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We study a joint inventory stocking and assortment personalization problem. We have access to a set of

products that can be used to stock a storage facility with limited capacity. At the beginning of the selling

horizon, we decide how many units of each product to stock. Customers of different types with different

product preferences arrive into the system over the selling horizon. Depending on the remaining product

inventories and the type of the customer, we offer a personalized product assortment to the arriving customer.

The customer makes a choice within the assortment according to a choice model. Our goal is to choose

the stocking quantities at the beginning of the selling horizon and to find a policy to offer a personalized

assortment to each customer so that we maximize the total expected revenue over the selling horizon. Our

work is motivated by online platforms making same-day delivery promises or selling fresh groceries, which

require operating out of an urban warehouse to be close to customers, but allow the flexibility to personalize

the assortment for each customer. Finding a good assortment personalization policy requires approximating

a high-dimensional dynamic program with a state variable that keeps track of the remaining inventories.

Making the stocking decisions requires solving an optimization problem that involves the value functions of

the dynamic program in the objective function. We give an approximation framework for the joint inventory

stocking and assortment personalization problem. Using our framework, we obtain a 1
4
(1− 1

e
)-approximate

solution when the customers choose under the multinomial logit model. Under a general choice model, letting

n be the number of products and K be the total number of units we can stock, we give a (1− (
√
2+1) 3

√
n
K
)-

approximate solution, which is asymptotically optimal for large storage capacity. To our knowledge, these

are the first guarantees for our problem class. Our computational experiments on synthetically generated

datasets, as well as on a real-world supermarket dataset, show that our approximation framework performs

well against both upper bounds on the optimal performance and other possible heuristics.

1. Introduction

The ability to personalize the product assortment offered to each customer is an important source

of flexibility for online retailers. From the customer viewpoint, personalizing the assortment for

each customer may align the products viewed by the customer with her preferences, allowing the

customer to have a more satisfactory shopping experience. From the firm viewpoint, personalizing

the assortment for each customer may facilitate shifting the demand away from the products

with scarce inventories, allowing the firm to utilize its inventories more efficiently. Keeping these

two viewpoints in mind, making an assortment personalization decision for a customer requires

keeping a balance between offering an assortment that will satisfy the current customer and

1



2 Bai, El Housni, Rusmevichientong, Topaloglu; Coordinated Inventory Stocking and Assortment Personalization

reserving the products with scarce inventories for the customers that will arrive in the future. Thus,

while the assortment personalization decisions should depend on the current inventories of the

products, the stocking decisions should anticipate how the personalized assortments will deplete

the inventory, thereby creating a natural interaction between inventory stocking and assortment

personalization. The challenge of coordinating assortment personalization and inventory stocking

appears in numerous online retail settings. Online grocers, such as Amazon Fresh, operate out of

urban warehouses to be close to their customers. Such urban warehouses tend to be tightly capacity

constrained. Thus, online grocers face the problem of how to periodically stock their capacitated

warehouses and how to use the stocked inventory to serve the customers arriving at their platforms.

In particular, when a customer arrives at their platform, online grocers have access to a variety of

information about the customer, such as geographical location, age, gender and purchase history.

Using this information, along with the remaining inventories of the products, they have the ability

to offer a personalized assortment to each customer. Even if the platform does not attempt to

use the information about an arriving customer to personalize the assortment, aligning the offered

assortment with the remaining inventories is still a challenge. Similar tradeoffs occur for online

retailers with same-day delivery promises, as they also operate tight urban warehouses.

In this paper, we study a joint inventory stocking and assortment personalization problem. We

have access to a set of products that can be used to stock a storage facility with limited capacity.

At the beginning of the selling horizon, we decide how many units of each product to stock.

Customers of different types with different preferences for the products arrive over the selling

horizon. Type of a customer may encode her geographical location, age, gender and purchase

history. Depending on the remaining inventories and type of the customer, we offer a personalized

product assortment to each customer. The customer makes a choice within the assortment according

to a choice model. Our goal is to choose the stocking quantities at the beginning of the selling

horizon and to find a policy to offer a personalized assortment to each customer so that we maximize

the total expected revenue over the selling horizon. Our work is motivated by online retailers making

same-day delivery promises or selling fresh groceries, as both operate out of a local warehouse to

be close to customers. Computing the optimal assortment personalization policy requires solving a

high-dimensional dynamic program with a state variable keeping track of the remaining inventories.

The initial value function of the dynamic program characterizes the optimal total expected revenue

over the selling horizon as a function of the stocking quantities. Making the stocking decisions

requires solving an optimization problem to choose the state in the initial value function.

Technical Contributions: Our main technical contributions include algorithms to obtain

constant-factor and asymptotically optimal solutions to the joint inventory stocking and
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assortment personalization problem. To construct these algorithms, we make use of a configurable

approximation framework that we develop in our paper.

Approximation Framework. We develop an approximation framework for our joint inventory

stocking and assortment personalization problem. The framework has three steps. In Step 1, letting

n be the number of products, we construct a function f :Zn
+ →R+ that upper bounds the optimal

total expected revenue from the assortment personalization decisions when viewed as a function

of the initial stocking quantities. We refer to this function as our surrogate. In Step 2, we make

the stocking decisions. Letting ci be the stocking quantity of product i and K be limit on the

total number of units stocked, using the vector c= (c1, . . . , cn), we choose the stocking quantities

as an α-approximate solution to the problem maxc∈Zn
+
{f(c) :

∑n

i=1 ci ≤K} for some α ∈ (0,1]. In

Step 3, we make the assortment personalization decisions. Letting ĉ be our stocking quantities, we

construct an assortment personalization policy such that the total expected revenue of the policy

starting with the stocking quantities ĉ is at least β f(ĉ) for some β ∈ (0,1]. In this case, letting

opt be the optimal total expected revenue in the joint stocking and assortment personalization

problem, we show that using the stocking quantities computed in Step 2 and subsequently following

the assortment personalization policy constructed in Step 3 yields a total expected revenue of at

least αβ opt (Theorem 2.1). Thus, we get an αβ-approximate solution.

Performance Guarantees. To put our framework into action, we need to construct the surrogate

in Step 1, choose the stocking quantities in Step 2 by approximately solving a problem that involves

the surrogate in the objective function and construct an assortment personalization policy in Step 3

such that the total expected revenue of the policy is lower bounded by a certain fraction of the

surrogate. We construct our surrogate by using a linear program to approximate the optimal

total expected revenue from the assortment personalization decisions. This linear program is the

so-called choice-based deterministic linear program in the revenue management literature. The

optimal objective value of this linear program at fixed stocking quantities is an upper bound on the

optimal total expected revenue from the assortment personalization decisions starting from these

stocking quantities, so our linear programming-based surrogate satisfies the requirements in Step 1.

Throughout the paper, the surrogate f : Zn
+ → R+ will always be our linear programming-based

surrogate. It is, however, still not clear how to choose the stocking quantities by approximately

solving the problem in Step 2 with the linear programming-based surrogate and how to construct

an assortment personalization policy in Step 3 such that the total expected revenue of the policy

is lower bounded by a certain fraction of the linear programming-based surrogate.

It turns out that we can execute Steps 2 and 3 of our approximation framework efficiently under

our linear programming-based surrogate. In this way, using our approximation framework, if the
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customers choose under a multinomial logit model, then we get a 1
4
(1− 1

e
)-approximate solution to

the joint stocking and assortment personalization problem, whereas if the customers choose under a

general choice model, then we get a (1− (
√
2+1) 3

√
n
K
)-approximate solution (Theorem 3.1). To our

knowledge, these are the first guarantees for our problem. The last guarantee becomes near optimal

when the storage capacity is large. This result is different from those in the revenue management

literature that give asymptotically optimal policies when the capacities of the resources gets large,

because even if the storage capacity in our problem is large, it is not clear that the stocking quantity

of each product is large. When working with a general choice model, we only require that if we know

the type of a customer, then we can efficiently find an assortment that maximizes the expected

revenue from the customer. Our performance guarantees follow by designing efficient algorithms

to execute Steps 2 and 3 of our approximation framework, as we explain next.

Inventory Stocking Decisions. In Step 2 of our approximation framework, we choose the stocking

quantities by solving the problem maxc∈Zn
+
{f(c) :

∑n

i=1 ci ≤K} with the linear programming-based

surrogate. We show that this problem is APX-hard even when the customers choose according to

the multinomial logit model (Theorem 4.1). When the customers choose under the multinomial

logit model, we construct an approximation fapp : Zn
+ → R+ to the linear programming-based

surrogate such that 1
2
f(c) ≤ fapp(c) ≤ f(c) for all c ∈ Zn

+. We show that this approximate

surrogate is monotone and submodular over the integer lattice (Theorem 4.3). Thus, the problem

maxc∈Zn
+
{fapp(c) :

∑n

i=1 ci ≤K} maximizes a monotone and submodular function with a cardinality

constraint, which admits a (1− 1
e
)-approximation; see Soma and Yoshida (2018). Collecting these

results, we get a 1
2
(1− 1

e
)-approximate solution to the problem maxc∈Zn

+
{f(c) :

∑n

i=1 ci ≤K} with

the linear programming-based surrogate and under the multinomial logit model.

When the customers choose under a general choice model, we solve the continuous relaxation

of the problem maxc∈Zn
+
{f(c) :

∑n

i=1 ci ≤ K}. In this case, we show that we can round the

solution to the continuous relaxation to obtain a (1− 3
√

n
K
)-approximate solution such that the

stocking quantity of each product is lower bounded by 1
2

(
K
n

)2/3
(Theorem 5.1). The lower bound

on the stocking quantity of each product becomes useful when constructing a good assortment

personalization policy. Thus, if the customers choose under the multinomial logit model, then we

can execute Step 2 of our approximation framework with α= 1
2
(1− 1

e
), whereas if the customers

choose under a general choice model, then we can execute the same step with α= 1− 3
√

n
K
. Our

linear programming-based surrogate corresponds to the choice-based deterministic linear program,

so our results also show how to obtain approximate solutions to the choice-based deterministic

linear program when the initial resource quantities are integer-valued decision variables.

Assortment Personalization Decisions. Given stocking quantities ĉ for the products, using

ĉmin =mini∈N{ĉi : ĉi ≥ 1} to capture the smallest non-zero stocking quantity, we show that we
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can efficiently construct an assortment personalization policy with a total expected revenue of at

least max{ 1
2
,1− 1√

ĉmin

}f(ĉ) (Theorem 6.1). Thus, we can execute Step 3 of our approximation

framework with β =max{ 1
2
,1− 1√

ĉmin

} under the linear programming-based surrogate. When all

stocking quantities are lower bounded by 1
2
(K
N
)2/3, so that ĉmin ≥ 1

2
(K
n
)2/3, the last performance

guarantee becomes max{ 1
2
,1−

√
2 3
√

n
K
}f(ĉ). Our assortment personalization policy is extremely

simple. We solve a linear program to come up with the probability of offering each assortment to a

customer of each type. When a customer of a particular type arrives into the system, we sample an

assortment from the distribution corresponding to the customer type, drop the products without

remaining inventories from the sampled assortment and offer the remaining products. There is

existing work that constructs policies for similar assortment personalization problems. Existing

work assumes that the stocking quantities are fixed. Even under fixed stocking quantities, the

policies in the existing work have some form of a preprocessing step, damaging the intuitive nature

of the policy. Our assortment personalization policy directly follows the distribution that we obtain

from a linear program. Through a novel analysis, the performance guarantee for our policy matches

the best ones in the literature, but implementing our policy is much simpler. While the assortment

personalization decisions are not our sole focus, we make a useful contribution in that domain.

Positioning Our Work. Under the multinomial logit model, we give a 1
4
(1 − 1

e
)-approximate

solution to the joint stocking and assortment personalization problem. This result is the first to

give a constant-factor approximate solution for a joint stocking and assortment personalization

problem. Under a general choice model, we give a (1− (
√
2+1) 3

√
n
K
)-approximate solution, which

is near optimal as the storage capacity gets large. Note that there are no hidden constants in

the last performance guarantee. The performance guarantee does not depend on any problem

parameters other than n and K, so the expected number of arrivals, choice probabilities and

product revenues can be arbitrary and we still obtain the same performance guarantee. In our linear

programming-based surrogate, f(c) corresponds to the optimal objective value of the choice-based

deterministic linear program when viewed as a function of the stocking quantities. Our approximate

surrogate fapp(c) is a half-approximation to f(c) and it is monotone and submodular in c. Such an

approximation is valuable for solving the choice-based deterministic linear program when the initial

resource quantities are also decision variables with cardinality, knapsack or matroid constraints.

Lastly, even if we put aside coordinating the stocking and assortment personalization decisions

and only focus on assortment personalization, our assortment personalization policy is extremely

simple and its performance guarantee matches the best ones available in the literature.

Computational Experiments and Practical Refinements. We give computational experiments on

synthetically generated datasets, as well as datasets based on purchases in a real-world supermarket.
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We compare the performance of our approximation framework with an efficiently computable

upper bound on the optimal total expected revenue and a newsvendor heuristic. On average, we

obtain solutions within 7.16% of the upper bound and improve the performance of the newsvendor

heuristic by 2.66%. Furthermore, we give refinements on our approximation framework to improve

its practical performance, while maintaining the same theoretical performance guarantee. In

particular, our approximate surrogate is based on fixing certain decision variables when computing

our linear programming-based surrogate. To refine our approximate surrogate, we try multiple

values to fix the decision variables, whereas to refine our assortment personalization policy, we use

rollout. Our refinements bring our solutions to within 3.26% of the upper bound on the optimal

total expected revenue, resulting in solutions with an average optimality gap of only 3.26%.

Related Literature: There is work on making inventory stocking decisions at the beginning

of the selling horizon when the customers arriving over the selling horizon make choices among

all products with remaining inventories. This problem setup is referred to as stockout-based

substitution. Honhon et al. (2010) use the non-parametric choice model, where each customer

arrives with a ranked list of products in mind and purchases the highest ranked available product.

The authors give a fluid approximation where the customers can make fractional purchases.

Goyal et al. (2016) give a polynomial time approximation scheme without resorting to a fluid

approximation. Under the multinomial logit model, Aouad et al. (2018) give a randomized

algorithm that provides a constant-factor performance guarantee with high probability. Aouad

et al. (2019) use the non-parametric choice model to give a guarantee that depends logarithmically

on the gap between the unit product revenues. Under the Markov chain choice model, El Housni

et al. (2021) give an algorithm with an additive optimality gap that grows sublinearly with the

number of time periods in the selling horizon, as well as the number of products. Liang et al. (2021)

give a similar sublinear additive performance guarantee under the multinomial logit model.

In the papers discussed above, the customers choose among all products with remaining

inventories. In contrast, we adjust the assortment to be offered to each customer. Chen et al. (2022)

develop a model where they choose the stocking quantities for the products and match each arriving

customer to a product. The authors solve an integer program to make their stocking decisions, so

their algorithm does not run in polynomial time. Zhang et al. (2022) choose the stocking quantities

of the products and a ranking of the products to be displayed to the customers in search results.

Even if the ranking can change over the selling horizon, they show that fixing the ranking can be

near optimal in the asymptotic regime they consider. There are papers that make approximations

by assuming that we can offer products without remaining inventories but if a customer chooses a

product without remaining inventory, then she leaves without a purchase, possibility resulting in a
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goodwill cost; see van Ryzin and Mahajan (1999), Gaur and Honhon (2006) and Topaloglu (2013).

Such an approximation can be reasonable when the probability of stocking out is low.

Our linear programming-based surrogate uses a linear program to approximate the optimal total

expected revenue from the assortment personalization decisions. This linear program is known as

the choice-based deterministic linear program in the literature; see Gallego et al. (2004) and Liu and

van Ryzin (2008). In this linear program, we have one decision variable for each assortment that we

can possibly offer to each customer type, so it is customary to solve the the linear program through

column generation. The column generation subproblem can efficiently be solved or approximated

under a variety of choice models, including multinomial logit, nested logit, paired combinatorial

logit, non-parameteric and Markov chain choice models; see Talluri and van Ryzin (2004), Davis

et al. (2014), Blanchet et al. (2016), Zhang et al. (2020) and Aouad et al. (2021). Under certain

choice models, we can solve the choice-based deterministic linear program directly without resorting

to column generation; see Gallego et al. (2015), Feldman and Topaloglu (2017), Cao et al. (2021)

and Cao et al. (2022). Under these choice models, we can reformulate the choice-based deterministic

linear program by using the expected sales of each product as the decision variable.

There is work on assortment personalization policies under fixed stocking quantities. Golrezaei

et al. (2014) give a 1
2
-approximate policy by adjusting the unit revenue of each product as a function

of its remaining inventory. Rusmevichientong et al. (2020) give a 1
2
-approximate policy by using

linear value function approximations. For network revenue management problems, Ma et al. (2020)

use nonlinear value function approximations to give a 1
1+L

-approximate policy when each product

uses at most L resources. Letting ĉmin be the smallest product inventory, Feng et al. (2020) give

a 1− 1√
ĉmin

-approximate policy. Ma et al. (2021) give a 1−
√

log ĉmin
ĉmin

-approximate policy, but they

may offer a product with no remaining inventory. Baek and Ma (2022) give improved performance

guarantees for network revenue management problems under special network structures. All of

these papers require a non-trivial preprocessing step that adjusts the revenues of the products,

builds value function approximations or drops certain products from consideration. Our assortment

personalization policy is max{ 1
2
,1 − 1√

ĉmin

}-approximate and has no preprocessing step, so we

match the best available performance guarantees with an extremely simple policy.

Organization: In Section 2, we formulate our joint inventory stocking and assortment

personalization problem and give our approximation framework. In Section 3, we describe our linear

programming-based surrogate, as well as the performance guarantees that we obtain by using the

surrogate in our approximation framework. In Section 4, we focus on making stocking decisions

under the multinomial logit model. In Section 5, we focus on making stocking decisions under a

general choice model. In Section 6, we give our assortment personalization policy. In Section 7, we

test the performance of our approximation framework. In Section 8, we conclude.
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2. Problem Formulation and Approximation Framework

We have n products indexed by N = {1, . . . , n}. The revenue associated with product i is ri. We

have m customer types indexed by M= {1, . . . ,m}. We divide the selling horizon into a number

of time periods, where each time period corresponds to small enough duration of time that there

is at most one customer arrival at each time period. We have T time periods in the selling horizon

index by T = {1, . . . , T}. At time period t, a customer of type j arrives into the system with

probability λjt. We do not have a customer arrival at time period t with probability 1−
∑

j∈M λjt. If

we offer the assortment of products S ⊆N to a customer of type j, then she chooses product i with

probability ϕij(S). We have K units of storage capacity for the products. Each unit of product

that we stock at the beginning of the selling horizon consumes one unit of storage capacity. We

want to decide which products to stock in which quantities and which personalized assortment to

offer to each arriving customer as a function of the remaining inventories and type of the customer

so that we maximize the total expected revenue over the selling horizon.

We give a dynamic program to find the optimal policy to choose a personalized assortment to

offer to each arriving customer. Using the value functions of the dynamic program, we will decide

which products to stock in which quantities. Letting xi be the remaining inventory of product i,

we use x = (xi : i ∈ N ) as the state variable at the beginning of a generic time period. At each

time period, we observe the type of the arriving customer and offer an assortment of products. The

offered assortment has to be subset of products that have remaining inventory. Given that the

state of the system at the beginning of a generic time period is x, we use N (x) = {i ∈N : xi ≥ 1}

to denote the set of products that have remaining inventory. Thus, if the state of the system at

the beginning of a time period is x, then the offered assortment must be a subset of N (x). Let

Jt(x) be the maximum total expected revenue over time periods t, . . . , T given that the state of

the system at the beginning of time period t is x. Using ei ∈Rn
+ to denote the i-th unit vector, we

can compute the value functions {Jt : t∈ T } through the dynamic program

Jt(x) =
∑
j∈M

λjt max
S⊆N(x)

{∑
i∈N

ϕij(S)
[
ri+Jt+1(x−ei)

]
+

(
1−
∑
i∈N

ϕij(S)

)
Jt+1(x)

}
+

(
1−
∑
j∈M

λjt

)
Jt+1(x)

=
∑
j∈M

λjt max
S⊆N(x)

{∑
i∈N

ϕij(S)
[
ri +Jt+1(x−ei)−Jt+1(x)

]}
+Jt+1(x), (1)

with the boundary condition that JT+1 = 0. If the state variable at the beginning of the selling

horizon is x, then the optimal total expected revenue is J1(x).

On the right side of (1), a customer of type j arrives at time period t with probability λjt. If

we offer the assortment S to this customer, then she chooses product i with probability ϕij(S),



Bai, El Housni, Rusmevichientong, Topaloglu; Coordinated Inventory Stocking and Assortment Personalization 9

in which case, we generate a revenue of ri and consume one unit of inventory for product i. The

customer does not make a purchase with probability 1−
∑

i∈N ϕij(S) and there is no customer

arrival at time period t with probability 1 −
∑

j∈M λjt. In either case, we do not consume the

inventory of a product. The second equality in (1) follows by arranging the terms. Throughout the

paper, we assume that the choices of the customers are governed by a choice model such that if

we add a product to an assortment, then the choice probabilities of all products in the assortment

decrease. That is, we have ϕij(S ∪ {k}) ≤ ϕij(S) for all S ⊆ N , k ∈ N \ S, i ∈ S and j ∈M. All

choice processes that are based on random utility maximization principle yield choice probabilities

that satisfy this substitutability property. Letting ci be the number of units of product i that

we stock at the beginning of the selling horizon, we use c = (ci : i ∈ N ) to capture our stocking

decisions. We can find the optimal stocking decisions by solving the problem

opt = max
c∈Zn

+

{
J1(c) :

∑
i∈N

ci ≤K

}
, (2)

where we maximize the total expected revenue over the selling horizon by choosing the initial

stocking decisions for the products, while adhering to the storage space constraint.

In the problem above, opt corresponds to the maximum total expected revenue that we can

obtain by jointly choosing the stocking quantities and making the personalized assortment offer

decisions. Simply computing the objective value of problem (2) at a particular solution requires

having access to the value functions {Jt : t∈ T }, which, in turn, requires solving a dynamic program

with a high-dimensional state variable. Furthermore, even if we have access to the value functions

{Jt : t∈ T }, the value functions may not have any structure that allows us to solve problem (2)

efficiently. Motivated by these observations, we focus on obtaining an approximate solution to

problem (2). To be able to have an implementable solution, we need to obtain an approximate

solution to problem (2) telling us which products to stock in which quantities, as well as an

approximate policy telling us which personalized assortment to offer at each time period as a

function of the remaining inventories and type of the arriving customer.

We give an approximation framework that will allow us to reach both goals. In our approximation

framework, we start with a surrogate function f :Zn
+ →R+ such that f(c) will approximate J1(c).

We will choose the surrogate such that f(c) is an upper bound on J1(c). In particular, we will use

a linear program to construct the surrogate. In this case, we will make our stocking decisions by

solving problem (2) after replacing J1(c) in the objective function of this problem with f(c). Under

our surrogate, we will be able to obtain an approximate solution to (2) when we replace J1(c) with

f(c). Finally, we will construct an approximate policy to decide which assortment of products to

offer to each customer so that the total expected revenue of the approximate policy can be lower
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bounded by a constant fraction of the surrogate evaluated at our stocking decisions. Below is the

detailed description of our approximation framework.

Approximation Framework:

Step 1: (Surrogate Function Construction) Construct a surrogate function f :Zn
+ →R+ to

approximate J1 such that we have f(c)≥ J1(c) for all c∈Zn
+.

Step 2: (Stocking) For α∈ (0,1], compute the approximate stocking quantities ĉ= (ĉ1, . . . , ĉn)

as an α-approximate solution to the problem

app = max
c∈Zn

+

{
f(c) :

∑
i∈N

ci ≤K

}
. (3)

Step 3: (Personalization) For β ∈ (0,1], construct a policy to offer personalized assortments

such that the total expected revenue of the policy with initial inventories ĉ is at least β f(ĉ).

Our approximation framework gives a blueprint with gaps to fill in. In particular, we need

to choose a surrogate that forms an upper bound on the value function in Step 1, obtain an

approximate solution to problem (3) with the chosen surrogate in Step 2 and construct an

assortment personalization policy whose total expected revenue is lower bounded by a fraction

of the chosen surrogate in Step 3. Thus, we can view the approximation framework as a meta-

algorithm with gaps. We will show that we can fill all of the gaps for our joint stocking and

assortment personalization problem. Throughout the paper, we will use one surrogate function,

but it is entirely possible that others come up with different surrogates that allow us to satisfy the

three steps in the approximation framework, resulting in different approximation strategies. In the

next theorem, we give a performance guarantee for our approximation framework.

Theorem 2.1 (Approximation Framework) If we use the stocking decisions ĉ from Step 2 at

the beginning of the selling horizon, followed by the assortment personalization policy from Step 3,

then we obtain a total expected revenue of at least αβ opt.

Proof: Let Rev(ĉ) be the total expected revenue of the assortment personalization policy in Step

3 starting with initial inventories ĉ. By Step 3, we have Rev(ĉ)≥ β f(ĉ). Letting c∗ be an optimal

solution to problem (2), we have opt = J1(c
∗). The solution c∗ is feasible but not necessarily

optimal to problem (3). By Step 2, since ĉ is an α-approximate solution to problem (3), we have

f(ĉ) ≥ αf(c∗). By Step 1, we have f(c∗) ≥ J1(c
∗). Collecting the preceding three inequalities in

the proof, we obtain the chain of inequalities Rev(ĉ)≥ β f(ĉ)≥ αβf(c∗)≥ αβJ1(c
∗) = αβ opt.

Thus, we can obtain an αβ-approximate solution to the joint stocking and assortment

personalization problem through our approximation framework. In the next section, we give our

surrogate and describe the performance guarantees that we can attain by using this surrogate.
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3. Surrogate Function and Main Results

In Step 1 of our approximation framework, we need to construct a surrogate function that

approximates the value function at the first time period from above. To construct our surrogate,

we use a linear programming approximation to the assortment personalization problem that we

formulated in the dynamic program in (1). In our linear programming approximation, we assume

that the arrivals and choices of the customers take on their expected values. In particular, we

use the decision variable wj(S) to capture the total expected number of times that we offer

assortment S to a customer of type j over the whole selling horizon. Using the decision variables

w= (wj(S) : j ∈M, S ⊆N ) and using τj =
∑

t∈T λjt to denote the total expected number of

customer arrivals of type j over the selling horizon, our surrogate f :Zn
+ →R+ is given by

f(c) = max
w∈Rm2n

+

{∑
j∈M

∑
S⊆N

∑
i∈N

ri ϕij(S)wj(S) :
∑
j∈M

∑
S⊆N

ϕij(S)wj(S)≤ ci ∀ i∈N , (4)

∑
S⊆N

wj(S)≤ τj ∀ j ∈M

}
.

In the linear program above, if a customer of type j arrives at a time period and we offer

assortment S, then we obtain an expected revenue of
∑

i∈N ri ϕij(S). Thus, the objective function

accounts for the total expected revenue over the selling horizon. If a customer of type j arrives

at a time period and we offer assortment S, then the expected consumption of the inventory of

product i is ϕij(S), so the first constraint ensures that the total expected inventory consumption

of product i does not exceed its stocking quantity. The second constraint ensures that the total

expected number of customers of type j that are offered some assortment is at most the total

expected number of arrivals. Linear programming approximations of this form have been used by

Gallego et al. (2004), Liu and van Ryzin (2008), Golrezaei et al. (2014) and Ma et al. (2021).

We refer to the surrogate given by the optimal objective value of problem (4) as the linear

programming-based surrogate. Throughout the paper, we will use this surrogate and f(c) will

always denote the surrogate given by the optimal objective function of (4) as a function of c.

Problem (4) is a fluid approximation for the dynamic program in (1). It is a standard result that

the optimal objective value of such a fluid approximation is an upper bound on the optimal total

expected revenue. Proposition 2 in Gallego et al. (2004), for example, gives a proof of this result with

a single customer type. It is straightforward to extend their result to multiple customer types. Thus,

we have f(c)≥ J1(c), which is the property that the surrogate function needs to satisfy in Step 1 of

our approximation framework. The number of decision variables in (4) increases exponentially with

the number of products, but we can solve the separation subproblem efficiently under a variety
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of choice models, such as the multinomial logit, nested logit, generalized attraction, Markov chain

and a mixture of independent demand and multinomial logit models; Talluri and van Ryzin (2004),

Davis et al. (2014), Gallego et al. (2015), Blanchet et al. (2016) and Cao et al. (2021). Therefore,

we can solve problem (4) efficiently under many choice models. Moving forward, we assume that

we can solve the separation subproblem efficiently. Using the linear programming-based surrogate,

we will be able to execute Steps 2 and 3 of our approximation framework to get performance

guarantees for our joint stocking and assortment personalization problem, as explained next.

Outline and Main Results:

Using our approximation framework, we give two performance guarantees for our joint stocking

and assortment personalization problem. To get either of the two performance guarantees, we use

the linear programing-based surrogate in (4) in Step 1, so f(c) is always given by problem (4).

Next, we consider Step 2. First, we assume that the customers choose under the multinomial logit

model. In Section 4, we show that we can obtain a 1
2
(1− 1

e
)-approximate solution ĉ to problem (3)

with the linear programming-based surrogate in polynomial time. Thus, we can execute Step 2 with

α= 1
2
(1− 1

e
) when the customers choose under the multinomial logit model. Second, we assume that

the customers choose under a general choice model. We focus on the case where the storage capacity

is large, so thatK ≥ n. In Section 5, we show that we can obtain a (1− 3
√

n
K
)-approximate solution ĉ

to problem (3) in polynomial time in such a way that the approximate solution satisfies ĉi ≥ 1
2
(K
n
)2/3

for all i ∈ N . Thus, we can execute Step 2 with α = 1 − 3
√

n
K

with the linear programming-

based surrogate under a general choice model. Lastly, we consider Step 3 of our approximation

framework. In Section 6, letting ĉmin =mini∈N{ĉi : ĉi ≥ 1} to capture the smallest non-zero stocking

quantity in the initial inventory vector ĉ, we give an assortment personalization policy such that

the total expected revenue of the policy with initial inventories ĉ is at least max{ 1
2
,1− 1√

ĉmin

}f(ĉ),
when the customers choose under a general choice model. Thus, we can execute Step 3 with

β =max{ 1
2
,1− 1√

ĉmin

}. Using these results in Theorem 2.1, we get the following two performance

guarantees for our joint stocking and assortment personalization problem.

Theorem 3.1 (Performance Guarantees) We have the following two performance guarantees

for the joint stocking and assortment personalization problem.

(a) Under the multinomial logit model, we can compute a 1
4
(1 − 1

e
)-approximate solution in

polynomial time.

(b) Under a general choice model, considering the case with large storage capacity so that K ≥ n,

we can compute a (1− (
√
2+1) 3

√
n
K
)-approximate solution in polynomial time.

Proof: By the discussion right before the theorem, under the multinomial logit model, using the

linear programming-based surrogate, we can execute Step 2 with α = 1
2
(1− 1

e
) and Step 3 with
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β = 1
2
. Thus, by Theorem 2.1, we get a performance guarantee of 1

4
(1− 1

e
), so the first part of the

theorem follows. Under a general choice model, we can execute Step 2 with α= 1− 3
√

n
K

to obtain

an approximate solution ĉ to problem (3) that satisfies ĉi ≥ 1
2
(K
n
)2/3 for all i ∈ N . Furthermore,

letting ĉmin =mini∈N{ĉi : ĉi ≥ 1}, we can execute Step 3 with β = 1− 1√
ĉmin

. Thus, by Theorem 2.1,

we get a performance guarantee of (1− 3
√

n
K
) (1− 1√

ĉmin

). Noting that ĉi ≥ 1
2
(K
n
)2/3 for all i∈N , we

have ĉmin ≥ 1
2
(K
n
)2/3. In this case, the last performance guarantee satisfies (1− 3

√
n
K
) (1− 1√

ĉmin

)≥

(1− 3
√

n
K
) (1−

√
2 3
√

n
K
)≥ 1− (

√
2+1) 3

√
n
K
, so the second part of the theorem follows.

By the first part of the theorem, if the customers choose according to the multinomial logit

model, then we can obtain a solution with a constant-factor performance guarantee for our joint

stocking and assortment personalization problem. By the second part of the theorem, even when

the customers choose according to a general choice model, as the storage capacity gets arbitrarily

large, we obtain a solution that is asymptotically optimal. There are no hidden constants in the

second part, so we can use the second part of the theorem to also obtain performance guarantees

that depend on n and K. For example, if the storage capacity satisfies K ≥ κn for some κ≥ 1, then

we obtain a performance guarantee of 1− (
√
2+ 1)/κ1/3 when the customers choose according to

a general choice model. This performance guarantee does not depend on problem data other than

n and K. We emphasize that the asymptotic optimality result in the second part of the theorem

is different from other asymptotic optimality results that appear in the revenue management

literature, which show that if the initial inventories of all products grow arbitrarily large, then we

can design asymptotically optimal policies for various formulations of dynamic pricing, capacity

control and assortment offering problems; see, for example, Gallego and van Ryzin (1994), Jasin

and Kumar (2012), Feng et al. (2020) and Ma et al. (2021). In our asymptotic optimality result, the

storage capacity grows arbitrarily large, which does not necessarily imply that the initial inventories

for all products grow large. Another point worth noting is that we do not make any assumptions

on at what rate the demand volume grows either. Next, we focus on finding approximate solutions

to problem (3) when the customers choose according to the multinomial logit and a general choice

model, as well as constructing an assortment personalization policy.

4. Stocking Decisions under the Multinomial Logit Model

We consider finding an approximate solution to problem (3) in Step 2 of our approximation

framework when the customers choose according to the multinomial logit model. Under the

multinomial logit model, customers of type j associate the preference weight vij with product i.

We normalize the preference weight of the no-purchase option to one. If we offer the assortment S,

then a customer of type j chooses product i ∈ S with probability ϕij(S) = vij/(1+
∑

k∈S vkj); see
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McFadden (1974) and Train (2003). In the next theorem, we show that it is NP-hard to approximate

problem (3) within a factor 1− 1
e
even under the multinomial logit model.

Theorem 4.1 (Complexity) Even when the customers choose under the multinomial logit model

and all product revenues are equal to each other, there exists no polynomial-time algorithm to

approximate problem (3) within a factor of 1− 1
e
− ϵ for all ϵ > 0, unless P =NP .

The proof of the theorem, which is given in Appendix A, uses a reduction from the maximum

coverage problem. Motivated by this complexity result, we focus on obtaining approximate

solutions to problem (3). We will use submodular function maximization tools to obtain an

approximate solution to problem (3). The function g :Zn
+ →R+ is said to be submodular if it

satisfies g(c+ei)− g(c)≤ g(b+ei)− g(b) for all i ∈ N and c,b∈Zn
+ with c ≥ b. On the other

hand, the function g : Zn
+ → R+ is said to be monotone if it satisfies g(c) ≥ g(b) for all c,b∈Zn

+

with c≥ b. If the linear programming-based surrogate were a monotone and submodular function,

then problem (3) would correspond to maximizing a monotone and submodular function over the

integer lattice subject to a cardinality constraint. It is known that such a monotone and submodular

function maximization problem admits a (1 − 1
e
)-approximation; see Soma and Yoshida (2018).

Unfortunately, we can come up with counterexamples to show that the linear programming-based

surrogate f(c) is not submodular in c, even under the multinomial logit model. We give one

counterexample in Appendix B. To get around this difficulty, we will construct a monotone

and submodular approximation to the linear programming-based surrogate and leverage this

approximation. Our starting point for constructing the monotone and submodular approximation

is an alternative formulation of the linear programming-based surrogate under the multinomial

logit model, which we borrow from the earlier literature. In the alternative formulation, we use

the decision variable yij to capture the total expected number of customers of type j making a

purchase for product i, whereas we use the decision variable y0j to capture the total expected

number of customers of type j leaving without a purchase. In this case, using the decision variables

y= (yij : i∈N , j ∈M) and y0 = (y0j : j ∈M), we consider the linear program

f(c) = max
(y,y0)∈Rnm+m

+

{∑
j∈M

∑
i∈N

ri yij :
∑
j∈M

yij ≤ ci ∀ i∈N , (5)

∑
i∈N

yij + y0j ≤ τj ∀ j ∈M,
yij
vij

≤ y0j ∀ i∈N , j ∈M

}
.

We can show that if the customers choose under the multinomial logit model so that the choice

probabilities are of the form ϕij(S) = vij/(1 +
∑

k∈S vkj) for all i ∈ S, then problems (4) and (5)

have the same optimal objective value; see Gallego et al. (2015). Thus, we continue using f(c) to
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denote the optimal objective value of problem (5) as a function of c. Problem (5) has an intuitive

interpretation. Noting the definition of the decision variable yij, the objective function accounts

for the total expected revenue. The first constraint ensures that the total expected purchases for

product i by customers of all types does not exceed the stocking quantity of the product. The

second constraint ensures that the total expected number of customers of type j either purchasing

some product or leaving without a purchase is at most the total expected number of arrivals. The

third constraint, roughly speaking, ensures the purchases for the different products are aligned with

the multinomial logit model. We can compute the linear programming-based surrogate by solving

problem (5) instead of problem (4), but whether we use problem (4) or (5), as discussed earlier in

this section, f(c) is not submodular in c. We consider an approximation to f(c) that is obtained

by fixing the value of the decision variable y0j in (5) at τj/2. So, consider the linear program

fapp(c) = max
y∈Rnm

+

{∑
j∈M

∑
i∈N

ri yij :
∑
j∈M

yij ≤ ci ∀ i∈N , (6)

∑
i∈N

yij ≤
1

2
τj ∀ j ∈M, yij ≤

1

2
vij τj ∀ i∈N , j ∈M

}
.

We obtain (6) directly by fixing y0j = τj/2 in (5). By the next lemma, the optimal objective

value of (6) approximates the linear programming-based surrogate within a factor of two.

Lemma 4.2 (Surrogate Approximation) Noting that the optimal objective value of problem

(6) as a function of c is fapp(c), we have 1
2
f(c)≤ fapp(c)≤ f(c) for all c∈Zn

+.

Proof: We obtain problem (6) by fixing some of the decision variables in problem (5), so we

immediately have fapp(c)≤ f(c). Let (y∗,y∗
0) be an optimal solution to problem (5). We claim that

1
2
y∗ is a feasible solution to (6). Because (y∗,y∗

0) is feasible to (5), we have
∑

j∈M y∗ij ≤ ci for all

i∈N ,
∑

i∈N y
∗
ij ≤ τj and y∗0j ≤ τj for all j ∈M and y∗ij ≤ vij y

∗
0j for all i∈N and j ∈M, where the

second and third inequalities use the second constraint in (5). In this case, these four inequalities

imply that we have
∑

j∈M
1
2
y∗ij ≤ ci,

∑
i∈N

1
2
y∗ij ≤ 1

2
τj and 1

2
y∗ij ≤ 1

2
vij y

∗
0j ≤ 1

2
vij τj. Thus,

1
2
y∗ is

a feasible solution to problem (6). Noting that 1
2
y∗ is a feasible but not necessarily an optimal

solution to problem (6), we obtain fapp(c)≥ 1
2

∑
j∈M

∑
i∈N ri y

∗
ij =

1
2
f(c).

We refer to the surrogate given by the optimal objective value of (6) as the approximate surrogate.

By the lemma above, the approximate surrogate approximates the linear programming-based

surrogate within a factor of two. Thus, if we replace f(c) in problem (3) with fapp(c) and obtain

an α-approximate solution, then this solution is a 1
2
α-approximate solution to problem (3). The

approximate surrogate is monotone because if we increase the right side of the first constraint in
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(6), then the optimal objective value of this problem does not decrease. In the remainder of this

section, we show that the approximate surrogate is also submodular.

Submodularity of the Approximate Surrogate:

We proceed to showing that fapp(c) is submodular in c. Using the dual variables µ= (µi : i∈N ),

σ= (σj : j ∈M) and θ= (θij : i∈N , j ∈M) for the three constraints, the dual of (6) is

fapp(c) = min
(µ,σ,θ)∈Rn+m+nm

+

{∑
i∈N

ci µi +
∑
j∈M

τj
2
σj +

∑
i∈N

∑
j∈M

vij τj
2

θij : µi +σj + θij ≥ ri ∀ i∈N , j ∈M

}

= min
µ∈Rn

+

{∑
i∈N

ci µi +
∑
j∈M

τj
2

min
(σj ,θj)∈R1+n

+

{
σj +

∑
i∈N

vij θij : σj + θij ≥ ri −µi ∀ i∈N

}}
,

where the second equality follows by minimizing over the decision variables µ in the outer problem

and over the decision variables (σ,θ) in the inner problem, as well as noting that the inner problem

decomposes by the customer types. On the right side of the chain of equalities above, we use

the vector of decision variables θj = (θij : i ∈ N ). In this case, letting L(c,µ) =
∑

i∈N ci µi and

using Gj(µ) to denote the optimal objective value of the inner minimization problem on the right

side of the chain of equalities above, we have fapp(c) =minµ∈Rn
+

{
L(c,µ)+

∑
j∈M

τj
2
Gj(µ)

}
. By

the definition of L(c,µ), we have L(c+ ei,µ) = L(c,µ) + µi. Furthermore, consider solving the

inner minimization problem on the right side of the chain of inequalities above by using its

dual. Associating the dual variables zj = (zij : i∈N ) with the constraints in the inner minimization

problem and noting that we use Gj(µ) to denote the optimal objective value of this problem, we

have Gj(µ) = maxzj∈Rn
+

{∑
i∈N (ri − µi)zij :

∑
i∈N zij ≤ 1, zij ≤ vij ∀ i ∈ N

}
, which is a knapsack

problem. Thus, Gj(µ) is the optimal objective value of a knapsack problem when viewed as a

function of its objective function coefficients. In the next theorem, we build on these observations

to show that the approximate surrogate is submodular.

Theorem 4.3 (Submodularity of Approximate Surrogate) For each i ∈ N and c,b ∈ Zn
+

that satisfies c≥ b, we have fapp(c+ei)− fapp(c)≤ fapp(b+ei)− fapp(b).

Proof:We can compute the approximate surrogate as fapp(c) =minµ∈Rn
+

{
L(c,µ)+

∑
j∈M

τj
2
Gj(µ)

}
.

We define the notation µ∨η= (µi ∨ ηi : i∈N ) and µ ∧ η = (µi ∧ ηi : i ∈ N ) for µ,η ∈ Rn
+. A

simple lemma, given as Lemma C.1 in Appendix C, shows that the function L(c,µ) satisfies

L(c,µ)+L(b,η)≥L(c,µ∧η)+L(b,µ∨η) for all c,b ∈ Rn
+ with c ≥ b and µ,η ∈Rn

+, whereas

the function Gj(µ) satisfies Gj(µ) + Gj(η) ≥ Gj(µ ∧ η) + Gj(µ ∨ η) for all µ,η ∈Rn
+. The

proof of the first inequality uses the fact that L(c,µ) is a bilinear function of the form

L(c,µ) =
∑

i∈N ci µi, whereas the proof of the second inequality uses the fact that Gj(µ)

is the optimal objective value of a knapsack problem when viewed as a function of the
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objective function coefficients. Thus, defining F (c,µ) =L(c,µ)+
∑

j∈M
τj
2
Gj(µ) for notational

brevity, the function F (c,µ) also satisfies F (c,µ) + F (b,η) ≥ F (c,µ ∧ η) + F (b,µ ∨ η) for

all c,b∈Rn
+ with c≥ b and µ,η ∈Rn

+. Furthermore, by the definition of F (c,µ), we have

fapp(c) =minµ∈Rn
+
F (c,µ). We make three useful observations. First, by the discussion right before

the theorem, we have L(c+ ei,µ) = L(c,µ) + µi, so we have F (c+ ei,µ) = F (c,µ) + µi as well.

Second, we define µ̂c = argminµ∈Rn
+
F (c,µ), in which case, we have fapp(c) = F (c, µ̂c). Similarly, we

define µ̂+
c = argminµ∈Rn

+
F (c+ei,µ), µ̂b = argminµ∈Rn

+
F (b,µ) and µ̂+

b = argminµ∈Rn
+
F (b+ei,µ).

Third, noting that µ̂b = argminµ∈Rn
+
F (b,µ) and µ̂+

c = argminµ∈Rn
+
F (c+ei,µ), we have

F (b, µ̂b)≤ F (b,µ) and F (c+ei, µ̂
+
c )≤ F (c+ei,µ) for all µ∈Rn

+. In this case, using µ̂+
i,b to denote

the i-th component of the vector µ̂+
b , we obtain

fapp(c)+ fapp(b+ei)
(a)
= F (c, µ̂c) + F (b+ei, µ̂

+
b )

(b)
= F (c, µ̂c) + F (b, µ̂+

b )+ µ̂+
i,b

(c)

≥ F (c, µ̂c ∧ µ̂+
b ) + F (b, µ̂c ∨ µ̂+

b ) + µ̂+
i,b

≥ F (c, µ̂c ∧ µ̂+
b ) + F (b, µ̂c ∨ µ̂+

b ) + (µ̂i,c ∧ µ̂+
i,b)

(d)
= F (c+ei, µ̂c ∧ µ̂+

b ) + F (b, µ̂c ∨ µ̂+
b )

(e)

≥ F (c+ei, µ̂
+
c ) + F (b, µ̂b)

(f)
= fapp(c+ei)+ fapp(b),

where (a) and (f) use the second observation, (b) and (d) use the first observation, (c) holds because

F (c,µ)+F (b,η)≥ F (c,µ∧η)+F (b,µ∨η) and (e) uses the third observation.

Problem (6) is the transportation problem on a bipartite graph, where the flow from node i

to node j is upper bounded by 1
2
vij τj. If the flows do not have upper bounds, then the optimal

objective value of the transportation problem on a bipartite graph is known to be submodular in

the availability at the supply nodes; see Theorem 3 in Nemhauser et al. (1978). The analogue of

this result in Theorem 4.3, allowing upper bounds on the flows, is new. Since fapp(c) is monotone

and submodular in c over the integer lattice, if we replace the objective function of problem (3)

with fapp(c), then we can obtain a (1− 1
e
)-approximate solution to this problem in polynomial

time; see Soma and Yoshida (2018). Nemhauser et al. (1978) show that a greedy algorithm also

yields a (1− 1
e
)-approximate solution to the same problem. Since fapp(c) approximates f(c) within

a factor of two, the resulting solution is a 1
2
(1− 1

e
)-approximate solution to problem (3).

Note that our equivalent reformulation of the linear programming-based surrogate as in (5) and

approximating the optimal objective value of (5) by using a transportation problem as in (6) both

play a role in our approach for making stocking decisions under the multinomial logit model. By

the discussion in this section, we can execute Step 2 of our approximation framework under the

multinomial logit model. Next, we focus on the same step under a general choice model.
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5. Stocking Decisions under a General Choice Model

We consider obtaining an approximate solution to problem (3) in Step 2 of our approximation

framework when the customers choose according to a general choice model. We focus on the

case with large storage capacity, so that we have K ≥ n. Our approach is based on formulating

a continuous relaxation of problem (3) and rounding the optimal solution to the continuous

relaxation. In particular, we use the decision variable wj(S) to capture the total expected number

of times that we offer the assortment S to customers of type j, whereas we use the decision variable

ci to capture the number of units of product i that we stock. We used the analogue of the decision

variable wj(S) when formulating our linear programming-based surrogate in (4). Using the vectors

of decision variables w = (wj(S) : j ∈M, S ⊆ N ) and c = (ci : i ∈ N ), we consider a continuous

relaxation of problem (3) given by the linear program

relax = max
(w,c)∈Rm2n+n

+

{∑
j∈M

∑
S⊆N

∑
i∈N

ri ϕij(S)wj(S) :
∑
j∈M

∑
S⊆N

ϕij(S)wj(S)≤ ci ∀ i∈N , (7)

∑
S⊆N

wj(S)≤ τj ∀ j ∈M,
∑
i∈N

ci ≤K

}
.

The number of decision variables above increases exponentially with the number of products, but

the separation subproblem for problem (7) has the same structure as the separation subproblem

for problem (4). Thus, we can solve problem (7) efficiently under a variety of choice models. To

see that problem (7) is a continuous relaxation of problem (3), letting c∗ be an optimal solution to

problem (3) and noting that we use app to denote the optimal objective value of problem (3), we

have f(c∗) = app. Let w∗ be an optimal solution to problem (4) when we solve this problem with

c = c∗, so we have f(c∗) =
∑

j∈M
∑

S⊆N
∑

i∈N ri ϕij(S)w
∗
j (S) as well. By the two constraints in

problem (4) with c= c∗ and the constraint in problem (3), the solution (w∗,c∗) is feasible to

problem (7) and provides an objective value of
∑

j∈M
∑

S⊆N
∑

i∈N ri ϕij(S)w
∗
j (S) = f(c∗) = app.

Thus, the optimal objective value of problem (7) is at least as large as that of problem (3).

In the next theorem, we show that we can perform rounding on an optimal solution to problem

(7) to obtain a solution to problem (3) with a performance guarantee.

Theorem 5.1 (Stocking under General Choice) Letting (w∗,c∗) be an optimal solution to

problem (7), for any integer γ ∈ [1, K
n
], let ĉi = ⌊(1 − γ n

K
) c∗i ⌋ + γ for all i ∈ N . In this case,

ĉ= (ĉi : i∈N ) is a (1− γ n
K
)-approximate solution to problem (3).

Proof: Using the optimal solution (w∗,c∗) to problem (7), let ŵj(S) = (1−γ n
K
)w∗

j (S) for all j ∈M

and S ⊆N . Letting ĉ be as in the theorem, using the vector ŵ = (ŵj(S) : j ∈M, S ⊆N ) as we
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just defined, we claim that the solution ŵ is feasible to problem (4) when we solve problem (4)

with c= ĉ. In particular, we have the chain of inequalities∑
j∈M

∑
S⊆N

ϕij(S) ŵj(S)
(a)
=

(
1− γ

n

K

)∑
j∈M

∑
S⊆N

ϕij(S)w
∗
j (S)

(b)

≤
(
1− γ

n

K

)
c∗i

(c)

≤
⌊(

1− γ
n

K

)
c∗i

⌋
+ γ

(d)
= ĉi,

where (a) uses the definition of ŵj(S), (b) holds because (w
∗,c∗) is a feasible solution to problem (7),

(c) holds since x≤ ⌊x⌋+1≤ ⌊x⌋+γ and (d) uses the definition of ĉi. Thus, the solution ŵ satisfies

the first constraint in problem (4) when we solve this problem with c= ĉ. Furthermore, we have∑
S⊆N ŵj(S) = (1− γ n

K
)
∑

S⊆N w
∗
j (S)≤ τj, where the inequality holds because (w∗,c∗) is a feasible

solution to problem (7). Thus, the solution ŵ also satisfies the second constraint in problem (4)

when we solve this problem with c= ĉ, so the claim follows. Since ŵ is a feasible but not necessarily

an optimal solution to problem (4) when we solve this problem with c= ĉ and the optimal

objective value of the latter problem is f(ĉ), we get f(ĉ) ≥
∑

j∈M
∑

S⊆N
∑

i∈N ri ϕij(S) ŵj(S) =

(1− γ n
K
)
∑

j∈M
∑

S⊆N
∑

i∈N ri ϕij(S)w
∗
j (S), where the equality uses the definition of ŵj(S).

Recalling that app and relax are, respectively, the optimal objective values of problems (3) and

(7), by the discussion right before the theorem, we have relax≥ app, so noting that (w∗,c∗) is an

optimal solution to problem (7), we get
∑

j∈M
∑

S⊆N
∑

i∈N ri ϕij(S)w
∗
j (S) = relax≥ app. In this

case, the last two chains of inequalities establishes that f(ĉ) ≥ (1 − γ n
K
)app. Lastly, we have∑

i∈N ĉi = nγ+
∑

i∈N ⌊(1− γ n
K
) c∗i ⌋ ≤ nγ +

∑
i∈N (1 − γ n

K
) c∗i ≤ nγ+(1− γ n

K
)K = K, where the

last inequality holds because (w∗,c∗) is a feasible solution to problem (7). Since γ is an integer, ĉi

is an integer as well for all i∈N . Thus, having f(ĉ)≥ (1− γ n
K
)app and

∑
i∈N ĉi ≤K implies that

ĉ is a (1− γ n
K
)-approximate solution to problem (3).

Noting that we focus on the case K ≥ n, ⌊(K
n
)2/3⌋ is an integer in the interval [1, K

n
]. Thus, setting

γ = ⌊(K
n
)2/3⌋ in the theorem above, we obtain a (1−⌊(K

n
)2/3⌋ n

K
)-approximate solution to problem

(3). This performance guarantee satisfies (1− ⌊(K
n
)2/3⌋ n

K
)≥ (1− (K

n
)2/3 n

K
) = 1− 3

√
n
K
. Therefore,

we can use the theorem above to obtain a (1− 3
√

n
K
)-approximate solution to problem (3). For

x ≥ 1, we have ⌊x⌋ ≥ 1
2
x, so the approximate solution ĉ that we obtain by setting γ = ⌊(K

n
)2/3⌋

satisfies ĉi ≥ ⌊
(
K
n

)2/3⌋ ≥ 1
2

(
K
n

)2/3
for all i ∈ N . There is an inherent tradeoff in the choice of the

parameter γ. The stocking quantity of each product in the approximate solution ĉ is at least γ. If

we choose γ large, then we obtain an approximate solution with large stocking quantities for each

product. When the stocking quantities are thicker, we will be able to come up with assortment

personalization policies with better performance guarantees, allowing us to use larger values for β

in Step 3 of our approximation framework. On the other hand, if we choose γ smaller, then the

performance guarantee of (1− γ n
K
) for the approximate solution ĉ gets better, allowing us to use

larger values for α in Step 2 of our approximation framework.
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6. Assortment Personalization Policy

We consider constructing an assortment personalization policy that we can use in Step 3 of our

approximation framework. In particular, for any vector of stocking quantities ĉ= (ĉi : i∈N ) for the

products, we construct an assortment personalization policy such that the total expected revenue

of the policy starting with the stocking quantities ĉ is lower bounded by a fraction of the linear

programming-based surrogate evaluated at ĉ. Throughout our discussion in this section, we fix

the stocking quantities for the products at ĉ. In our assortment personalization policy, we solve

the linear program in (4) with c = ĉ once at the beginning of the selling horizon. We use ŵ

to denote an optimal solution to problem (4) when we solve this problem with c = ĉ. Without

loss of generality, we assume that the second constraint in problem (4) is tight at the optimal

solution, so
∑

S⊆N ŵj(S) = τj for all j ∈ M. In particular, since the empty assortment is one

possible assortment, if
∑

S⊆N ŵj(S)< τj, then we can increase the value of the decision variable

ŵj(∅) until the inequality is satisfied as equality. Noting that ϕij(∅) = 0 for all i ∈ N , we do

not change the value of the objective function or the left side of the first constraint by doing so.

Thus, since ŵ satisfies
∑

S⊆N ŵj(S) = τj, we use {ŵj(S)/τj : S ⊆N} to characterize a probability

distribution over the set of assortments. At any time period, if a customer of type j arrives into the

system, then our assortment personalization policy samples an assortment Ŝ from the probability

distribution characterized by {ŵj(S)/τj : S ⊆N}, removes all products that do not have remaining

inventories from the assortment Ŝ and offers the remaining products. Below is a description of our

policy. Recall that we use N (x) = {i ∈ N : xi ≥ 1} to denote the set of products with remaining

inventories when the current inventories of the products are given by the vector x= (xi : i∈N ).

Assortment Personalization Policy:

• (Initialization) The input is the vector of initial stocking quantities ĉ for the products. Solve

the linear program in (4) once at the beginning of the selling horizon with c= ĉ and let ŵ be the

corresponding optimal solution.

• (Decision) At time period t, if a customer of type j arrives and the current inventories of the

products are given by the vector x, then sample an assortment Ŝ from the probability distribution

characterized by {ŵj(S)/τj : S ⊆N} and offer the assortment Ŝ ∩N (x).

In the decision step of the policy, we sample the assortment Ŝ that we offer to customers of

type j such that P{Ŝ = S}= ŵj(S)/τj. We can use a dynamic program similar to the one in (1)

to compute the total expected revenue of the policy. We continue using x = (xi : i ∈ N ) as the

state variable at the beginning of a generic time period, where xi is the remaining inventory of

product i. The assortment offer decision that we make at each time period is fixed by the policy. Let

Vt(x) be the total expected revenue obtained by our assortment personalization policy over time
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periods t, . . . , T given that the state of the system at the beginning of time period t is x. We can

compute the value functions {Vt : t∈ T } through the dynamic program

Vt(x) =
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

ϕij(S ∩N (x))
[
ri +Vt+1(x−ei)−Vt+1(x)

]}
+Vt+1(x), (8)

with the boundary condition that VT+1 = 0. The dynamic program above follows from an argument

similar to the one in (1), but on the right side of (8), if a customer of type j arrives, then we

sample assortment S with probability
ŵj(S)

τj
, in which case, we offer the assortment S ∩N (x) to

the customer. If we offer the assortment S ∩ N (x), then a customer of type j chooses product

i with probability ϕij(S ∩N (x)). Note that the decisions of the approximate policy depends on

the initial stocking quantities ĉ that we fixed at the beginning of this section, because ŵ is the

optimal solution to problem (4) when we solve this problem with c= ĉ. The total expected revenue

of our assortment personalization policy with the initial stocking quantities ĉ is V1(ĉ). In the

next theorem, letting ĉmin =mini∈N{ĉi : ĉi ≥ 1} to denote the smallest non-zero stocking quantity

for a product, we show that we can lower bound the total expected revenue of our assortment

personalization policy with max{ 1
2
,1− 1√

ĉmin

}f(ĉ), which implies that we can use our assortment

policy in Step 3 of our approximation framework with β =max{ 1
2
,1− 1√

ĉmin

}.

Theorem 6.1 (Policy Performance) The total expected revenue obtained by the assortment

personalization policy with the initial stocking quantities ĉ satisfies V1(ĉ)≥max{ 1
2
,1− 1√

ĉmin

}f(ĉ).

In the proof of the theorem, we consider an inventory-agnostic assortment personalization

policy that can offer a product with no remaining inventory, but if the customer chooses such a

product, then she leaves without a purchase. We can show that the total expected revenue of the

inventory-agnostic policy provides a lower bound on that of our assortment personalization policy,

so lower bounding the former is enough to lower bound the latter. Since the inventory-agnostic

policy does not pay attention to the remaining inventories, we can express the total expected

demand for a product under this policy as a sum of independent Bernoullis. To lower bound the

total expected revenue of the inventory-agnostic policy, we derive a novel inequality that shows that

if Z is a sum of independent Bernoullis and c≥ E{Z}, then E{[Z − c]+} ≤min{ 1
2
, 1√

c
}E{Z}. One

related inequality shows that if c≥E{Z}, then E{[Z − c]+} ≤ 1
2

√
E{Z}; see Lemma 1 in Gallego

and Moon (1993). When c gets large, this inequality becomes significantly looser than ours. Our

inequality ends up being critical to give a strong performance guarantee for our policy.

There are two important features of our assortment personalization policy. First, our policy is

extremely simple. It picks an assortment directly sampled according to an optimal solution to a
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linear program and offers the sampled assortment after filtering out the products without remaining

inventories. Second, our policy obtains a unified performance guarantee of max{ 1
2
,1− 1√

ĉmin

}. In
contrast, Ma et al. (2021), for example, propose two different policies, each with performance

guarantees of 1
2
and 1−

√
log ĉmin
ĉmin

, none of which dominates our performance guarantee. Similarly

Feng et al. (2020) propose two different policies, each with performance guarantees of 1
2
and

1 − 1√
ĉmin

. Furthermore, as discussed in the introduction, these policies require either solving

small-dimensional dynamic programs or non-trivial distortions of the assortment after sampling it

according to an optimal solution to a linear program. Using an extremely simple and unified policy,

we match or outperform the best performance guarantees in the literature.

Proof of Theorem 6.1:

Let Ṽt(x) be the total expected revenue of the inventory-agnostic policy over time periods t, . . . , T

given that the state of the system at the beginning of time period t is x. We have

Ṽt(x) =
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

ϕij(S)1(xi ≥ 1)
[
ri + Ṽt+1(x−ei)− Ṽt+1(x)

]}
+ Ṽt+1(x), (9)

with the boundary condition that ṼT+1 = 0. In the dynamic program above, we use 1(·) to denote

the indicator function. The dynamic program above is similar to the one in (1), but the inventory-

agnostic policy offers assortment S to a customer of type j with probability
ŵj(S)

τj
, in which case,

the customer chooses product i with probability ϕij(S). If we have remaining inventory for the

product, then the customer makes a purchase. Otherwise, the customer leaves without making a

purchase. We can show that the value functions computed through (9) provide lower bounds on

those computed through (8). That is, we have Ṽt(x)≤ Vt(x) for all x∈Zn
+ and t∈ T . We show this

result in Lemma D.1 in Appendix D. The proof of the result uses induction over the time periods.

We proceed to giving a closed form expression for the value functions in (9) next.

The inventory-agnostic policy offers assortment S to a customer of type j with probability
ŵj(S)

τj
.

A customer of type j chooses product i out of this assortment with probability ϕij(S). Thus, under

the inventory-agnostic policy, the demand for product i at time period t has Bernoulli distribution

with parameter βit =
∑

j∈M λjt

∑
S⊆N

ŵj(S)

τj
ϕij(S). We let Yit be the Bernoulli random variable with

parameter βit, capturing the demand for product i at time period t under the inventory-agnostic

policy. Furthermore, we use Zit =
∑T

τ=t Yiτ to capture the total demand for product i over time

periods t, . . . , T . Thus, if the inventory-agnostic policy has xi unit of inventory for product i at the

beginning of time period t, then we can view
∑T

τ=t βiτ as the total expected demand for product

i, whereas E{[Zit −xi]
+} as the expected lost demand due to limited inventory.

In the next lemma, we show that the accounting process discussed in the previous paragraph

provides a closed form expression for the value functions in (9).



Bai, El Housni, Rusmevichientong, Topaloglu; Coordinated Inventory Stocking and Assortment Personalization 23

Lemma 6.2 (Equivalent Form for Value Functions) Letting the value functions {Ṽt : t ∈ T }

be computed through the dynamic program in (9), for all x∈Zn
+ and t∈ T , we have

Ṽt(x) =
∑
i∈N

ri

( T∑
τ=t

βiτ −E
{
[Zit −xi]

+
})

.

Proof: We show the result by using induction over the time periods. For time period T +1, both

sides of the inequality in the lemma is equal to zero, so the result holds at time period T +1.

Assuming that the result holds at time period t+1, we show that the result holds at time period t

as well. Note that if xi = 0, then we have E{[Zi,t+1−xi]
+}=E{Zi,t+1}=

∑T

τ=t+1 βiτ , which implies

that
∑T

τ=t+1 βiτ −E{[Zi,t+1 − xi]
+}= 1(xi ≥ 1) (

∑T

τ=t+1 βiτ −E{[Zi,t+1 − xi]
+}). Similarly, we have∑T

τ=t βiτ − E{[Zit − xi]
+} = 1(xi ≥ 1) (

∑T

τ=t βiτ − E{[Zit − xi]
+}) as well. Using the induction

assumption in (9), we obtain the chain of equalities

Ṽt(x) =
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

ϕij(S)1(xi ≥ 1) ri

[
1−E

{
[Zi,t+1 −xi +1]+

}
+E

{
[Zi,t+1 −xi]

+
}]}

+
∑
i∈N

ri

( T∑
τ=t+1

βiτ −E
{
[Zi,t+1 −xi]

+
})

(a)
=
∑
i∈N

1(xi ≥ 1)

{
βit ri

[
1−E

{
[Zi,t+1 −xi +1]+

}
+E

{
[Zi,t+1 −xi]

+
}]}

+
∑
i∈N

1(xi ≥ 1) ri

( T∑
τ=t+1

βiτ −E
{
[Zi,t+1 −xi]

+
})

(b)
=
∑
i∈N

1(xi ≥ 1) ri

{
T∑

τ=t

βiτ −βitE
{
[Zi,t+1 −xi +1]+

}
− (1−βit)E

{
[Zi,t+1 −xi]

+
}}

(c)
=
∑
i∈N

1(xi ≥ 1) ri

{
T∑

τ=t

βiτ −E
{
[Zit −xi]

+
}}

=
∑
i∈N

ri

{
T∑

τ=t

βiτ −E
{
[Zit −xi]

+
}}

,

where (a) uses the definition of βit and the fact that if xi = 0, then
∑T

τ=t+1 βiτ −E{[Zi,t+1−xi]
+}= 0,

(b) holds by arranging the terms and (c) holds because Zit = Yit +Zi,t+1 and P{Yit = 1}= βit.

We give the proof of Theorem 6.1 using the lemma above.

Noting that τj =
∑

t∈T λjt and using the definition of βit, we have E{Zi1} =
∑

t∈T βit =∑
t∈T
∑

j∈M λjt

∑
S⊆N

ŵj(S)

τj
ϕij(S) =

∑
j∈M

∑
S⊆M ϕij(S) ŵj(S) ≤ ĉi, where the last inequality

holds because ŵ is an optimal solution to problem (4) when we solve this problem with c= ĉ.

Similarly, we have
∑

i∈N
∑

t∈T ri βit =
∑

i∈N
∑

j∈M
∑

S⊆M ϕij(S) ŵj(S) = f(ĉ), where the last

equality, once again, uses the fact that ŵ is an optimal solution to problem (4) when we solve this

problem with c= ĉ. In Lemma D.1 in Appendix D, as discussed earlier in this section, we show

that Ṽt(x)≤ Vt(x) for all x∈Zn
+ and t∈ T . In Lemma E.1 in Appendix E, on the other hand, we
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show that if Z is a sum of independent Bernoulli random variables and a∈Z+ satisfies a≥E{Z},

then E{[Z − a]+} ≤min{ 1
2
, 1√

a
}E{Z}. Using these observations together, we obtain

V1(ĉ) ≥ Ṽ1(ĉ)
(a)
=
∑
i∈N

ri

(∑
t∈T

βit −E
{
[Zi1 − ĉi]

+
})

(b)
=
∑
i∈N

∑
t∈T

ri βit

(
1− E{[Zi1 − ĉi]

+}
E{Zi1}

)
(c)

≥
∑
i∈N

∑
t∈T

ri βit

(
1−min

{
1

2
,

1√
ĉi

})

≥
∑
i∈N

∑
t∈T

ri βit

(
1−min

{
1

2
,

1√
ĉmin

})
(d)
= max

{
1

2
,1− 1√

ĉmin

}
f(ĉ), (10)

where (a) uses Lemma 6.2, (b) holds because E{Zi1}=
∑

t∈T βit, (c) uses Lemma E.1 and the fact

that E{Zi1} ≤ ĉi and (d) follows because f(ĉ) =
∑

t∈T
∑

i∈N ri βit.

7. Computational Experiments

We give two sets of computational experiments. The first one is based on synthetically generated

datasets. The second one is based on a dataset from real-world supermarket purchases.

7.1 Synthetic Datasets

We describe the experimental setup for our synthetically generated datasets, followed by the

benchmark strategies and computational results.

Experimental Setup: We use the following approach to generate our test problems. In all of

our test problems, the number of products is n= 100 and the number of customer types is m= 50.

There are T time periods in the selling horizon. We vary T in our computational experiments. We

sample the revenue ri of each product i from the uniform distribution over [0,10]. We reindex the

products such that r1 ≥ r2 ≥ . . .≥ rn, so the products with smaller indices have larger revenues. The

choices of customers of different types are governed by the multinomial logit model with different

parameters. To introduce heterogeneity into the customer types, letting Lj be the size of the

consideration set for customer type j, we sample Lj uniformly over {10, . . . ,40}. Using Cj ⊆ N

to denote the consideration set of customer type j, we sample Cj uniformly over all subsets of N

with size Lj. Customers of type j are only interested in purchasing products in the consideration

set Cj. In the multinomial logit model that governs the choice process of customers of type j,

using vij to denote the preference weight that a customer of type j attaches to product i, if i∈ Cj

so that customers of type j are interested in purchasing product i, then we sample vij from the

uniform distribution over [1,10]. If i ̸∈ Cj, then we set vij = 0. After we generate all of the preference

weights, for half of the customer types, we reorder their preference weights for the products in their

consideration sets so that the preference weights follow the reverse order of the product revenues. In
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this way, these customer types associate smaller preference weights with more expensive products.

We set the preference weight of the no-purchase option for customer type j as v0j =
P0

1−P0

∑
i∈Cj

vij.

In this case, if we offer all products, then a customer leaves without a purchase with probability

v0j/(v0j +
∑

i∈Cj
vij) =

P0
1−P0

/( P0
1−P0

+1)= P0. Thus, the parameter P0 controls the likelihood of the

customers to leave without a purchase and we vary this parameter.

We generate the arrival probabilities of different customer types in such a way that customer

types with smaller consideration sets tend to arrive later. We view the customer types with smaller

consideration sets as the picky ones. When the picky customer types tend to arrive later, it becomes

important to reserve the inventory for them. In particular, the probability that we have a customer

arrival of type j at time period t is proportional to exp(−γ Lj (t−T/2)) for some γ > 0. Thus, the

arrival probability for customer type j at time period t is λjt =
exp(−γ Lj (t−T/2))∑

k∈M exp(−γ Lk (t−T/2))
. Irrespective

of our choice of γ, we have
∑

j∈M λjt = 1 for all t ∈ T . Using Λjt(γ) to denote the last arrival

probability as a function of γ, the market share of customer type j is
∑

t∈T Λjt(γ)/T . We choose γ

such that the customer type with the smallest market share still has a market share of θmin. We vary

θmin. Lastly, to generate the storage capacity, we compute the myopic assortment that maximizes

the expected revenue from a customer of type j as S̃j = argmaxS⊆N
∑

i∈N ri ϕij(S). If we always

offer the myopic assortments, then the total expected demand for all products over the selling

horizon is Demand=
∑

i∈N
∑

t∈T
∑

j∈M λjt ϕij(S̃j). We set the storage capacity as K = ⌈ηDemand⌉,

where the parameter η controls the tightness of the capacity. We also vary this parameter. Varying

T ∈ {4000,8000,16000}, P0 ∈ {0.1,0.3}, θmin ∈ { 1
200
, 1
100

} and η ∈ { 1
4
, 1
2
}. we obtain 24 parameter

configurations. For each parameter configuration, we generate a test problem as above.

Benchmark Policies: We use six benchmark policies motivated by our approximation

framework, as well as a heuristic based on a newsvendor approximation.

Greedy Stocking and Randomized Personalization (GRa): Here, for stocking, we replace the

objective function of (3) with the approximate surrogate fapp(c) in (6) and use the greedy algorithm

to get a (1 − 1
e
)-approximate solution to this problem. Thus, by the discussion at the end of

Section 4, we execute Step 2 in our approximation framework with α= 1
2
(1− 1

e
). For assortment

personalization, we use the policy in Section 6, so by Theorem 6.1, we have β = 1
2
in Step 3.

Greedy Stocking and Rollout Personalization (GRo): In this benchmark, we make the

stocking decisions as in GRa, so we execute Step 2 in our approximation framework with

α= 1
2
(1− 1

e
). By Lemma 6.2, we can compute the value functions of the inventory-agnostic policy in

closed form. The value functions of the inventory-agnostic policy are {Ṽt : t∈ T }. In the assortment

personalization policy, if we are at time period t with the remaining inventories x, then we offer the
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assortment argmaxS⊆N
∑

i∈N ϕij(S)1(xi ≥ 1) [ri + Ṽt+1(x−ei)− Ṽt+1(x)] to a customer of type j,

which corresponds to the greedy policy with respect to the value functions {Ṽt : t∈ T }. There exists

an optimal solution to the last optimization problem such that if product i does not have remaining

inventory so that xi = 0, then this product is not offered. In particular, the revenue contribution of

product i in the last problem is 1(xi ≥ 1) [ri + Ṽt+1(x− ei)− Ṽt+1(x)]. If xi = 0, then the revenue

contribution of product i is zero. If we remove all products with non-positive revenue contributions

from the optimal solution, then the choice probabilities of all remaining products does not decrease

and we eliminate all products with non-positive revenue contributions, yielding a solution that

must be at least as good as the optimal solution. So, the assortment personalization policy does

not offer a product that does not have remaining inventory. This assortment personalization policy

corresponds to performing rollout on the inventory-agnostic policy; see, Section 6.1.3 in Bertsekas

and Tsitsiklis (1996). Thus, the total expected revenue of this policy starting with the stocking

quantities ĉ is at least as large as the total expected revenue of the inventory-agnostic policy, which

is given by Ṽ1(ĉ). By (10), we have Ṽ1(ĉ)≥ 1
2
f(ĉ), so if we use this assortment personalization

policy, then we can execute Step 3 in our approximation framework with β = 1
2
.

Stocking with Multiple Estimates and Randomized Personalization (MRa): We construct

the approximate surrogate in (6) by fixing the value of the decision variable y0j in problem (5)

at τj/2 for all j ∈M. In this benchmark, we try other values for y0j. In particular, for κ ∈ (0,1),

we define the surrogate fκ
app(c) as the optimal objective value of problem (5) after we fix the

value of the decision variable y0j at κτj for all j ∈M. To make the stocking decisions, for each

κ ∈ {0.1,0.2, . . . ,0.9}, we replace the objective function of problem (3) with the surrogate fκ
app(c)

in (6) and use the greedy algorithm to obtain a (1− 1
e
)-approximate solution ĉκ to this problem.

In this case, our stocking decisions are given by ĉ= argmax{f(c) : c= ĉ0.1, ĉ0.2 . . . , ĉ0.9}. Since the

approximate surrogate corresponds to the case κ= 0.5, by the discussion at the end of Section 4,

the solution ĉ0.5 is a 1
2
(1 − 1

e
)-approximation to problem (3), so the solution ĉ is a 1

2
(1 − 1

e
)-

approximation to problem (3) as well. Thus, we execute Step 2 in our approximation framework

with α= 1
2
(1− 1

e
). We follow the same assortment personalization policy that we use for GRa, so

we execute Step 3 in our approximation framework with β = 1
2
. The benchmarks GRa, GRo and

MRa all yield the same performance guarantee, but GRo uses a more sophisticated approach for

assortment personalization and MRa uses a more sophisticated approach for stocking.

Stocking with Multiple Estimates and Rollout Personalization (MRo): In this benchmark,

we make the stocking decisions as in MRa and assortment personalization decisions as in GRo.

Rounded Stocking and Randomized Personalization (RRa): Letting (c∗,w∗) be an optimal

solution to problem (7), fixing the value of γ = ⌊(K
n
)2/3⌋, we set the stocking quantity of
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product i as ĉi = ⌊(1− γ n
K
) c∗i ⌋+ γ. In this way, by the discussion at the end of Section 5, we

execute Step 2 of our approximation framework with α = 1− 3
√

n
K
. By our choice of ĉi, we have

ĉmin =min{ĉi : i∈N}≥ γ ≥ 1
2
(K
n
)2/3, which implies that 1− 1√

ĉmin

≥ 1−
√
2 3
√

n
K
. For assortment

personalization, we use the policy in Section 6, so noting Theorem 6.1, we execute Step 3 of our

approximation framework with β = 1−
√
2 3
√

n
K
. In the proof of Theorem 5.1, we show that the

stocking quantities (ĉi : i∈N ) satisfy
∑

i∈N ĉi ≤K, but this inequality can be strict. If that happens

to be the case, then we increase the stocking quantities until we reach the storage capacity K. In

particular, we start with the stocking vector ĉ = (ĉi : i ∈ N ) and increase one component of this

vector at a time that provides the largest improvement in the value of the surrogate f(c). In this

way, we ensure that we do not waste unused storage capacity.

Rounded Stocking and Rollout Personalization (RRo): In this benchmark, we make the

stocking decisions as in RRa and assortment personalization decisions as in GRo.

Newsvendor Heuristic (NVH): In this benchmark, we follow a sensible solution approach that

one could implement in practice for the joint stocking and assortment customization problem. The

goal of this benchmark is to test our approximation framework against a solution strategy that one

could devise without having access to the ideas in this paper. In this benchmark, we pre-compute the

assortments to offer to each customer type and solve a newsvendor-like model to find the stocking

quantities under the demand distributions that are driven by the pre-computed assortments. In

particular, we compute the myopic assortment that maximizes the expected revenue from a

customer of type j as S̃j = argmaxS⊆N
∑

i∈N ri ϕij(S). If we offer the myopic assortment S̃j to

a customer of type j at all time periods, then the demand for product i at time period t is given

by a Bernoulli random variable with parameter γit =
∑

j∈M λjt ϕij(S̃j).

Letting {Xit : t∈ T } be independent Bernoullis with Xit having parameter γit, the total demand

for product i over the selling horizon is given by the random variable Xi =
∑

t∈T Xit. To make the

stocking decisions, we solve the problem maxc∈Zn
+
{
∑

i∈N riE{min{ci,Xi}} :
∑

i∈N ci ≤K}. In this

problem, the understanding is that if we stock ci units for product i, then the sales for this product

is min{ci,Xi}. The last objective function is concave in c and additive by the products, so we

can find the stocking quantities in polynomial time, after approximating the distribution of Xi via

Monte Carlo simulation. In the assortment personalization policy, if we are at time period t with

the remaining inventories x, then we offer the assortment S̃j ∩N (x) to a customer of type j, where

we recall that N (x) is the set of products with positive inventories when the inventory vector is

given by x. Note that this benchmark does not come with a performance guarantee.

Computational Results: We give our computational results in Table 1. We normalize the

total expected revenues obtained by our benchmarks by using an upper bound on the optimal total
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Params. Total Exp. Rev. Rankings of
(T,P0, θmin, η) K GRa GRo MRa MRo RRa RRo NVH Total Exp. Rev.

(4000,0.1,0.005,0.25) 758 96.14 99.50 96.49 99.60 74.99 79.55 93.34 [4,2,3,1,7,6,5]
(4000,0.1,0.005,0.50) 1517 95.30 98.17 95.30 98.17 76.67 80.47 90.31 [3,1,3,1,7,6,5]
(4000,0.1,0.010,0.25) 755 96.07 99.46 96.49 99.63 74.86 79.48 93.46 [4,2,3,1,7,6,5]
(4000,0.1,0.010,0.50) 1511 94.83 98.04 94.83 98.04 76.70 80.44 89.33 [3,1,3,1,7,6,5]

(4000,0.3,0.005,0.25) 563 90.56 95.84 93.54 96.69 66.22 73.44 92.31 [5,2,3,1,7,6,4]
(4000,0.3,0.005,0.50) 1126 90.06 94.68 92.34 95.72 74.88 79.31 89.85 [4,2,3,1,7,6,5]
(4000,0.3,0.010,0.25) 560 89.79 95.54 93.07 96.76 66.24 73.33 91.32 [5,2,3,1,7,6,4]
(4000,0.3,0.010,0.50) 1120 89.52 94.47 91.96 94.86 74.77 79.70 89.69 [5,2,3,1,7,6,4]

(8000,0.1,0.005,0.25) 1517 97.13 99.50 97.45 99.65 76.17 79.56 93.76 [4,2,3,1,7,6,5]
(8000,0.1,0.005,0.50) 3035 96.27 98.49 96.27 98.49 82.74 85.35 90.65 [3,1,3,1,7,6,5]
(8000,0.1,0.010,0.25) 1511 97.09 99.46 97.42 99.65 76.05 79.49 93.88 [4,2,3,1,7,6,5]
(8000,0.1,0.010,0.50) 3022 95.95 98.29 95.95 98.29 82.73 85.32 89.78 [3,1,3,1,7,6,5]

(8000,0.3,0.005,0.25) 1126 92.23 95.87 95.05 97.61 72.69 77.88 93.03 [5,2,3,1,7,6,4]
(8000,0.3,0.005,0.50) 2252 91.59 95.01 93.86 96.61 82.18 85.77 90.29 [4,2,3,1,7,6,5]
(8000,0.3,0.010,0.25) 1120 91.67 95.66 94.70 97.54 72.48 77.76 92.05 [5,2,3,1,7,6,4]
(8000,0.3,0.010,0.50) 2240 91.18 94.85 93.64 95.88 82.20 86.07 90.26 [4,2,3,1,7,6,5]

(16000,0.1,0.005,0.25) 3035 97.88 99.50 98.13 99.66 82.43 84.67 94.03 [4,2,3,1,7,6,5]
(16000,0.1,0.005,0.50) 6070 97.01 98.64 97.01 98.64 86.05 87.79 90.93 [3,1,3,1,7,6,5]
(16000,0.1,0.010,0.25) 3022 97.79 99.46 98.07 99.65 82.39 84.62 94.21 [4,2,3,1,7,6,5]
(16000,0.1,0.010,0.50) 6045 96.65 98.34 96.65 98.34 85.87 87.76 90.14 [3,1,3,1,7,6,5]

(16000,0.3,0.005,0.25) 2252 93.32 95.89 96.25 98.32 81.01 84.51 93.32 [5,3,2,1,7,6,4]
(16000,0.3,0.005,0.50) 4505 92.64 95.14 94.92 97.20 85.37 88.01 90.70 [4,2,3,1,7,6,5]
(16000,0.3,0.010,0.25) 2240 92.83 95.69 95.93 98.15 80.83 84.44 92.57 [4,3,2,1,7,6,5]
(16000,0.3,0.010,0.50) 4481 92.31 94.94 94.84 96.63 85.33 88.15 90.55 [4,2,3,1,7,6,5]

Avg. 93.99 97.10 95.42 97.91 78.41 82.20 91.66

Table 1 Total expected revenues obtained by the benchmarks for the synthetic datasets.

expected revenue. In particular, our linear programming-based surrogate f(c) satisfies f(c)≥ J1(c)

for all c ∈ Zm
+ , so the optimal objective value of problem (3) is an upper bound on the optimal

total expected revenue in (2). To obtain an upper bound on the optimal total expected revenue

efficiently, we solve the linear programming relaxation of problem (3). This linear programming

relaxation is equivalent to problem (4) if we treat the stocking quantities c in this problem as

continuous decision variables as well, instead of fixed numbers. In the table, the first column gives

parameter configuration for each test problem using the tuple (T,P0, θmin, η). The second column

gives the value of the storage capacity K. The next seven columns give the total expected revenues

obtained by each benchmark expressed as a percentage of the upper bound. The last column gives

the rankings of the total expected revenues obtained by the benchmarks in the order they are listed

in the previous seven columns. For the first test problem, for example, GRa has the 4-th highest

total expected revenue, whereas NVH has the 5-th. We estimate all total expected revenues by

simulating the decisions of the benchmarks for 1000 sample paths.

Our results indicate thatMRo is consistently the strongest benchmark. When making the stocking

decisions, MRo works with nine different surrogates {fκ
app(c) : κ= 0.1,0.2, . . . ,0.9} and tries to pick

the best stocking decision found by using each of these surrogates, whereas when making the
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assortment personalization decisions, MRo performs rollout. In contrast, when making the stocking

decisions GRa uses only one surrogate fapp(c), whereas when making the assortment personalization

decisions, GRa directly uses the assortment personalization policy in Section 6. Thus, MRo goes one

step beyond GRa in both stocking and assortment personalization decisions. This effort pays off

and MRo improves the performance of GRa by 4.16% on average. In addition to consistently being

the strongest benchmark, MRo obtains total expected revenues within 2.09% of the upper bound

on the optimal total expected revenue on average, indicating that this benchmark leaves little on

the table. The second strongest benchmark is GRo, which uses only one surrogate fapp(c) when

making the stocking decisions, but performs rollout for the assortment personalization decisions.

The total expected revenues of MRo and GRo are followed by those of MRa, then those of GRa.

The benchmarks RRa and RRo are inferior to MRo, GRo, MRa and GRa. In RRa and RRo, we

execute Steps 2 and 3 in our approximation framework with α= 1− 3
√

n
K

and β = 1−
√
2 3
√

n
K
, so

RRa and RRo are asymptotically optimal as the storage capacity gets large. For our test problems,

the storage capacity gets larger as we have larger number of time periods in the selling horizon. For

the test problems with T = 4000,8000 and 16000, the average total expected revenues of RRa lag

behind that of our strongest benchmark, respectively, by 19.73%, 14.42% and 9.07%. The analogous

gaps for RRo are, respectively, 14.20%, 10.34% and 6.26%. Thus, both RRa and RRo start catching

up with MRo as the storage capacity gets large. For the test problems with T = 4000,8000 and

16000, the average storage capacities are, respectively, 988, 1977 and 3955. We shortly study the

performance of RRa and RRo with larger storage capacities.

The total expected revenues of NVH are noticeably smaller than those of MRo, GRo, MRa and

GRa, but larger than those of RRa and RRo. Over all of our test problems, the average total

expected revenues of NVH is within 9.34% of the upper bound, but using our strongest benchmark,

we can obtain average total expected revenues within 2.09% of the upper bound. Thus, there is

significant value in carefully coordinating the stocking and assortment personalization decisions

through our approximation framework. Lastly, we observe that the performance of GRa and MRa

are identical for some test problems. In these test problems, MRa chooses the stocking decisions

obtained by the surrogate f0.5
app (c), which is the approximate surrogate fapp(c) used by GRa. Similarly,

the performance of GRo and MRo may be identical for some test problems as well. We focus on the

performance of RRa and RRo for test problems with larger storage capacities next.

In Table 2, we consider the parameters P0 = 0.1, θmin = 0.01 and η = 0.75. Varying

T ∈ {4000,8000,16000,32000,64000,128000}, we obtain six test problems. The first column in the

table shows the value of the number of time periods in the selling horizon T , whereas the second

column shows the value of the corresponding storage capacity K. The next three columns show
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Total Exp. Rev.
T K RRa RRo NVH

4000 2267 81.15 84.40 90.51
8000 4534 85.91 88.29 90.93
16000 9068 88.66 90.24 91.13
32000 18137 91.02 92.18 91.35
64000 36275 93.06 93.88 91.50
128000 72551 94.54 95.10 91.61

Avg. 89.06 90.68 91.17

Table 2 Total expected revenues obtained by the benchmarks for larger values of storage capacity.

the total expected revenues obtained by the benchmarks RRa, RRo and NVH. Our results indicate

that as the number of time periods in the selling horizon gets larger, so that the storage capacity

gets larger as well, the performance of RRa and RRo gets better, which aligned with the fact that

RRa and RRo both have performance guarantees of (1− (
√
2+1) 3

√
n
K
). For the test problem with

K = 72751, corresponding to T = 128000, the total expected revenues obtained by RRa and RRo

are, respectively, 94.54% and 95.10% of the upper bound on the optimal total expected revenue.

In all of the test problems, NVH never obtains more than 91.61% of the upper bound.

7.2 Supermarket Purchase Datasets

We describe our approach for using the supermarket purchase dataset to generate our test problems,

followed by our computational results.

Experimental Setup: We use a Nielsen dataset on supermarket purchases; see Nielsen (2021).

We have access to weekly purchases from four physical supermarkets in 135 product categories

over one year. We focus on each product category separately. The supermarkets are located in

different geographical locations, so they represent purchasing patterns by customers with different

demographics. We treat the customers shopping from different supermarkets as different customer

types. Our goal is to test the effectiveness of our approximation framework if we were to operate

a central online platform to serve the customers shopping from the four different supermarkets

with the opportunity to customize the assortment of products offered to each customer based the

knowledge of her zip code. Proceeding with the understanding that each of the four supermarkets

corresponds to a different customer type, we use N to denote the set of products in the product

category that we focus on and M to denote the set of supermarkets. Letting Pij(ℓ) be the number

of purchases for product i from supermarket j in week ℓ, the dataset provides the information

{Pij(ℓ) : i ∈ N , j ∈ M, ℓ = 1, . . . ,52}. We use the following approach to fit a multinomial logit

model to characterize the choice behavior of the customers in different supermarkets.

We assume that the assortment available in a supermarket in a particular week consists of the

products with at least one purchase in the week, so the assortment available in supermarket j in
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week ℓ is Sj(ℓ) = {i ∈ N : Pij(ℓ) > 0}. Total number of purchases in supermarket j in week ℓ is

Tj(ℓ) =
∑

i∈N Pij(ℓ). For each of the Tj(ℓ) purchases, we generate one transaction record, where

a transaction record is characterized by the assortment of available products and the product

purchased by one customer. In each of the Tj(ℓ) transaction records, the assortment of available

products is Sj(ℓ). In Pij(ℓ) of the Tj(ℓ) transaction records, the customer purchases product i. In

this way, we generate transaction records compatible with the dataset. In the dataset, we do not

know the customers leaving without a purchase. We assume that P0 fraction of the customers leave

without a purchase, so we generate P0×Tj(ℓ) additional transaction records, in each of which, the

assortment of available products is Sj(ℓ), but the customer leaves without a purchase. A similar

approach is used by Vulcano and van Ryzin (2020) as well. We vary P0. Thus, for each supermarket

j and week ℓ, we generate a total of (1+P0)Tj(ℓ) transaction records. In all of these transaction

records, the assortment of available products is Sj(ℓ). In P0×Tj(ℓ) of these transaction records, the

customer leaves without a purchase, whereas in Pij(ℓ) of these transaction records, the customer

purchases product i. Using the transaction records from all weeks, we fit a multinomial logit model

for each supermarket separately, characterizing the choice behavior of the customers shopping from

different supermarkets. We give the details of our fitting approach in Appendix F.

We have a total of (1 + P0)
∑

j∈M Tj(ℓ) transaction records from all supermarkets in week ℓ,

so the average number of customer arrivals per week is 1
52
(1 + P0)

∑52

ℓ=1

∑
j∈M Tj(ℓ). We set the

number of time periods in the selling horizon as T = ⌈ 1
52
(1+P0)

∑52

ℓ=1

∑
j∈M Tj(ℓ)⌉. Thus, if there

is one customer arrival at each time period and the length of the selling horizon corresponds

to one week, then the number of arrivals over the selling horizon closely reflects the number

of customer arrivals per week in the dataset. Recalling that each supermarket corresponds to

a different customer type, a customer of type j arrives into the system at time period t with

probability λjt =
∑52

ℓ=1 Tj(ℓ)/
∑52

ℓ=1

∑
k∈M Tk(ℓ), so the arrival probabilities for different customer

types are stationary and the probability of observing a customer of type j is proportional to the

share of the purchase records from supermarket j. The dataset provides the price charged for each

product in each supermarket and in each week. Total number of weeks product i is offered in

supermarket j is κij =
∑52

ℓ=1 1(i∈ Sj(ℓ)). Using pij(ℓ) to denote the price of product i in supermarket

j in week ℓ whenever this product is available in the week, we set the revenue associated with

product i as ri =
∑52

ℓ=1

∑
j∈M 1(i∈ Sj(ℓ))pij(ℓ)/

∑
j∈M κij, which corresponds to the average price

of product i over all supermarkets and weeks, after focusing attention only to the supermarkets

and weeks in which the product was in the assortment of available products.

To generate the storage capacity, we use ϕij(S) to denote the choice probability of product

i out of assortment S by a customer of type j under the multinomial logit model that we
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fit. The myopic assortment that maximizes the expected revenue from a customer of type j

is S̃j = argmaxS⊆N
∑

i∈N ri ϕij(S). Thus, as in our computational experiments with synthetic

datasets, if we always offer the myopic assortment to all customer types, then the total expected

demand for all products is Demand =
∑

i∈N
∑

t∈T
∑

j∈M λjt ϕij(S̃j). We set the storage capacity

as K = ⌈ηDemand⌉. We vary η. Lastly, we are interested in product categories where the choice

behavior in different supermarkets is sufficiently different so that assortment personalization is

expected to make an impact. Letting vj = (vij : i∈N ) be the preference weights in the multinomial

logit model fitted for supermarket j, we focus on product categories where the maximum correlation

coefficient between any two vectors vj and vk for j, k ∈M and j ̸= k is at most 0.8 and all coefficients

of correlation between any other pair is at most 0.5. In this way, we end up with four product

categories, which are cookies and brownies, shredded cheese, fresh potatoes and stout beer. The

numbers of products in these product categories are 166, 30, 28 and 37.

Varying P0 ∈ {0.1,0.3} and η ∈ {0.25,0.5,0.75}, using {1,2,3,4} to denote the four product

categories, we have 24 parameter configurations for our test problems.

Computational Results: We continue using the same seven benchmarks that we used for the

synthetic datasets. We give our computational results in Table 3. In the table, the first column gives

the parameter configuration for each test problem by using the tuple (C,P0, η), where C stands for

the product category. The second and third columns, respectively, give the values of the number

of time periods in the selling horizon T and the storage capacity K. The last eight columns in the

table have the same interpretation as those in Table 1. Our results are largely aligned with those

for the synthetic datasets. The strongest benchmark is MRo, followed by GRo and MRa. Working

with multiple surrogates when making the stocking decisions and using rollout when making the

assortment personalization decisions pay off and MRo consistently performs better than the other

benchmarks. The performance of RRa and RRo are not competitive to other benchmarks for these

test problems, but their performance clearly starts improving as K gets larger. For one instance

NVH is the strongest benchmark, but NVH generally lags behind MRo, GRo and MRa.

8. Conclusions

Motivated by online retail settings for selling fresh groceries and making same-day delivery

promises, both of which requiring operating out of an urban warehouse, we studied a joint inventory

stocking and assortment personalization problem. We gave a 1
4
(1− 1

e
)-approximate solution under

the multinomial logit model, whereas we gave a (1− (
√
2+ 1) 3

√
n
K
)-approximate solution under a

general choice model. To our knowledge, these results provide the first approximation guarantees
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Params. Total Exp. Rev. Rankings of
(C,P0, η) T K GRa GRo MRa MRo RRa RRo NVH Total Exp. Rev.

(1,0.1,0.25) 4532 775 93.82 97.60 95.35 97.78 71.22 76.44 89.71 [4,2,3,1,7,6,5]
(1,0.1,0.50) 4532 1551 88.22 91.43 94.27 94.22 74.82 78.64 80.99 [4,3,1,2,7,6,5]
(1,0.1,0.75) 4532 2326 94.28 93.97 94.28 93.97 83.05 85.15 86.65 [1,3,1,3,7,6,5]

(1,0.3,0.25) 5827 986 78.45 84.59 91.33 93.16 71.19 77.19 72.13 [4,3,2,1,7,5,6]
(1,0.3,0.50) 5827 1973 85.32 89.39 93.79 93.80 83.36 86.81 79.16 [5,3,2,1,6,4,7]
(1,0.3,0.75) 5827 2960 93.70 92.78 93.70 92.78 90.15 91.64 86.90 [1,3,1,3,6,5,7]

(2,0.1,0.25) 455 94 95.39 99.79 94.84 99.42 70.01 78.57 94.47 [3,1,4,2,7,6,5]
(2,0.1,0.50) 455 188 93.20 97.64 94.85 97.25 78.18 83.87 88.97 [4,1,3,2,7,6,5]
(2,0.1,0.75) 455 283 92.23 92.24 92.94 93.55 84.41 88.29 88.87 [4,3,2,1,7,6,5]

(2,0.3,0.25) 585 101 88.85 95.82 91.92 97.22 69.47 80.27 87.78 [4,2,3,1,7,6,5]
(2,0.3,0.50) 585 202 88.99 92.96 89.37 92.39 80.48 87.09 84.81 [4,1,3,2,7,5,6]
(2,0.3,0.75) 585 304 92.33 93.25 92.33 93.25 86.78 90.66 89.46 [3,1,3,1,7,5,6]

(3,0.1,0.25) 3439 661 95.68 97.69 97.21 98.58 83.15 86.38 88.26 [4,2,3,1,7,6,5]
(3,0.1,0.50) 3439 1323 95.18 96.81 95.93 96.91 89.42 91.49 93.19 [4,2,3,1,7,6,5]
(3,0.1,0.75) 3439 1985 94.37 95.15 96.87 97.23 91.38 92.70 95.88 [5,4,2,1,7,6,3]

(3,0.3,0.25) 4421 701 93.17 96.25 95.47 97.45 85.03 88.26 92.00 [4,2,3,1,7,6,5]
(3,0.3,0.50) 4421 1402 95.22 96.27 96.01 96.94 88.83 91.08 93.68 [4,2,3,1,7,6,5]
(3,0.3,0.75) 4421 2103 93.23 93.76 93.23 93.76 90.42 91.69 92.55 [3,1,3,1,7,6,5]

(4,0.1,0.25) 509 102 94.10 98.64 94.10 98.64 76.11 83.18 96.44 [4,1,4,1,7,6,3]
(4,0.1,0.50) 509 204 91.39 94.87 94.71 96.46 72.44 77.53 96.59 [5,3,4,2,7,6,1]
(4,0.1,0.75) 509 306 91.38 92.44 93.87 95.29 78.32 81.14 93.36 [5,4,2,1,7,6,3]

(4,0.3,0.25) 654 109 90.57 96.21 92.76 96.39 60.74 70.02 88.56 [4,2,3,1,7,6,5]
(4,0.3,0.50) 654 219 88.86 92.35 92.03 94.02 75.06 80.92 86.80 [4,2,3,1,7,6,5]
(4,0.3,0.75) 654 329 92.56 93.09 92.56 93.09 80.78 83.79 90.36 [3,1,3,1,7,6,5]

Avg. 91.69 94.37 93.90 95.56 79.78 84.28 89.07

Table 3 Total expected revenues obtained by the benchmarks for the supermarket purchase datasets.

for joint stocking and assortment optimization setting. There are several directions to pursue. First,

the performance guarantee that we gave under a general choice model is 1− (
√
2+ 1) 3

√
n
K
, which

depends on n and K. One can study constant-factor approximation guarantees under a general

choice model, as long as we can solve the separation subproblem for problem (4) efficiently. Our

efforts so far to tackle this problem have not been fruitful. Second, under the multinomial logit

model, we gave a constant-factor guarantee of 1
4
(1− 1

e
). One can study constant-factor performance

guarantees under other structured choice models, such as the generalized attraction or Markov

chain choice model. Third, our stocking decisions are constrained by a cardinality constraint of the

form
∑

i∈N ci ≤K. Using results on maximizing submodular functions under a knapsack constraint,

letting wi be the space or capital consumption of one unit of product i, our approximation

framework easily extends to a knapsack constraint of the form
∑

i∈N wi ci ≤ K; see Lee et al.

(2009). One can study other constraints, beside knapsack constraints. Fourth, online retailers stock

products in multiple product categories. One way to address multiple product categories is to use

our model to assess the optimal total expected revenue as a function of the capacity K allocated to

one product category, in which case, we can solve an auxiliary optimization problem to allocate the

total stocking capacity to each product category. The implicit assumption behind this approach is

that the choice behavior in different product categories are not related to each other. One can work



34 Bai, El Housni, Rusmevichientong, Topaloglu; Coordinated Inventory Stocking and Assortment Personalization

on extending our results to choice models that explicitly capture the interaction between multiple

product categories. Fifth, throughout the paper, we use the linear programming-based surrogate.

Our approximation framework is general enough to work with other surrogates. One can study

other surrogates to obtain potentially stronger performance guarantees.
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Appendix A: Computational Complexity

In this section, we give a proof for Theorem 4.1. If the customers choose according to the

multinomial logit model, then we can compute the linear programming-based surrogate f(c) by

using the optimal objective value of problem (5). Considering the case where all product revenues

are equal to each other, without loss of generality, we assume that ri = 1 for all i∈N . Therefore, if

the customers choose according to the multinomial logit model and all product revenues are equal

to each other, then problem (3) is equivalent to

max
(c,y,y0)∈Zn

+×Rnm+m
+

{∑
j∈M

∑
i∈N

yij :
∑
i∈N

ci ≤K,
∑
j∈M

yij ≤ ci ∀ i∈N , (11)

∑
i∈N

yij + y0j ≤ τj ∀ j ∈M, yij ≤ vij y0j ∀ i∈N , j ∈M

}
.

Our proof of Theorem 4.1 uses a reduction from the maximum coverage problem, which is stated

as follows. We are given a set of elements M = {1, . . . ,m}, a collection of subsets of elements

{Si : i∈N} with Si ⊆M for all i∈N and a maximum number of subsets K that we can use. We

say that the subset Si covers element j if j ∈ Si. In maximum coverage problem, we find at most K

subsets to maximize the total number of covered elements. This problem is NP-hard to approximate

within a factor better than 1− 1
e
unless P =NP ; see Feige (1998).

Proof of Theorem 4.1:

Consider an instance of the maximum coverage problem with set of items M = {1, . . . ,m},

collection of subsets {Si : i ∈ N} and maximum number of subsets to use K. We construct an

instance of problem (11) as follows. The set of products corresponds to the collection of subsets N .

The set of customer types corresponds to the set of items M. The storage capacity corresponds to

the maximum number of subsets to use K. The expected number of arrivals of customers of type

j is τj = 1/m. Fix any ϵ∈ (0,1). Letting γ = 1
ϵ
− 1, the preference weights are

vij =

{
γ if j ∈ Si

0 otherwise.

We use x= (xi : i∈N )∈ {0,1}|N | to denote a solution to the maximum coverage problem, where

xi = 1 if and only if we use subset Si. First, assuming that there exists a feasible maximum coverage
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solution x∗ with an objective value of Z∗, we construct a feasible solution (ĉ, ŷ, ŷ0) to (11) with

an objective value of at least 1
m
(1− ϵ)Z∗. In particular, we set ĉi = x∗

i ,

ŷij =
vij x

∗
i

m (1+
∑

k∈N vkj x
∗
k)
, ŷ0j =

1

m (1+
∑

k∈N vkj x
∗
k)
. (12)

Since x∗ is a solution to the maximum coverage problem, we have
∑

i∈N x
∗
i ≤K, so

∑
i∈N ĉi ≤K,

which implies that the solution (ĉ, ŷ, ŷ0) satisfies the first constraint in (11). Note that ŷij ≤ x∗
i /m

by (12), in which case, we get
∑

j∈M ŷij ≤ x∗
i = ĉi, so the solution (ĉ, ŷ, ŷ0) satisfies the second

constraint in (11). By the definition of ŷij and ŷ0j in (12), we have
∑

i∈N ŷij+ ŷ0j = 1/m= τj, so the

solution (ĉ, ŷ, ŷ0) satisfies the third constraint in (11). Lastly, once again, by the definition of ŷij

and ŷ0j in (12), we have ŷij/ŷ0j = vij x
∗
i ≤ vij, so the solution (ĉ, ŷ, ŷ0) satisfies the fourth constraint

in (11) as well. Thus, the solution (ĉ, ŷ, ŷ0) is feasible to problem (11). Using 1(·) to denote the

indicator function, for the maximum coverage problem, the solution x∗ provides an objective value

of Z∗ =
∑

j∈Mmaxi∈N{1(j ∈ Si)x
∗
i }, where we use the fact that maxi∈N{1(j ∈ Si)x

∗
i }= 1 if and

only if we have a subset in the solution that covers element j. In this case, for problem (11), the

solution (ĉ, ŷ, ŷ0) provides an objective value of∑
j∈M

∑
i∈N

ŷij =
1

m

∑
j∈M

∑
i∈N vij x

∗
i

1+
∑

i∈N vij x
∗
i

(a)
=

1

m

∑
j∈M

γ
∑

i∈N 1(j ∈ Si)x
∗
i

1+ γ
∑

i∈N 1(j ∈ Si)x∗
i

(b)

≥ 1

m

∑
j∈M

γ maxi∈N{1(j ∈ Si)x
∗
i }

1+ γ maxi∈N{1(j ∈ Si)x∗
i }

(c)
=

1

m

∑
j∈M

γ

1+ γ
max
i∈N

{1(j ∈ Si)x
∗
i }

(d)
=

1

m
(1− ϵ)Z∗,

where (a) holds by the definition of vij, (b) holds because z/(1+ z) is increasing in z, (c) uses the

fact that if z ∈ {0,1}, then γ z
1+γz

= γ z
1+γ

and (d) uses the definition of γ.

Second, assuming that there exists a feasible solution (c∗,y∗,y∗
0) to problem (11) with an

objective value of R∗, we construct a feasible solution x̂ to the maximum coverage problem with

an objective value of at least mR∗. In particular, we set x̂i = c∗i . Since (c
∗,y∗,y∗

0) is feasible to (11),

by the third constraint, we have y∗ij ≤ τj =
1
m
, so the left side of the second constraint satisfies∑

j∈M y∗ij ≤ 1. Thus, there is no reason to use a value for c∗i that is strictly larger than one and

we can assume that c∗i ∈ {0,1}. Therefore, we have x̂i ∈ {0,1}. Also, by the first constraint in (11),

we have
∑

i∈N x̂i =
∑

i∈N c
∗
i ≤K, which implies that the solution x̂ is feasible to the maximum

coverage problem. By the third constraint in (11), we have
∑

i∈N y
∗
ij ≤ τj = 1/m≤ 1. By the second

constraint in (11), we have y∗ij ≤ c∗i = x̂i ≤ 1, whereas by the third constraint in (11) and the

definition of vij, we have y
∗
ij ≤ γ 1(j ∈ Si)y

∗
0j. The last two inequalities imply that y∗ij ≤ 1(j ∈ Si) x̂i,

but since
∑

i∈N y
∗
ij ≤ 1, we get

∑
i∈N y

∗
ij ≤maxi∈N{1(j ∈ Si) x̂i}. In this case, having

∑
i∈N y

∗
ij ≤
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maxi∈N{1(j ∈ Si) x̂i} and
∑

i∈N y
∗
ij ≤ 1/m implies that

∑
i∈N y

∗
ij ≤ 1

m
maxi∈N{1(j ∈ Si) x̂i}. Thus,

for the maximum coverage problem, the solution x̂ provides an objective value of∑
j∈M

max
i∈N

{1(j ∈ Si) x̂i} ≥ m
∑
j∈M

∑
i∈N

y∗ij = mR∗.

By the discussion so far, given any feasible solution to the maximum coverage problem with

objective value Z∗, we can construct a feasible solution to problem (11) with objective value R̂

such that R̂≥ 1
m
(1− ϵ)Z∗. Furthermore, give any feasible solution to problem (11) with objective

value R∗, we can construct a feasible solution to the maximum coverage problem with objective

value Ẑ such that 1
m
Ẑ ≥ R∗. Unless P = NP , we know that it is NP-hard to approximate the

maximum coverage problem within a factor better than 1− 1
e
, which implies that it is also NP-hard

to approximate problem (11) within a factor better than (1− 1
e
) (1− ϵ) = 1− 1

e
− ϵ (1− 1

e
).

Appendix B: Counterexample to Submodularity of Linear Programming-Based Surrogate

We give a counterexample to demonstrate that f(c) is not submodular in c under the multinomial

logit model even when we have a single customer type. Consider an instance of problem (4) with

n= 3 and m= 1. The product revenues and preference weights are given by (r1, r2, r3) = (3,2,1)

and (v11, v21, v31) = (1,1,100). For the single customer type, the total expected number of customer

arrivals is τ1 = 1. Considering the vectors c= (0,1,1), b= (0,0,1) and e1 = (1,0,0), solving (4), we

can verify that f(c) = 1, f(c+ e1) = 5/3, f(b) = 100/101 and f(b+ e1) = 3/2. We have c≥ b, but

f(c+e1)− f(c) = 2/3> 103/202 = f(b+e1)− f(b), so f(c) is not submodular in c.

Appendix C: Submodularity of Approximate Surrogate

We use the following lemma in the proof of Theorem 4.3, where we show that fapp(c) is submodular

in c. Recall that L(c,µ) =
∑

i∈N ci µi and

Gj(µ) = max
zj∈Rn

+

{∑
i∈N

(ri −µi)zij :
∑
i∈N

zij ≤ 1, zij ≤ vij ∀ i∈N

}
. (13)

Lemma C.1 (Weak DR-Submodularity) For all c,b∈Rn
+ with c≥ b and µ,η ∈Rn

+, we have

the inequalities

L(c,µ)+L(b,η) ≥ L(c,µ∧η)+L(b,µ∨η)

Gj(µ)+Gj(η) ≥ Gj(µ∧η)+Gj(µ∨η).

The function Gj :Rn
+ →R+ is said to be weak-DR submodular if it satisfies the second inequality

in the lemma above. To give the proof of the lemma above, we start with an observation. Let the
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functions p, q :R→R be continuous over [0, h] with finite numbers of points of non-diffentiability.

If p′(x)≥ q′(x) at all x∈ [0, h] where both p and q are differentiable, then p(h)−p(0)≥ q(h)− q(0).

We use this observation, along with the next auxiliary lemma, in the proof for Lemma C.1. In the

next auxiliary lemma, let z∗
j (µ) be an optimal solution to problem (13) as a function of µ.

Lemma C.2 (Optimal Solution to Knapsack) There exists an optimal solution to problem

(13) such that if µ≥ η and µi = ηi for some i∈N , then z∗ij(µ)≥ z∗ij(η).

Proof: Fix i∈N such that µi = ηi. If the objective function of the decision variable zij is negative,

then we can set the value of this decision variable to zero at an optimal solution to problem

(13). Thus, if ri − µi = ri − ηi ≤ 0, then we immediately have z∗ij(µ) = 0 = z∗ij(η). Consider the

case ri − µi = ri − ηi > 0. Problem (13) is a knapsack problem, so we can obtain an optimal

solution to this problem by sorting the decision variables according to their objective function

coefficients and filling the capacity of the knapsack starting from the decision variable with the

largest objective function coefficient. Thus, letting Aµ = {k ∈N \ {i} : rk − µk ≥ ri − µi}, we have

z∗ij(µ) = min{vij, [1−
∑

k∈Aµ
vkj]

+}. Similarly, we have z∗ij(η) = min{vij, [1−
∑

k∈Aη
vkj]

+}, where

we let Aη = {k ∈N \ {i} : rk − ηk ≥ ri − ηi}. Noting that µ≥ η and µi = ηi, we have Aµ ⊆Aη, in

which case, we get z∗ij(µ) =min{vij, [1−
∑

k∈Aµ
vkj]

+} ≥min{vij, [1−
∑

k∈Aη
vkj]

+}= z∗ij(η).

Proof of Lemma C.1:

We have x + y = (x ∧ y) + (x ∨ y), so that x − (x ∧ y) = (x ∨ y) − y. In this case, letting

δi = µi − (µi ∧ ηi) = (µi ∨ ηi)− ηi ≥ 0, noting that c≥ b, we have

L(c,µ)−L(c,µ∧η) =
∑
i∈N

ci(µi − (µi ∧ ηi)) =
∑
i∈N

ci δi

≥
∑
i∈N

bi δi =
∑
i∈N

bi((µi ∨ ηi)− ηi) = L(b,µ∨η)−L(b,η).

The chain of inequalities above establishes that the first inequality in the lemma holds. We turn

to the second inequality in the lemma. Using the decision variables x = (x1, . . . , xn) and letting

X ⊆Rn
+ be a polytope, consider the generic linear program maxx∈X

∑n

i=1 ci xi. When viewed as a

function of the objective function coefficients, let LP(c) be the optimal objective value and x∗(c) be

an optimal solution to the linear program. By linear programming theory, if LP is differentiable at

b, then ∂LP(c)

∂ci
|c=b = x∗

i (b). Furthermore, LP(c) is continuous in c and it has a finite number of points

of non-differentiability. To show the second inequality in the lemma, we use an equivalent definition

of a weak-DR submodular function; see Proposition 1 in Bian et al. (2017). The function Gj is

weak-DR submodular if and only if for all h ∈R+ and µ,η ∈Rn
+ with µ≥ η and µi = ηi for some

i ∈N , we have Gj(µ+ hei)−Gj(µ)≤Gj(η+ hei)−Gj(η). Thus, consider µ≥ η and µi = ηi for
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some i∈N . Fixing i∈N , let gµ(t) =Gj(µ+ tei), so that gµ(0) =Gj(µ) and gµ(h) =Gj(µ+hei).

Similarly, let gη(t) =Gj(η+ tei). By the earlier discussion in this paragraph, if gµ and gη are

both differentiable at t, then g′µ(t) =−z∗ij(µ+ tei) and g′η(t) =−z∗ij(η+ tei). Furthermore, gµ(t)

and gη(t) are continuous in t and have finite numbers of points of non-differentiability. Since

µ ≥ η and µi = ηi, by Lemma C.2, g′µ(t) = −z∗ij(µ+ tei) ≤ −z∗ij(η + tei) = g′η(t), in which case,

by the observation right before Lemma C.2, we obtain gµ(h)− gµ(0)≤ gη(h)− gη(0). Noting that

gµ(0) =Gj(µ), gµ(h) = Gj(µ+ hei), gη(0) = Gj(η) and gη(h) = Gj(η + hei), the last inequality

shows that the second inequality in the lemma holds.

Appendix D: Performance of Assortment Personalization Policy

In the next lemma, letting the value functions {Vt : t ∈ T } and {Ṽt : t ∈ T }, respectively, be

computed by (8) and (9), we show that Ṽt(x) lower bounds Vt(x).

Lemma D.1 (Lower Bound) Letting the value functions {Vt : t ∈ T } and {Ṽt : t ∈ T },

respectively, be computed by (8) and (9), we have Vt(x)≥ Ṽt(x) for all x∈Zn
+ and t∈ T .

To show the lemma above, we will use the auxiliary lemma below, where we give an upper bound

on the first difference of the value functions {Ṽt : t∈ T }.

Lemma D.2 (First Differences) Letting the value functions {Ṽt : t∈ T } be computed by (9), we

have Ṽt(x)− Ṽt(x−ei)≤ ri for all x∈Zn
+ such that xi ≥ 1 and t∈ T .

Proof: For each product i, using the boundary condition that ṽi,T+1 = 0, we compute the value

functions {ṽit : t∈ T } through the dynamic program

ṽit(xi) =
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{
ϕij(S)1(xi ≥ 1)

[
ri + ṽi,t+1(xi − 1)− ṽi,t+1(xi)

]}
+ ṽi,t+1(xi). (14)

Comparing the dynamic programs in (9) and (14), using backwards induction over the time periods,

we can show that Ṽt(x) =
∑

i∈N ṽit(xi) for all x ∈ Zn
+ and t ∈ T . Thus, it is enough to show that

ṽit(xi)− ṽit(xi − 1)≤ ri for all xi ∈ Z+ with xi ≥ 1 and t ∈ T . We show the latter result by using

induction over the time periods. We have ṽi,T+1 = 0 at time period T +1, so the result holds at time

period T +1. Assuming that ṽi,t+1(xi)− ṽi,t+1(xi−1)≤ ri, we show that ṽit(xi)− ṽit(xi−1)≤ ri as

well. Letting ψit =
∑

j∈M λjt

∑
S⊆N

ŵj(S)

τj
ϕij(S) for notational brevity, we write (14) equivalently as

ṽit(xit) =ψit 1(xi ≥ 1) [ri+ ṽi,t+1(xi− 1)+ ṽi,t+1(xi)]+ ṽi,t+1(xi). Since ṽi,t+1(xi)− ṽi,t+1(xi− 1)≤ ri

by the induction assumption, the last equality yields ṽit(xi) ≥ ṽi,t+1(xi) for all xi ∈ Z+. In this
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case, using the equivalent expression for (14) and substracting vit(xi − 1) from both sides of this

expression, we obtain the chain of inequalities

ṽit(xi)− ṽit(xi − 1) = ψit 1(xi ≥ 1)
[
ri + ṽi,t+1(xi − 1)+ ṽi,t+1(xi)

]
+ ṽi,t+1(xi)− ṽit(xi − 1)

(a)

≤ ψit 1(xi ≥ 1) ri +
[
1−ψit 1(xi ≥ 1)

]
(ṽi,t+1(xi)− ṽi,t+1(xi − 1))

(b)

≤ ri,

where (a) holds by noting that ṽi,t+1(xi − 1) ≤ ṽit(xi − 1) and arranging the terms, whereas (b)

holds because ṽi,t+1(xi)− ṽi,t+1(xi − 1)≤ ri by the induction assumption.

Proof of Lemma D.1:

We show the result by using induction over the time periods. We have VT+1 = 0 = ṼT+1, so

the result holds at time period T + 1. Assuming that the result holds at time period t+ 1, we

show that the result holds at time period t as well. If i ̸∈ S, then ϕij(S) = 0. Also xi ≥ 1 if and

only if i ∈ N (x), so ϕij(S ∩N (x)) = 1(xi ≥ 1)ϕij(S ∩N (x)). Furthermore, arranging the terms,

the coefficient of Ṽt+1(x) on the right side of (8) is 1−
∑

j∈M λjt

∑
S⊆N

ŵj(S)

τj

∑
i∈N ϕij(S ∩N (x)),

which is non-negative since
∑

j∈M λjt ≤ 1,
∑

S⊆N ŵt(S) = τj and
∑

i∈N ϕij(S ∩N (x)) ≤ 1. Thus,

noting that Vt+1(x)≥ Ṽt+1(x) by the induction assumption, if we replace Vt+1(x) and Vt+1(x−ei)

in (8) with Ṽt+1(x) and Ṽt+1(x−ei), then the right side of (8) gets smaller. So, by (8), we get

Vt(x)≥
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

ϕij(S ∩N (x))
[
ri + Ṽt+1(x−ei)− Ṽt+1(x)

]}
+ Ṽt+1(x)

=
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

1(xi ≥ 1)ϕij(S ∩N (x))
[
ri + Ṽt+1(x−ei)− Ṽt+1(x)

]}
+ Ṽt+1(x)

(a)

≥
∑
j∈M

λjt

∑
S⊆N

ŵj(S)

τj

{∑
i∈N

1(xi ≥ 1)ϕij(S)
[
ri + Ṽt+1(x−ei)− Ṽt+1(x)

]}
+ Ṽt+1(x)

(b)
= Ṽt(x),

where (a) holds because ϕij(S)≥ ϕij(Q) for all i ∈ S and S ⊆Q by our assumption on the choice

probabilities in Section 2 and ri ≥ Ṽt+1(x)− Ṽt+1(x−ei) by Lemma D.2, whereas (b) is by (9).

Appendix E: Tail Expectation of Sums of Bernoullis

In the next lemma, we give an upper bound on the expectation of the tail of a sum of Bernoulli

random variables. We use this lemma in the proof of Theorem 6.1.

Lemma E.1 (Tail Expectation of a Bernoulli Sum) If Z is a sum of independent Bernoulli

random variables and a∈Z+ satisfies a≥E{Z}, then we have

E{[Z − a]+} ≤min

{
1

2
,
1√
a

}
E{Z}.

The key part of the proof of the lemma above is showing that an analogous result holds for a

binomial random variable. We show this result in the next lemma.
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Lemma E.2 (Tail Expectation of a Binomial) If X is a binomial random variable and a∈Z+

satisfies a≥E{X}, then we have

E{[X − a]+} ≤ min

{
1

2
,
1√
a

}
E{X}.

Proof: Let X be a binomial random variable with parameters (n,p). The result follows if p= 0 or

p= 1, so we assume that p ∈ (0,1). We have E{X}= np and Var(X) = np (1− p). First, we claim

that E{[X−a]+} ≤ 1
2
E{X}. By a standard lemma, given as Lemma 1 in Gallego and Moon (1993),

if a≥E{X}, then E{[X − a]+} ≤ 1
2

√
Var(X). Thus, we have E{[X − a]+} ≤ 1

2

√
np(1− p)≤ 1

2

√
np.

On the other hand, we have E{X2}=Var(X) +E{X}2 = np(1− p) + (np)2 ≤ np+ (np)2. For any

x, b > 0, it is simple to show that we have the inequality [x− b]+ ≤ 1
4b
x2. In particular, setting

f(x) = 1
4b
x2 and g(x) = [x− b]+, we have f(0) = 0 = g(0), f(2b) = b = g(2b) and f(x) ≥ g(x) for

all x ∈ R. Thus, we have E{[X − a]+} ≤ 1
4a

E{X2} ≤ 1
4a
(np + (np)2) ≤ 1

4
(np + (np)2), where the

last inequality holds because a ∈ Z+ and a≥ E{X}> 0, so a≥ 1. By the discussion so far in this

paragraph, we have the chain of inequalities

E{[X − a]+} ≤ min

{
1

2

√
np,

1

4
(np+(np)2)

}
=

np

2
min

{
1

√
np
,
1+np

2

}
≤ np

2
=

1

2
E{X},

where the last inequality uses the fact that min{ 1√
x
, 1+x

2
} ≤ 1 for all x∈R+, because if x≤ 1, then

1+x
2

≤ 1, whereas if x> 1, then 1√
x
≤ 1. Thus, the claim follows.

The claim that we established in the previous paragraph follows from a somewhat standard

argument. Second, we claim that E{(X − a)+} ≤ 1√
a
E{X}. The proof of this claim is novel and

more difficult. If a∈ {1,2,3,4}, then 1√
a
≥ 1

2
, so by claim in the previous paragraph, we immediately

obtain E{(X − a)+} ≤ 1
2
E{X} ≤ 1√

a
E{X}. Furthermore, if a = np, then using the claim in the

previous paragraph again, we immediately get E{(X − a)+} ≤ 1
2
E{X}= 1

2

√
np≤√

np= 1√
a
E{X}.

Lastly, since X ≤ n with probability 1, if a > n, then the claim trivially holds. Thus, In the rest

of the proof, we proceed with the assumption that a≥ 5, a > np and a≤ n. Let k be an integer

such that a≤ k ≤ n. Since a > np, we have np < k ≤ n. For the conditional tail probability of the

binomial random variable X, by Lemma 2.5 in Pelekis (2016), we have the bound

P{X ≥ k+1}
P{X ≥ k}

≤ p (n− k)

k (1− p)
.

Using the fact that p (n−k)

k (1−p)
is decreasing in k for k ∈ [0, n], since a≤ k, we obtain P{X≥k+1}

P{X≥k} ≤ p (n−a)

a (1−p)
.

Let β = p (n−a)

a (1−p)
. Since np< a≤ n, we have β < p (n−np)

np(1−p)
= 1.

By the discussion in the previous paragraph, if k is an integer such that a≤ k≤ n, then we have

P{X ≥ k + 1} ≤ β P{X ≥ k}. Thus, starting with P{X ≥ a+ 1} ≤ β P{X ≥ a} and using the last
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inequality recursively, we obtain P{X ≥ a+ ℓ} ≤ βℓ P{X ≥ a} for all ℓ= 1, . . . , n− a. In this case,

computing the expectation through complementary cumulative distribution, we get

E{[X − a]+} =
n∑

ℓ=1

P{[X − a]+ ≥ ℓ} =
n−a∑
ℓ=1

P{X ≥ a+ ℓ}

≤
n−a∑
ℓ=1

βℓ P{X ≥ a} ≤ β

1−β
P{X ≥ a}, (15)

where the last inequality uses the fact that
∑∞

ℓ=1 β
ℓ ≤ β

1−β
for β < 1. To complete the proof of the

claim, we consider the two cases β
1−β

≤
√
a and β

1−β
>
√
a.

Case 1: Assume that β
1−β

≤
√
a. By Markov inequality, P{X ≥ a} ≤ 1

a
E{X}, so using (15) along

with the fact that β
1−β

≤
√
a, we get E{[X − a]+} ≤ β

1−β
1
a
E{X} ≤ 1√

a
E{X}.

Case 2: Assume that β
1−β

>
√
a. Using the definition of β, we have 1− β = 1− p (n−a)

a (1−p)
= a−np

a(1−p)
,

in which case, noting that a≥ 5 so
√
a≥ 2, as well as the fact that β

1−β
>
√
a, we get

2≤
√
a≤ β

1−β
=
p (n− a)

a−np
≤ a

a−np
,

where the equality is by the definition of β and the last inequality holds because a> np. Note that

having 2≤ a
a−np

implies that np≥ 1
2
a. By Lemma 1 in Gallego and Moon (1993), if a≥E{X}, then

E{[X − a]+} ≤ 1
2

√
Var(X), in which case, we obtain E{[X − a]+} ≤ 1

2

√
Var(X) = 1

2

√
np(1− p)≤

1
2

√
np= np√

4np
≤ np√

2a
≤ 1√

a
E{X}, where second to last inequality uses the fact that np≥ 1

2
a. Thus,

the claim holds under both cases that we considered. By the two claims established so far in the

proof, we have the two inequalities E{[X − a]+} ≤ 1
2
E{X} and E{[X − a]+} ≤ 1√

a
E{X}, in which

case, it follows that E{[X − a]+} ≤min{ 1
2
, 1√

a
}E{X}.

To give a proof of Lemma E.1, we will use the following theorem, which is given as Theorem 28

in Polard (2021). This theorem compares the tail probability of a sum of independent Bernoulli

random variables with that of a binomial random variable with the same mean.

Theorem E.3 (Tail Comparison) Letting {Yi : i = 1, . . . , n} be independent Bernoulli random

variables with E{Yi} = pi, Z =
∑n

i=1 Yi and X be a binomial random variable with parameters

(n, 1
n

∑n

i=1 pi), for any k ∈Z+ with
∑n

i=1 pi +1≤ k≤ n, we have P{Z ≥ k} ≤ P{X ≥ k}.

Using the theorem above, we will be able to leverage Lemma E.2 to show Lemma E.1. Here is

the proof of Lemma E.1.

Proof of Lemma E.1:

The random variable Z is a sum of independent Bernoullis, so let Z =
∑n

i=1 Yi, where the random

variables {Yi : i = 1, . . . , n} are independent Bernoullis with E{Yi} = pi. Furthermore, let X be
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a binomial random variable with parameters (n, 1
n

∑n

i=1 pi). Note that E{Z} =
∑n

i=1 pi = E{X}.
Computing the expectation through the complementary cumulative distribution, we have

E{[Z − a]+} =
n∑

ℓ=1

P{[Z − a]+ ≥ ℓ} =
n−a∑
ℓ=1

P{Z ≥ a+ ℓ} =
n∑

ℓ=a+1

P{Z ≥ ℓ}

(a)

≤
n∑

ℓ=a+1

P{X ≥ ℓ} (b)
= E{[X − a]+}

(c)

≤ min

{
1

2
,
1√
a

}
E{X} (d)

= min

{
1

2
,
1√
a

}
E{Z},

where (a) is by Theorem E.3 along with a+1≥E{Z}+1=
∑n

i=1 pi+1, (b) uses the same argument

in the first three equalities above, (c) is by Lemma E.2 and (d) holds because E{Z}=E{X}.

Appendix F: Fitting a Multinomial Logit Model to the Supermarket Dataset

We give the details of our approach for fitting a multinomial logit model to the transaction

records from each supermarket. By the discussion in Section 7.2, we have (1 + P0)
∑52

ℓ=1 Tj(ℓ)

transaction records for supermarket j. We focus on a fixed supermarket. Letting Kj be the

number of transaction records for supermarket j, we use {(Sj(q), ij(q)) : q= 1, . . . ,Kj} to denote

these transaction records, where Sj(q) is the assortment of available products and ij(q) is the

product purchased, if any, in transaction record q. If the customer left without a purchase in

transaction record q, then we have ij(q) = ∅. The dataset provides the price for each product

in each supermarket in each week and this price may change from one week to another. Each

transaction record happens in a particular week. We use pij(q) to denote the price of product i in

supermarket j during the week that corresponds to transaction record q, which is provided in the

dataset. In the multinomial logit model, we postulate that if the price for product i in supermarket

j is p, then the preference weight that a customer shopping in supermarket j associates with

product i is of the form vij(p) = exp(γij − βj p), where the parameters γj = (γij : i ∈ N ) and βj

for supermarket j need to be estimated from the dataset. The parameter γij characterizes the

inherent attractiveness of product i to customers shopping in supermarket j, whereas βj is the

price sensitivity of the customers shopping in supermarket j. Thus, using the transaction records

{(Sj(q), ij(q)) : q= 1, . . . ,Kj}, the log-likelihood function for supermarket j is given by

Lj(γj, βj) =

Kj∑
q=1

∑
i∈N

1(ij(q) = i) log

(
vij(pij(q))

1+
∑

k∈Sj(q)
vkj(pkj(q))

)

+

Kj∑
q=1

1(ij(q) =∅) log

(
1

1+
∑

k∈Sj(q)
vkj(pkj(q))

)
,

where {(Sj(q), ij(q)) : q = 1, . . . ,Kj} and {pij(q) : i ∈ Sj(q), q = 1, . . . ,Kj} are provided by the

dataset. We maximize Lj(γj, βj) above over (γj, βj) to obtain the estimates (γ̂j, β̂j).

Recalling that the revenue of product i is given by ri, a customer of type j associates the

preference weight vij = exp(γ̂ij − β̂j ri) with product i in our computational experiments.


