0, 1}|J | : aij zj ≤ xit∀ i ∈ L, j ∈ J } and Z l(xt ) = {zl ∈
{0, 1}|Jl | : aij zj ≤ xit∀ i ∈ L, j ∈ Jl}. Gallego et al. [4]
show that it is possible to obtain an optimal solution to prob-
lem (32) simply by sorting {rj − ∑

i∈L aij π̂i : j ∈ Jl} and
checking the objective value obtained by |Jl| + 1 possible
solutions. Interestingly, the values of {ρj : j ∈ Jl} do not
play a role in the sorting procedure. An alternative proof for
this result is given in [9]. In Appendix C, we give a second
alternative proof and we feel that our proof clearly shows
why the values of {ρj : j ∈ Jl} do not play a role in the
sorting procedure. We also note that the fact that customers
of different types are interested in disjoint sets of itineraries
plays a crucial role in this result. Otherwise, [3] show that
problem (32) is NP-hard.

If we use the dynamic programming decomposition
approach described in Section 6.2, then we replace Vt+1(xt )

on the right side of (1) with
∑

i∈L vi,t+1(xit ) and solve this
problem to decide which itineraries to offer at time period t .
Under the logit model, this problem becomes

max
z∈Z(xt )




∑
l∈C

∑
j∈Jl

λl

ρj zj∑
m∈Jl

ρm zm + ρl
0[

rj +
∑
i∈L

vi,t+1(xit − aij ) −
∑
i∈L

vi,t+1(xit )

]}
, (33)

which has the same structure as problem (32) and the sorting
result shown by [4] continues to apply. Similarly, van Ryzin
and Liu [9] show that the column generation subproblem for
problem (2)–(5) has the same structure as problem (32).
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7.2. Applications of the Logit Model to the Alternative
Deterministic Linear Program

If we use the bid price policy described in Section 6.3,
then we first need to find an optimal solution to problem
(10). By the discussion in Section 4, an optimal solution
to problem (10) can be obtained by solving problem (18)–
(21) through column generation. Alternatively, since problem
(13)–(17) is the dual of problem (18)–(21), we can solve
problem (13)–(17) through constraint generation.

Constraint generation iteratively solves a master problem
that has the same objective function and decision variables
as problem (13)–(17), but has only a few of constraints (14)–
(15). After solving the master problem, we check if any of
constraints (14)–(15) is violated by the solution. If there is
one such constraint, then we add this constraint to the master
problem and resolve it. Specifically, letting {µ̂t : t ∈ T },
{�̂it : i ∈ L, t ∈ T }, {α̂ij t : i ∈ L, j ∈ J , t ∈ T } be the
solution to the current master problem, we solve the problem

max
S⊂J


R(S) −

∑
i∈L

Qi(S) �̂i,t+1 −
∑
i∈L

∑
j∈J

1(j ∈ S) aij α̂ij t




(34)
for all t ∈ T \ {τ } to check if any of constraints (14) is
violated by this solution. Letting Ŝ be an optimal solution
to problem (34), if we have R(Ŝ) − ∑

i∈L Qi(Ŝ) �̂i,t+1 −∑
i∈L

∑
j∈J 1(j ∈ Ŝ) aij α̂ij t > µ̂t , then the constraint

µt ≥ R(Ŝ) −
∑
i∈L

Qi(Ŝ) �i,t+1 −
∑
i∈L

∑
j∈J

1(j ∈ Ŝ) aij αij t

is violated by the solution {µ̂t : t ∈ T }, {�̂it : i ∈ L, t ∈ T },
{α̂ij t : i ∈ L, j ∈ J , t ∈ T }. We add this constraint to
the master problem and resolve it. Similarly, we solve the
problem

max
S⊂J


R(S) −

∑
i∈L

∑
j∈J

1(j ∈ S) aij α̂ijτ


 . (35)

to check if any of constraints (15) is violated by the solution
to the current master problem. Since problem (35) is a special
case of problem (34) with �̂i,t+1 = 0 and α̂ij t = α̂ijτ for all
i ∈ L, j ∈ J , we only consider problem (34) here.

Under the logit model, problem (34) becomes

max
z∈{0,1}|J |




∑
l∈C

∑
j∈Jl

λl

ρj zj∑
m∈Jl

ρm zm + ρl
0[

rj −
∑
i∈L

aij �̂i,t+1

]
−

∑
l∈C

∑
j∈Jl

∑
i∈L

aij α̂ij t zj




=
∑
l∈C

max
zl∈{0,1}|Jl |




∑
j∈Jl

λl ρj zj

[
rj − ∑

i∈L aij �̂i,t+1

]
∑

m∈Jl
ρm zm + ρl

0

−
∑
j∈Jl

∑
i∈L

aij α̂ij t zj


 . (36)

We note that due to the term
∑

j∈Jl

∑
i∈L aij α̂ij t zj , prob-

lem (36) does not have the same structure as problem (32).
Therefore, the sorting result shown by Gallego et al. [4] does
not apply and it is not necessarily possible to solve this prob-
lem through a sorting procedure. However, we now show that
problem (36) can be solved as a linear integer program.

The problem inside the summation on the right side of (36)
is of the form

max
z∈{0,1}n




∑n
j=1 βj ρj zj∑n

m=1 ρm zm + ρl
0

−
n∑

j=1

γj zj


 (37)

for appropriately defined values of n, {βj : j = 1, . . . , n} and
{γj : j = 1, . . . , n}. We make the change of variables

wj = zj∑n
m=1 ρm zm + ρl

0

and κ = 1∑n
m=1 ρm zm + ρl

0

so that we have
∑n

j=1 ρj wj +ρl
0 κ = 1 by definition. In this

case, the next lemma shows that problem (37) is equivalent
to the nonlinear integer program

max
n∑

j=1

βj ρj wj −
n∑

j=1

γj zj (38)

subject to
n∑

j=1

ρj wj + ρl
0 κ = 1 (39)

wj = κ zj ∀ j = 1, . . . , n (40)

zj ∈ {0, 1} ∀ j = 1, . . . , n (41)

wj ≥ 0, κ ≥ 0 ∀ j = 1, . . . , n. (42)

LEMMA 7: Problems (37) and (38)–(42) have the same
optimal objective value and an optimal solution to one of
these problems can be recovered by using an optimal solution
to the other one.

PROOF: The proof follows from an argument similar to
the one that is used to show Lemma 2 in Zhang and Adelman
(2006). It is based on showing that given a feasible solution
to one problem, we can construct a feasible solution to the
other one that yields the same objective value. �
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Letting B be a large number, it is easy to see that problem
(38)–(42) is equivalent to the linear integer program

max
n∑

j=1

βj ρj wj −
n∑

j=1

γj zj

subject to (39), (41), (42)

wj ≤ B zj ∀ j = 1, . . . , n

wj ≤ κ ∀ j = 1, . . . , n

wj ≥ κ − B [1 − zj ] ∀ j = 1, . . . , n.

Noting (40), the largest value that wj can take is κ . Since
we have κ ≤ 1/ρl

0 by (39), letting B = 1/ρl
0 in the problem

above suffices. Therefore, the column generation subprob-
lem for problem (18)–(21) can be solved as a linear integer
program.

If we use the bid price policy described in Section 6.3,
then after solving problem (18)–(21) to obtain an optimal
solution α̂ to problem (10), we compute Lα̂

it and Mα̂
t for all

i ∈ L, t ∈ T . Noting (9), computing Mα̂
t requires solving

a problem that has the same structure as problem (34) and
Lemma 7 continues to apply. To decide which itineraries to
offer at time period t , we replace Vt+1(xt ) on the right side
of (1) with V α̂

t+1(xt ) = Mα̂
t+1 + · · · + Mα̂

τ + ∑
i∈L Lα̂

i,t+1 xit

and solve this problem. Since V α̂
t+1(xt ) is a linear function of

xt , it is easy to see that this problem has the same structure as
problem (32) and the sorting result shown by [4] continues
to apply.

If we use the dynamic programming decomposition
approach described in Section 6.4, then we replace Vt+1(xt )

on the right side of (1) with
∑

i∈L ϑi,t+1(xit ) and solve this
problem to decide which itineraries to offer at time period t .
Since

∑
i∈L ϑi,t+1(xit ) is a separable function, this problem

has the same structure as problem (33) and the sorting result
shown by Gallego et al. [4] continues to apply.

8. COMPUTATIONAL EXPERIMENTS

In this section, we test the performances of the four con-
trol policies described in Section 6. We work with two sets of
test problems that are all taken from [9]. The first set of test
problems involve a number of parallel flight legs that operate
between the same origin destination pair and the second set
of test problems involve a small airline network.

Our implementations of the control policies divide the
planning horizon into five equal segments and recompute the
value function approximations at the beginning of each seg-
ment by using the remaining leg capacities and the remaining
number of time periods in the planning horizon. We refer to
the control policies described in Sections 6.1, 6.2, 6.3, and
6.4 respectively as LP, DP-LP, ALP, and DP-ALP.

8.1. Test Problems with Parallel Flight Legs

We consider three flight legs that operate between the same
origin destination pair. There is an expensive and a cheap
itinerary associated with each flight leg so that the number
of itineraries is six. There are two customer types. The first
customer type is interested only in the expensive itineraries,
whereas the second customer type is interested only in the
cheap itineraries. The capacities on the three flight legs are
[30, 50, 40] and we scale these capacities by a scalar factor to
obtain test problems with different levels of congestion. We
also vary the preference weights associated with purchasing
nothing. All other problem parameters are the same as those
in [9].

As described in Sections 3, 4, 6.2 and 6.4, we can obtain
upper bounds on the optimal total expected revenue by using
LP, DP-LP, ALP, and DP-ALP. Table 1 shows the upper
bounds obtained by the four control policies for different test
problems. In this table, the first column shows the problem
characteristics by using the triplet (q, ρ1

0 , ρ2
0 ), where q is the

factor that we use to scale the leg capacities, and ρ1
0 and ρ2

0
are the preference weights associated with purchasing noth-
ing for the two customer types. The second, third, fourth and
fifth columns respectively show the upper bounds obtained
by LP, DP-LP, ALP, and DP-ALP. The sixth column shows
the percent gap between the upper bounds obtained by LP
and ALP, whereas the seventh columns shows the percent
gap between the upper bounds obtained by DP-LP, and DP-
ALP. The last column shows the CPU seconds required to
solve problem (18)–(21) on a Pentium IV desktop PC with
2.4 GHz CPU and 1 GB RAM running Windows XP.

Although both LP and ALP provide upper bounds on the
optimal total expected revenue, the examples in Section 5
show that neither of these upper bounds is provably tighter
than the other one. On the other hand, the empirical results in
Table 1 indicate that the upper bounds obtained by ALP are
tighter than those obtained by LP by a small but consistent
margin. The percent gap between the upper bounds is more
pronounced for test problems with tight leg capacities. Simi-
larly, the upper bounds obtained by DP-ALP are tighter than
the upper bounds obtained by DP-LP. We also note that the
dynamic programming decomposition approach significantly
tightens the upper bounds. Although we do not show these
figures in Table 1, the percent gap between the upper bounds
obtained by ALP and DP-ALP can be as large as 1.5%.

Table 2 shows the total expected revenues obtained by
the four control policies. The second, third, fourth and fifth
columns in this table respectively show the total expected
revenues obtained LP, DP-LP, ALP, and DP-ALP. We obtain
these total expected revenues by simulating the performances
of the four control policies under 100 customer arrival tra-
jectories. We use common random numbers when simulating
the performances of different control policies. The last two
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Table 1. Comparison of the upper bounds obtained by the four control policies.

Problem (q, ρ1
0 , ρ2

0 ) LP DP-LP ALP DP-ALP LP vs. ALP DP-LP vs. DP-ALP CPU (secs.)

(0.6, 10−4, 10−4) 55,200 55,200 55,095 55,095 0.19 0.19 175
(0.6, 1, 5) 53,400 53,378 53,281 53,276 0.22 0.19 126
(0.6, 5, 10) 50,400 49,506 50,039 49,361 0.72 0.29 182
(0.6, 10, 20) 45,138 44,628 44,990 44,298 0.33 0.74 124
(0.8, 10−4, 10−4) 67,200 67,200 67,060 67,060 0.21 0.21 156
(0.8, 1, 5) 65,600 65,245 65,324 65,084 0.42 0.25 108
(0.8, 5, 10) 59,446 59,239 59,251 58,639 0.33 1.02 86
(0.8, 10, 20) 47,431 46,894 47,333 46,894 0.21 0.00 33
(1.0, 10−4, 10−4) 78,000 77,972 77,860 77,834 0.18 0.18 134
(1.0, 1, 5) 76,000 75,599 75,721 75,441 0.37 0.21 100
(1.0, 5, 10) 60,731 60,492 60,668 60,492 0.10 0.00 35
(1.0, 10, 20) 47,442 47,368 47,442 47,368 0.00 0.00 25
(1.2, 10−4, 10−4) 88,800 88,467 88,611 88,341 0.21 0.14 123
(1.2, 1, 5) 78,117 77,731 78,117 77,731 0.00 0.00 24
(1.2, 5, 10) 61,038 60,905 61,038 60,905 0.00 0.00 25
(1.2, 10, 20) 47,442 47,438 47,442 47,438 0.00 0.00 25
(1.4, 10−4, 10−4) 93,200 93,096 93,130 93,075 0.08 0.02 95
(1.4, 1, 5) 78,117 78,084 78,117 78,084 0.00 0.00 25
(1.4, 5, 10) 61,038 61,023 61,038 61,023 0.00 0.00 25
(1.4, 10, 20) 47,442 47,442 47,442 47,442 0.00 0.00 25

columns show the percent gap between the total expected rev-
enues obtained by LP and ALP, and DP-LP, and DP-ALP. The
results indicate that the performance of ALP is consistently
superior to the performance of LP. The average performance
gap between ALP and LP is about 4.5%, which is a quite
significant figure in the revenue management context. The
performance of DP-ALP also tends to be better than the per-
formance of DP-LP in general, although the margin is small.

For the three flight legs in test problem (0.6, 1, 5), Fig. 1
plots the bid prices used by LP and ALP as a function of the
time period when the bid prices are computed at the begin-
ning of the planning horizon. We recall that LP and ALP
periodically recompute the bid prices and the bid prices nat-
urally change when they are recomputed later in the planning
horizon. The left and right charts in Fig. 1 respectively cor-
respond to LP and ALP. The bid prices used by LP do not

Table 2. Comparison of the total expected revenues obtained by the four control policies.

Problem (q, ρ1
0 , ρ2

0 ) LP DP-LP ALP DP-ALP LP vs. ALP DP-LP vs. DP-ALP

(0.6, 10−4, 10−4) 52,529 52,587 52,733 52,770 0.39 0.35
(0.6, 1, 5) 48,836 52,315 51,720 52,593 5.58 0.53
(0.6, 5, 10) 42,366 48,756 47,794 48,879 11.36 0.25
(0.6, 10, 20) 37,282 43,106 42,426 43,341 12.12 0.54
(0.8, 10−4, 10−4) 63,225 63,163 63,322 63,360 0.15 0.31
(0.8, 1, 5) 59,544 64,094 63,340 64,111 5.99 0.03
(0.8, 5, 10) 49,706 57,568 56,478 57,658 11.99 0.16
(0.8, 10, 20) 40,599 46,553 40,919 46,566 0.78 0.03
(1.0, 10−4, 10−4) 73,925 75,443 75,202 75,478 1.70 0.05
(1.0, 1, 5) 65,428 74,137 71,704 74,095 8.75 −0.06
(1.0, 5, 10) 54,026 60,535 55,753 60,539 3.10 0.01
(1.0, 10, 20) 42,554 47,136 43,747 47,136 2.73 0.00
(1.2, 10−4, 10−4) 82,191 85,563 84,300 86,130 2.50 0.66
(1.2, 1, 5) 72,921 77,823 74,591 77,842 2.24 0.02
(1.2, 5, 10) 56,010 60,982 58,103 60,982 3.60 0.00
(1.2, 10, 20) 43,438 47,275 45,639 47,275 4.82 0.00
(1.4, 10−4, 10−4) 86,373 89,088 86,851 89,182 0.55 0.11
(1.4, 1, 5) 75,899 78,252 77,189 78,252 1.67 0.00
(1.4, 5, 10) 57,470 61,220 59,819 61,220 3.93 0.00
(1.4, 10, 20) 43,923 47,278 45,436 47,278 3.33 0.00
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Figure 1. Bid prices used by LP and ALP as a function of the time period for test problem (0.6, 1, 5). We note that the time periods in the
charts are compressed in the early portion of the planning horizon.

depend on the time period and they are very close to those
used by ALP in the early portion of the planning horizon.
Since the capacities are abundant in the early portion of the
planning horizon, the bid prices used by ALP tend to be con-
stant during this period. However, as expected, the bid prices
used by ALP decrease as the departure time approaches and
fewer opportunities to utilize the leg capacities remain.

8.2. Test Problems with an Airline Network

In this set of test problems, we consider a small airline
network that connects three spokes and a hub. There are 7
flight legs, 22 itineraries and 10 customer types. Half of the
itineraries are expensive and the other half are cheap. Corre-
spondingly, half of the customer types are interested only in
the expensive itineraries and the other half are interested only
in the cheap itineraries. The structure of the airline network is
shown in Fig. 2. All problem parameters are the same as those
in [9] except for the number of time periods in the planning
horizon and the leg capacities. We set τ = 300 and use the
leg capacities shown in Table 3. Similar to Section 8.1, we
obtain different test problems by scaling the leg capacities
by a scalar factor and varying the preference weights associ-
ated with purchasing nothing. We label our test problems by
using the triplet (q, ρE

0 , ρC
0 ), where q is the scaling factor for

the leg capacities, and ρE
0 and ρC

0 are the preference weights

Figure 2. Structure of the airline network.

associated with purchasing nothing for the customer types
that are interested in the expensive and cheap itineraries.

Table 4 shows the upper bounds on the optimal total
expected revenues, whereas Table 5 shows the total expected
revenues obtained by the four control policies. The results
essentially display the same trends as those in Tables 1
and 2. For problems with tight leg capacities, the upper
bounds obtained by ALP and DP-ALP are respectively
tighter than the upper bounds obtained by LP and DP-LP.
As the leg capacities get larger, the percent gaps between
the upper bounds diminish. Comparing the total expected
revenues obtained by the different control policies, the per-
formance gap between ALP and LP can be as high as 4.1%.
Furthermore, DP-ALP tends to perform better than DP-LP
by a small but consistent margin in general.

9. CONCLUSIONS

We presented a new deterministic linear program for the
network revenue management problem with customer choice
behavior. The novel aspect of our linear program is that it
naturally generates bid prices that depend on the number of
time periods left until the departure time. Our linear program
inherits many features of the earlier linear program used by
[9]. In particular, it provides an upper bound on the optimal

Table 3. Leg capacities for the test problems with an airline
network

Flight leg Origin destination Capacity

1 AB 30
2 AH 45
3 AH 45
4 HB 45
5 HB 45
6 HC 24
7 HC 24
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Table 4. Comparison of the upper bounds obtained by the four control policies.

Problem (q, ρE
0 , ρC

0 ) LP DP-LP ALP DP-ALP LP vs. ALP DP-LP vs. DP-ALP CPU (secs.)

(0.6, 10−4, 10−4) 55,800 55,738 55,597 55,537 0.37 0.36 1, 540
(0.6, 1, 5) 54,430 54,201 54,097 53,942 0.62 0.48 3, 065
(0.6, 5, 10) 49,775 49,447 49,382 49,216 0.80 0.47 2, 132
(0.6, 10, 20) 44,939 44,441 44,525 44,237 0.93 0.46 2, 237
(0.8, 10−4, 10−4) 68,100 67,546 67,753 67,347 0.51 0.30 1, 080
(0.8, 1, 5) 64,819 64,447 64,523 64,301 0.46 0.23 1, 085
(0.8, 5, 10) 58,350 58,065 58,010 57,881 0.59 0.32 1, 167
(0.8, 10, 20) 49,668 49,570 49,546 49,446 0.25 0.25 891
(1.0, 10−4, 10−4) 76,800 76,606 76,589 76,506 0.28 0.13 701
(1.0, 1, 5) 73,233 72,955 72,944 72,813 0.40 0.20 859
(1.0, 5, 10) 64,150 64,011 64,044 63,904 0.17 0.17 494
(1.0, 10, 20) 51,321 51,125 51,321 51,125 0.00 0.00 115
(1.2, 10−4, 10−4) 85,200 85,036 84,989 84,935 0.25 0.12 585
(1.2, 1, 5) 80,229 79,778 79,991 79,686 0.30 0.12 331
(1.2, 5, 10) 65,321 65,212 65,321 65,212 0.00 0.00 114
(1.2, 10, 20) 51,321 51,308 51,321 51,308 0.00 0.00 114
(1.4, 10−4, 10−4) 92,700 92,549 92,528 92,477 0.19 0.08 431
(1.4, 1, 5) 80,876 80,825 80,876 80,825 0.00 0.00 115
(1.4, 5, 10) 65,321 65,314 65,321 65,314 0.00 0.00 114
(1.4, 10, 20) 51,321 51,321 51,321 51,321 0.00 0.00 114

total expected revenue, it allows using the dynamic program-
ming decomposition approach and the percent gap between
its optimal objective value and the optimal total expected rev-
enue diminishes as the leg capacities and the number of time
periods in the planning horizon increase linearly with the
same rate. Computational experiments indicate that our lin-
ear program can provide tighter upper bounds and the control
policies that are based on our linear program can obtain higher
total expected revenues.

Unfortunately, the advantages come at a cost. In particular,
the number of constraints in our linear program is signif-
icantly larger than the number of constraints in the linear
program that appears in the existing literature. Nevertheless,
the size of our linear program is still within the capabilities
of the existing computing technology. It may also be possible
to aggregate some of the constraints in problem (18)–(21) to
obtain linear programs that are weaker than the linear pro-
gram that we propose in this paper, but still stronger than

Table 5. Comparison of the total expected revenues obtained by the four control policies.

Problem (q, ρE
0 , ρC

0 ) LP DP-LP ALP DP-ALP LP vs. ALP DP-LP vs. DP-ALP

(0.6, 10−4, 10−4) 50,187 52,239 52,350 52,871 4.13 1.20
(0.6, 1, 5) 51,100 52,924 51,522 53,029 0.82 0.20
(0.6, 5, 10) 46,198 48,307 46,728 48,338 1.13 0.06
(0.6, 10, 20) 40,552 43,379 41,886 43,283 3.18 −0.22
(0.8, 10−4, 10−4) 61,853 64,884 63,053 65,659 1.90 1.18
(0.8, 1, 5) 60,913 63,576 61,188 63,573 0.45 0.00
(0.8, 5, 10) 55,098 57,003 55,670 57,074 1.03 0.12
(0.8, 10, 20) 46,299 48,749 46,883 48,832 1.25 0.17
(1.0, 10−4, 10−4) 71,680 74,142 72,176 75,375 0.69 1.64
(1.0, 1, 5) 70,511 72,145 70,911 72,167 0.56 0.03
(1.0, 5, 10) 61,265 63,095 61,537 63,158 0.44 0.10
(1.0, 10, 20) 50,486 51,057 50,583 51,049 0.19 −0.02
(1.2, 10−4, 10−4) 82,147 83,178 82,343 84,211 0.24 1.23
(1.2, 1, 5) 77,220 78,952 77,918 79,098 0.90 0.18
(1.2, 5, 10) 64,310 65,288 64,464 65,258 0.24 −0.05
(1.2, 10, 20) 51,527 51,567 51,527 51,567 0.00 0.00
(1.4, 10−4, 10−4) 90,815 91,490 90,759 91,586 −0.06 0.10
(1.4, 1, 5) 79,895 81,116 80,183 81,130 0.36 0.02
(1.4, 5, 10) 65,331 65,531 65,383 65,531 0.08 0.00
(1.4, 10, 20) 51,650 51,650 51,650 51,650 0.00 0.00
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the earlier linear program used by [9]. This is an avenue of
research worth pursuing.

We emphasize that the method that we use to construct our
linear program can be of interest in and of itself. The idea of
relaxing certain constraints in a dynamic program by associ-
ating Lagrange multipliers with them and finding a good set
of values for the Lagrange multipliers by minimizing a dual
function may find applications in many different problem set-
tings. For example, Kunnumkal and Topaloglu [5] present an
application in an inventory distribution setting.

APPENDIX A

Upper Bound Obtained by the Decomposition from the
Deterministic Linear Program

We let {π̂i : i ∈ L} be the optimal values of the dual variables associated
with constraints (3) in problem (2)–(5). We choose a flight leg i and relax
constraints (3) for all other flight legs by associating the dual multipliers
{π̂k : k ∈ L \ {i}} with them. Noting the definitions of R(S) and Qi(S), the
duality theory implies that the linear program

ZLP = max
∑
t∈T

∑
S⊂J

∑
j∈S

Pj (S)


rj −

∑
k∈L\{i}

akj π̂k


ht (S)

+
∑

k∈L\{i}
π̂k ck

subject to (4), (5)∑
t∈T

∑
S⊂J

Qi(S) ht (S) ≤ ci

has the same optimal objective value as problem (2)–(5).
We consider the single-leg revenue management problem that takes place

over flight leg i under the assumption that rj − ∑
k∈L\{i} akj π̂k is the rev-

enue associated with itinerary j . If we compare the last problem above
with problem (2)–(5) and ignore the constant term

∑
k∈L\{i} π̂k ck in the

objective function, then it is easy to see that the last problem above is the
linear program for the single-leg revenue management problem that takes
place over flight leg i. Therefore, ZLP − ∑

k∈L\{i} π̂k ck is an upper bound
on the optimal total expected revenue for this single-leg revenue manage-
ment problem. On the other hand, we can obtain the optimal total expected
revenue for the single-leg revenue management problem that takes place
over flight leg i by solving the optimality equation in (29). Therefore, we
have vi1(ci ) ≤ ZLP − ∑

k∈L\{i} π̂k ck . This result is shown by Zhang and
Adelman [11], but our interpretation by using a relaxation of problem (2)–
(5) appears to be new and it clearly shows why we associate the revenue
rj − ∑

k∈L\{i} akj π̂k with itinerary j .

APPENDIX B

Manipulating the Objective Function of Problem
(18)–(21) after Relaxing Constraints (19)

Interchanging the order of the summations, we have

∑
k∈L\{i}

∑
j∈J

∑
S⊂J

∑
t∈T

α̂kj t Qk(S)[ y1(S) + · · · + yt−1(S)]

=
∑

k∈L\{i}

∑
j∈J

∑
S⊂J

∑
t∈T

[ α̂kj ,t+1 + · · · + α̂kjτ ]Qk(S) yt (S)

=
∑
t∈T

∑
S⊂J

∑
k∈L\{i}

Lα̂
k,t+1 Qk(S) yt (S)

=
∑
t∈T

∑
S⊂J

∑
j∈S

∑
k∈L\{i}

Pj (S) akj Lα̂
k,t+1 yt (S),

where the second equality follows from the definition of Lα
it and the third

equality follows from the definition of Qi(S). On the other hand, the
definition of Lα

it implies that

∑
k∈L\{i}

∑
t∈T

∑
j∈J

α̂kj t ck =
∑

k∈L\{i}
Lα̂

k1 ck .

Therefore, the expression

∑
t∈T

∑
S⊂J

R(S) yt (S) −
∑
t∈T

∑
j∈J

∑
k∈L\{i}

α̂kj t


 ∑

S⊂J
Qk(S) y1(S) + · · ·

+
∑

S⊂J
Qk(S) yt−1(S) +

∑
S⊂J

1(j ∈ S) akj yt (S) − ck




can be written as

∑
t∈T

∑
S⊂J

∑
j∈S

Pj (S) rj yt (S)−
∑
t∈T

∑
S⊂J

∑
j∈S

∑
k∈L\{i}

Pj (S) akj Lα̂
k,t+1 yt (S)

−
∑
t∈T

∑
S⊂J

∑
j∈S

∑
k∈L\{i}

α̂kj t 1(j ∈ S) akj yt (S) +
∑

k∈L\{i}
Lα̂

k1 ck .

APPENDIX C

An Alternative Proof for the Sorting Result Shown by
Gallego et al. (2004)

In problem (32), we can immediately set zj to zero when aij > xit for
some i ∈ L and we have zj ∈ {0, 1} when aij ≤ xit for all i ∈ L. Therefore,
the problem inside the summation on the right side of (32) is of the form

max
z∈{0,1}n

{ ∑n
j=1 βj ρj zj∑n

m=1 ρm zm + ρl
0

}
(43)

for appropriately defined values of n and {βj : j = 1, . . . , n}. The
next proposition shows that problem (43) can be solved through a sorting
procedure.

PROPOSITION 8: Consider problem (43) and assume without loss of
generality that β1 ≥ β2 ≥ . . . ≥ βn. There exists an optimal solution
ẑ = {ẑj : j = 1, . . . , n} to this problem that satisfies

ẑj =
{

1 if j < K̂

0 if j ≥ K̂
(44)

for an appropriately defined value of K̂ ∈ {1, . . . , n + 1}.
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PROOF: As a function of ε, we let g(ε) be the optimal objective value of
the linear program

max
1

ε + ρl
0

n∑
j=1

βj ρj zj (45)

subject to
n∑

j=1

ρj zj = ε (46)

0 ≤ zj ≤ 1 ∀ j = 1, . . . , n. (47)

It is easy to see that g(ε) is a continuous function of ε over the
interval [0,

∑n
j=1 ρj ] and the optimal objective value of the problem

maxε∈[0,
∑n

j=1 ρj ]{g(ε)} is equal to the optimal objective value of the con-

tinuous relaxation of problem (43). We show the final result in two steps.

The first step shows that if ε = ∑K̂−1
j=1 ρj for some K̂ ∈ {1, . . . , n + 1},

then there exists an optimal solution to problem (45)–(47) that has the same
form as (44). The second step shows that there exists an optimal solution ε̂

to the problem maxε∈[0,
∑n

j=1 ρj ]{g(ε)} that satisfies ε̂ = ∑K̂−1
j=1 ρj for some

K̂ ∈ {1, . . . , n + 1}. These two steps show that the continuous relaxation of
problem (43) has an integer optimal solution and this solution has the same
form as (44).

The first step immediately follows from the fact that problem (45)–(47)
is a continuous knapsack problem and an optimal solution can be found
by sorting the items according to their utility to space ratios. For the sec-
ond step, it is enough to show that the derivative of g(·) does not change

sign over the interval
(∑K̂−1

j=1 ρj ,
∑K̂

j=1 ρj

)
for all K̂ ∈ {1, . . . , n}. We

note that if ε ∈ (
∑K̂−1

j=1 ρj ,
∑K̂

j=1 ρj ), then an optimal solution to prob-

lem (45)–(47) can be obtained by letting ẑj = 1 for all j = 1, . . . , K̂ − 1,

ẑ
K̂

= ε/ρ
K̂

−∑K̂−1
j=1 ρj /ρK̂

and ẑj = 0 for all j = K̂+1, . . . , n. Therefore,
we have

g(ε) = 1

ε + ρl
0




K̂−1∑
j=1

βj ρj + β
K̂


ε −

K̂−1∑
j=1

ρj




 .

The derivative of g(·) is

1[
ε + ρl

0

]2


β

K̂
ρl

0 −
K̂−1∑
k=1

βj ρj + β
K̂

K̂−1∑
j=1

ρj




and its sign does not depend on the value of ε. �

Therefore, we can find an optimal solution to problem (43) by sorting
{βj : j = 1, . . . , n} and checking n + 1 possible solutions. The values of
{ρj : j = 1, . . . , n} do not play a role in the sorting procedure and our proof
clearly shows why this is the case.
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