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We consider a problem faced by an airline that operates a number of parallel flights to transport cargo

between a particular origin destination pair. The airline can sell its cargo capacity either through allotment

contracts or on the spot market where customers exhibit choice behavior between different flights. The goal

is to simultaneously select allotment contracts among available bids and find a booking control policy for

the spot market so as to maximize the sum of the profit from the allotments and the total expected profit

from the spot market. We formulate the booking control problem on the sport market as a dynamic program

and construct approximations to its value functions, which can be used to estimate the total expected

profit from the spot market. We show that our value function approximations provide upper bounds on

the optimal total expected profit from the spot market and they allow us to solve the allotment selection

problem through a sequence of linear mixed integer programs with a special structure. Furthermore, the

value function approximations are useful for constructing a booking control policy for the spot market with

desirable monotonic properties. Computational experiments show that the proposed approach can be scaled

to realistic problems and provides well performing allotment allocation and booking control decisions.

Key words : transportation: freight; dynamic programming: applications; programming:

integer/applications.
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1. Introduction

A significant portion of revenues in the airline industry comes from transporting cargo. Indeed,

the International Air Transport Association (IATA) estimates that 2008 system-wide global

revenues from cargo were 64 billion versus 439 billion from passengers, see IATA (2009). Many

airlines face the problem of controlling cargo bookings for both dedicated cargo and mixed

passenger/cargo aircraft. For a large airline, management of passenger capacity shares many
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features with management of cargo capacity. Given a limited amount of cargo capacity, an airline,

typically called a carrier, decides whether to commit to a current booking request or to reserve

capacity for a possible future booking request with potentially higher revenue. This basic tradeoff

is accompanied by some other concerns, such as the existing overbooking policies which deal with

the fact that not all of the booked requests show up at the departure time and the allotment

contracts which reserve portions of cargo capacity to numerous clients. However, while passenger

capacity management has received significant attention in the revenue management literature,

there is nowhere near a comparable effort on cargo revenue management, in spite of its evident

importance as a potential source of improvement in revenues.

In this paper, we consider an airline that operates a number of parallel flights to transport

cargo between a particular origin-destination pair. The airline faces two problems that interact

tightly with each other. The first problem is to determine what contracts, if any, should be signed

with potential allotment customers. The allotment contracts typically fix the shipping rate and

the amount of reserved capacity and they have a duration of at least a few months so that many

departures are scheduled to occur during the contract period. The customers who opt for such

contracts are usually intermediaries called forwarders, who provide the end customers with a door

to door service by handling and transporting cargo packages. The airline periodically collects bids

from forwarders for allotment contracts and simultaneously decides which bids are granted, making

this problem akin to combinatorial auctions. After setting up the allotment contracts, the airline

faces the second problem that determines which booking requests to accept on the spot market.

Since the parallel flights are quite similar from a customer standpoint, spot market demands exhibit

consumer choice behavior. The two problems interact because allotment and spot market cargo

eventually share the same capacity, and the airline is penalized if this capacity is oversold.

There has been extensive research on controlling passenger bookings, but relatively little

attention has been directed to cargo bookings. Although the trade-offs involved in controlling

passenger and cargo bookings are similar, the methods for controlling passenger bookings do not

immediately apply to cargo bookings for a number of reasons. To begin with, passenger capacity
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is counted in the number of seats, whereas cargo capacity is counted in units of both volume and

weight. In certain applications that involve wide body aircraft, it may even be necessary to use

body position as the third capacity dimension. Furthermore, the capacity requirements of a booked

cargo request are usually not known with certainty until loading at the departure time. Thus, the

total capacity required by the booked cargo requests is random and this creates complications

when formulating the booking control problem as a dynamic program. Finally, the possibility of

allotments introduces challenges. The airline can sell a portion of its cargo capacity as allotments

at relatively low prices and hedge the randomness of the spot market. However, the amount of

capacity utilized, eventually, by the allotment contracts is random, which implies that the amount

of capacity available for the spot market demand is also random.

In general, the booking control problem is difficult by itself as it requires solving a dynamic

program with a high dimensional state variable. Our proposed method approximates the value

functions in the booking control problem and uses these approximations to estimate the total

expected profit from the spot market. The value function approximations for the spot market

problem provides a practical booking control policy. Furthermore, we make the allotment allocation

decisions by maximizing the sum of the gross profit from the allotments and the estimated total

expected profit from the spot market.

In this paper, we make the following research contributions. 1) We present a tractable model

that integrates multiple allotment contracts and spot market bookings of an airline for a group of

parallel flights. As far as we know, this appears to be the first operational model that treats such

integration. 2) We construct well performing booking control policies for the booking requests that

occur on the spot market. These policies are useful even when there are no allotment contracts and

the airline sells all of its capacity on the spot market. 3) We show how to obtain upper bounds on the

optimal total expected profit from the spot market. The upper bounds become useful when testing

the quality of a booking control policy. Moreover, we demonstrate that the upper bounds provide

a valuation tool for the spot market that can aid the airline in allotment contract negotiations. 4)

The booking control policies used for the spot market are essentially bid price policies that use
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a revenue barrier for each cargo type. We show that the revenue barriers increase as we commit

to more booking requests. This monotonic property is in alignment with the expectation that

as we commit to more booking requests, we are less likely to accept a new booking request. 5)

Computational experiments indicate that our approach can be applied to realistic problems and

provides well performing allotment allocation and booking control decisions.

The rest of the paper is organized as follows. In §2, we provide a literature review. In §3, we

formulate a basic optimization problem to maximize the total profit by allocating the capacity

between the allotment contracts and the spot market. This problem requires knowledge of the total

expected profit from the spot market and we capture this total expected profit by formulating

a dynamic program for the spot market booking control problem. In §4, we develop a method

to approximate the value functions in the dynamic programming formulation of the spot market

booking control problem. In §5, we use these value function approximations to allocate the capacity

between the allotment contracts and the spot market. In §6, we develop a booking control policy

for the requests that occur on the spot market and establish desirable monotonic properties of this

policy. In §7, we provide computational experiments. In §8, we conclude.

2. Literature Review

Booking control in cargo transportation is an active area of research. Kasilingam (1996) compares

passenger and cargo booking control and discusses potential modeling approaches. This paper is

the first one to lay out the main features of cargo booking control, including multiple dimensions

of capacity and the presence of allotments. Blomeyer (2006) provides additional details on cargo

booking practices. Several recent papers also review air cargo revenue management from a practical

point of view. Billings et al. (2003) compare business models in the cargo and passenger cases and

formulate the challenges for cargo revenue management. The authors emphasize key questions such

as managing cargo capacity through allotment contracts, the tradeoff between the allotments and

the spot market, as well as uncertainty in the actual cargo shipped compared to capacity booked.

Slager and Kapteijns (2003) discuss the existing cargo revenue management implementation at
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KLM. In particular, the authors discuss margin management on allotment contracts and on spot

market shipments. According to this paper, the current practice of KLM is to collect bids for

contracted capacity twice a year, at the start of IATA summer and winter schedules. The authors

also mention that performance of the contracts is monitored on a weekly basis and contract

utilization is expected to attain certain performance targets. An enhanced list of complexities for

air cargo revenue management from a business perspective is given by Becker and Dill (2007).

Several papers explore the cargo booking problem over a single flight leg. Huang and Hsu (2005)

address random capacity requirements of the booked cargo requests, but they assume that capacity

is counted only in units of weight. Luo et al. (2009) and Moussawi and Cakanyildirim (2005)

construct protection level policies for the booking control problem, where capacity is counted in

units of both volume and weight. The models in these two papers assume that demand is a static

random variable, ignoring the detailed temporal dynamics of the booking requests. Xiao and Yang

(2010) give a continuous time formulation for the booking control problem in the ocean transport

setting. Amaruchkul et al. (2007b) provide a dynamic programming formulation of the booking

control problem that captures the detailed temporal dynamics of the booking requests. They

develop numerous approximations to the value functions. Their dynamic programming formulation

is similar to ours, but we endogenize the off-loading problem that decides which cargo bookings

should not be loaded on the flight when there is insufficient capacity.

The control policy that we use for accepting or rejecting the booking requests on the spot

market is similar to a bid price policy. In particular, we compute a revenue barrier for different

types of booking requests, capturing the expected opportunity cost of the capacity used by the

booking requests. There has been little work that uses bid prices in cargo booking control. Pak

and Dekker (2005) propose a bid price policy for the booking control problem that takes place

over a network of flights. Sandhu and Klabjan (2006) consider an integer programming formulation

for the fleeting problem that includes a bid price-based booking control component for air cargo

on a flight network. The bid prices in the paper are static, ignore the stochastic aspects of the

booking problem and the performance of these controls is not evaluated. Lastly, Karaesmen (2001)
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uses infinite dimensional linear programs to compute bid prices and the proposed approach is

applicable to cargo settings. Bid price policies are ubiquitous in passenger booking control. Simpson

(1989) and Williamson (1992) were the first to compute bid prices by using a deterministic linear

program. Talluri and van Ryzin (1998) show that the bid prices computed by this linear program

are asymptotically optimal as the capacities and expected numbers of booking requests increase

linearly with the same rate. One shortcoming of the deterministic linear program is that it uses

only the expected numbers of the future booking requests. Talluri and van Ryzin (1999) try to

make up for this shortcoming by proposing a randomized version that uses actual samples of the

future booking requests. Bertsimas and Popescu (2003) provide extensions of the deterministic

linear program to cover cancellations. Adelman (2007) and Topaloglu (2009) propose numerous

strategies to approximate the value functions in the dynamic programming formulation of the

booking control problem and their approximations provide bid price policies. The consumer choice

model that we use for the spot market in our paper is similar to the approach developed by Talluri

and van Ryzin (2004) for the passenger case.

There is little work done on allotment and spot market booking coordination. The existing

literature focuses on the properties of an allotment contract, whereas we focus of operational

decisions. Hellermann (2006) reviews the industry and market structure and provides a survey of

related literature. The author also formulates a stylized static game theoretic model of a capacity

contract between one forwarder and one carrier with one dimensional capacity. The contract

consists of a reservation fee and an execution fee. The articles of Gupta (2008) and Amaruchkul

et al. (2007a) are concerned with the form and properties of a contract between a carrier and

a single forwarder under similar assumptions. Gupta (2008) considers two flexible schemes that

allow the carrier to adjust contract parameters based on the realized demand and shows that

this flexibility allows the carrier to achieve an efficient capacity allocation between the forwarder

and the spot market. Amaruchkul et al. (2007a) study contracts that are described by a constant

allotment, a lump sum payment for the season and a per-flight payment that depends on allotment

utilization. They show when such a scheme can eliminate informational rents.
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Other research areas related to our work include the analysis of dual-channel supply chains

(since spot market can be viewed as a direct sales channel while the allotments is a form of

wholesale distribution), analysis of advance sales in retail, and supply chain contracts. Chiang et al.

(2003), Tsay and Agrawal (2004), Xie and Shugan (2001) and Cachon (2004) provide comprehensive

reviews of these fields. The works in these fields usually focus on fundamental qualitative analysis

of the marketplace and the supply chain. In relations to these bodies of literature, our contribution

is an efficient operational approach to management of a large number of potential advance service

contracts which balances supply and inventory risks in the presence of spot market.

3. Problem Formulation

We consider a problem faced by an airline that operates a collection of flights over a certain planning

horizon to transport cargo between a particular origin destination pair. The flights are arranged

into a repeated schedule cycle according to their departure time and the planning horizon includes

multiple schedule cycles. A typical length of a cycle is one week, whereas the planning horizon is on

the order of a few months. The airline sells cargo capacity on these flights either through allotment

contracts or on the spot market. The allotment contracts are signed at the beginning of the planning

horizon, whereas the booking requests on the spot market occur continuously. Both Hellermann

(2006) and Billings et al. (2003) describe practices of major air cargo carriers which use allotment

contracts of half a year or more in duration. The carriers sign the new contracts twice a year

for winter and summer schedules based on the bids submitted by potential allotment customers.

Therefore, the parameters of all potential allotment contracts result from an infrequent bidding

and negotiation process. As the outcome of such a process, each potential allotment customer

provides a list of acceptable contracts. For example, a lower rate may be acceptable for a larger

allotment and vice versa. We assume that this list is available to the airline as a bid from this

customer. The bid structure depends on specific practices of the airline and the type of the customer.

There are two issues to consider for the allotment contracts. First, we need to describe the profits

and capacity utilizations of allotment contracts. Second, we need to address the possibility that

allotment customers may want to bid jointly for a combination of allotments on different flights.
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Allotment profits and utilizations. We define an allotment quote as a combination of capacity

utilization and revenue (payment by the allotment customer) for a specific flight in the schedule.

The physical capacity utilized by an allotment contract on the flight is random, becomes known

only at the departure time, and can be formally described as a random variable. Similarly, the

revenue can be described as a random variable, whether it is a fixed fee or a function of the actual

capacity utilization on the flight. Therefore, we treat the allotment quote as a random vector which

captures the capacity utilization and revenue for a particular flight. This provides a homogeneous

modeling description of various quote formats and information collection practices.

The allotment quote information is also sufficient to quantify the costs of providing capacity for

the allotment on the flight. Generally, the allotments costs have a complex structure related to both

the direct costs of providing capacity, such as fuel and handling, the penalty costs associated with a

failure to fulfill shipment obligations and the indirect opportunity costs of displacing potential spot

market sales. The airlines already have techniques for estimation of direct costs. The revenue less

the variable costs per shipment is called a contribution margin of a shipment and is usually known in

practice. Slager and Kapteijns (2003) give a detailed discussion of margin management principles.

The penalty costs are associated with additional handling, alternative shipping arrangements and

the loss of goodwill but can also be estimated given information about allotment utilization. The

opportunity costs are perhaps the hardest to quantify and require an appropriate model of the

spot market booking control process, which we explicitly do in our paper.

Multi-unit bids. The rationale for multi-unit bids is two-fold. The first one is that allotments

usually cover a set of repeated flights, such as all scheduled 6pm flights between a particular OD

pair on Tuesdays. Such sets of flights are convenient to describe in combination, since the same

capacity utilization and payment structure applies. Moreover, potential customers expect to obtain

all flights in such sets together. Therefore, to express this indivisibility, we employ a notion from

the combinatorial auctions theory and define atomic bids as sets of allotment quotes which can

only be granted in combination. The quotes comprising atomic bids in our model play the role

similar to that of regular items in conventional combinatorial auctions.
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The second rationale is the phenomenon of consumer choice which is quite important for

modelling allotments. The payments considered acceptable by a prospective allotment customer

may depend on a combination of allotments granted to this customer by the airline. For example,

a customer may want to ship cargo between a pair of locations both on Tuesday and on Thursday.

A single large allotment on either day may be good but two smaller allotments on both of these

days may be better. The three options are mutually exclusive.

The rest of this section is separated into two subsections. In §3.1, we formally introduce the model

elements. In §3.2, we give the objectives of the airline and formulate the optimization problem.

3.1. Model elements and notation

Allotment contracts. Decisions for the allotment contracts are made at the beginning of the planning

horizon and they remain fixed throughout. We use J to denote the set of flights operated by

the airline over the whole planning horizon. At the beginning of the planning horizon, the airline

receives a finite set I of atomic bids. Each atomic bid i specifies a set of flights Ji ⊆ J that is

used by this bid if an allotment contract on the terms of the atomic bid i is granted. We use

the set D to denote the combined set of dummy items of all customers. Each dummy item has

a one-to-one correspondence with a particular subset of mutually exclusive atomic bids. For each

atomic bid i, we let Di ⊆ D to be the set of its dummy items. We represent a decision to grant

a contract on the terms of the atomic bid i by a binary decision variable xi. Since each dummy

item d ∈ D indicates a membership of atomic bids in a particular subset {i ∈ I : d ∈ Di} of bids

which cannot be jointly granted, the decision variables must satisfy a constraint that at most one

of the variables in this subset is equal to one,
∑

i∈I:d∈Di
xi ≤ 1 for all d ∈ D. Our use of dummy

items to represent mutually exclusive atomic bids corresponds to the OR* bidding language in

combinatorial auctions; see Nisan (2000).

We use V a
ij to denote the capacity utilization of the atomic bid i on flight j ∈ Ji. Noting the

discussion at the beginning of this section, V a
ij is a random variable and its value becomes known

at the departure time of flight j. The randomness in V a
ij captures a common issue of uncertainty in



Levin, Nediak, and Topaloglu: Cargo Capacity Management with Allotments and Spot Market Demand
10 Article submitted to Operations Research; manuscript no. OPRE-2008-08-420.R3

the actual capacity utilization of allotment contracts. As we mention in the introduction, capacity

utilization in cargo revenue management is usually measured in units of volume and weight and if

this is the case, then we can visualize V a
ij as a two dimensional vector, each component capturing

the volume and weight utilization. With this interpretation, we can handle the multi-dimensional

capacity utilization with no modification in our development. We use Ra
ij to denote the revenue

generated by the atomic bid i on flight j. As indicated by Slager and Kapteijns (2003), the margin

and capacity utilization of each allotment contract are collected on a regular basis. This provides

enough information to construct appropriate models for V a
ij and Ra

ij. Moreover, an appropriate

model for Ra
ij is available regardless of whether customers pay per capacity booked or per actual

utilization. Hellermann (2006) refers to these types of contracts respectively as capacity purchasing

agreements and guaranteed capacity agreements. Thus, we assume that (i) the joint distribution

of nonnegative random vector (V a
ij ,R

a
ij) for each i ∈ I and j ∈ Ji is known, depends only on i

and j, and has a finite first moment. Moreover, (ii) random vectors (V a
ij ,R

a
ij), i ∈ I, j ∈ Ji are

mutually independent within this collection as well as with any other sources of uncertainty in the

model. Furthermore, the distributions of these vectors do not depend on the decisions in the model.

The independence assumption (i)-(ii) aids in parsimonious specification of model inputs since only

the joint distributions for each atomic bid/flight combination are necessary. Moreover, in practice,

the same distribution can describe flights which are repeated throughout the schedule (e.g. 6pm

flight on Tuesday for a particular OD pair). Assumption (i) also implies that capacity utilization

for each quote does not depend on which atomic bids are granted (i.e. decisions xi, i ∈ I). This

is reasonable with respect to decision about bids submitted by different bidders. With respect to

decisions which apply to atomic bids of the same bidder, this assumption is reasonable as long

as submitted bids accurately capture the partition of the expected load generated by the bidder

between the atomic bids. In Online Appendix EC.3, we indicate how one can relax assumption (ii).

Temporal structure. Although decisions for allotment contracts remain fixed throughout the

planning horizon, the spot market booking requests occur continuously over the whole planning

horizon. We divide the planning horizon into τ time periods indexed by {1, . . . , τ}. We assume that
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each time period corresponds to a small interval of time that there is at most one spot market

booking request at each time period. This assumption is not problematic since the complexity

of our model is insensitive to the number of time periods. The flights depart at different time

periods over the planning horizon {1, . . . , τ}. For simplicity of exposition of the base model,

we assume that the departures of all flights and the corresponding cargo loading decisions are

independent. In particular, the cargo that does not fit on a particular flight results in a penalty

cost, but does not occupy capacity on subsequent flights. We point out possible relaxations of

this assumption later in the paper. Under independent departures assumption combined with

independence of allotment capacity utilizations on different flights, it is irrelevant when the

departures actually occur during the planning horizon since loading decisions associated with each

flight do not affect the system state. Thus, we assume without loss of generality that all flights

depart at time period τ + 1. Independent departures assumption is justified when the penalty

for rescheduling cargo to a later flight operated by the airline is comparable to that of seeking

alternative shipping arrangements. This is realistic when competition enforces high customer service

standards. Additional discussion of the relation between flight independence and assumption (i)-(ii)

is provided in Online Appendix EC.3.

Spot market. We use K to denote the set of cargo types for which we can receive booking

requests on the spot market. Following Amaruchkul et al. (2007b), we assume that cargo types

differ in their capacity utilizations and profit margins. A spot market booking for cargo type k on

flight j generates a revenue of Rs
jk and utilizes a capacity of V s

jk. Similar to V a
ij , the value of the

random variable V s
jk becomes known only at the departure time of flight j. Similarly to allotments,

we assume that nonnegative random vectors (V s
jk,R

s
jk) have a known joint distribution with a

finite first moment which depends only on the combination of j ∈ J and k ∈ K, and that these

random vectors are mutually independent within the collection as well as with any other sources of

uncertainty in the model. This assumption is reasonable if applied to capacity utilizations only. It is

also reasonable if revenues are taken into account, as long as these revenues result from application

of freight rates and rules which do not change throughout the planning horizon. For example,
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for two-dimensional V s
jk, Amaruchkul et al. (2007b) consider Rjk which is computed via given

type-dependent function of chargeable weight defined as the maximum of the actual cargo weight

and its volume scaled by a given constant. An interesting practical concern is that the capacity

utilization of a spot market booking for cargo type k may have different variability depending on

when the booking is made. In particular, the uncertainty in the capacity utilization of the spot

market bookings that are made later in the booking horizon may be smaller, since these spot

market bookings are made with a shorter lead time for service. We can model different variability

for spot market bookings by defining multiple cargo types depending on when the spot market

booking is made. This approach amounts to working with the full set of cargo types {(k, t) : k ∈

K, t= 1, . . . , τ}, where (k, t) corresponds to cargo type k booked on the spot market at time t. In

this case, we simply need to adjust the random variables (V s
ij,R

s
ij) as (V s

jkt,R
s
jkt) so that V s

jkt and

Rs
jkt respectively correspond to the capacity utilization and revenue of a spot market booking of

type k for flight j accepted at time period t. The random variables V s
jkt and V s

jkt′ may have different

variances.

The spot market demands exhibit consumer choice behavior. In particular, the control exerted

by the airline on the spot market is captured by the set S ⊆J ×K, corresponding to the flight and

cargo type combinations that are open for the spot market bookings. This is to say that (j, k)∈ S

if and only if flight j is open for cargo type k spot market bookings at the current time period.

A spot market customer arriving into the system observes the set of open flight and cargo type

combinations and makes a choice within this set. Given that the set of open flight and cargo type

combinations at the time period t is S, we use Pjkt(S) to denote the probability that there is a

spot market booking for flight j and cargo type k. The probabilities {Pjkt(S) : S ⊆ J ×K} are a

part of the problem data and we naturally have Pjkt(S) = 0 whenever (j, k) 6∈ S or time period t

corresponds to a time period after the departure time of flight j. This model is a standard way

of modeling consumer choice in revenue management; see Talluri and van Ryzin (2004). With

respect to spot market demand process, we make an independence assumption similar to that on

allotment and spot market capacity utilization and revenue uncertainty. In particular, probabilities
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Pjkt(S) depend only on flight j ∈J , cargo type k ∈K, time t and the set of open flight-cargo type

combinations S; and the booking events are mutually independent across time as well as with the

other sources of uncertainty in the model.

3.2. Airline’s objectives and optimization problem

The airline is interested in maximizing the total expected profit over the planning horizon

by selecting the appropriate allotments from the available bids, controlling bookings on the

spot market and managing the cargo loading process. We structure the optimization problem

formulation according to these three decision areas.

Loading decisions. As mentioned before, the independent departures assumption allows us to

assume that all flights depart at time period τ +1. Since the allotment contracts typically generate

composite shipments, we assume that the airline may ship or fail to ship a part of the total cargo

generated by an allotment contract. The regular cost of shipping fraction α of the allotment from

atomic bid i on flight j is αCa
ij. Likewise, the penalty cost of not accommodating fraction α of

the allotment from atomic bid i on flight j is αĈa
ij. The costs Ĉa

ij and Ca
ij are treated in general

as random variables dependent on capacity utilization V a
ij . For spot market cargo, we assume that

each unit is indivisible and let the regular and penalty costs for cargo type k on flight j be Cs
jk

and Ĉs
jk, respectively. These costs are also random variables dependent on capacity utilization

V s
jk. Different values of allotment and spot market penalties (Ĉa

ij and Ĉs
jk) allow to balance the

loading priorities of different allotment and spot market cargo booked for the same flight. If we

set all Ĉs
jk to a sifficiently high constant and calibrate the parameter Ĉa

ij accordingly, then our

model minimizes the expected number of rejected spot market bookings along with an accordingly

calibrated cost for rejected allotment requests. The total available capacity on flight j is V̄j. Let njk

be the total number of accepted spot market bookings for cargo type k on flight j. In this case, each

spot market booking l= 1, . . . , njk will have its own realization of costs and capacity requirements

(V s
jkl,C

s
jkl, Ĉ

s
jkl). Using n = {njk : j ∈ J , k ∈ K} to denote the total numbers of accepted spot

market bookings, x= {xi : i ∈ I} to denote the accepted atomic bids, and U = {{(V s
jkl,C

s
jkl, Ĉ

s
jkl) :
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l = 1, . . . , njk, k ∈ K},{(V a
ij ,C

a
ij, Ĉ

a
ij) : i ∈ I}, j ∈ J } to denote a collection of realized costs and

capacity requirements, we can minimize the total of all regular and penalty costs by solving the

mixed integer program

Γ(x,n,U) = max −
∑
i∈I

∑
j∈Ji

xi (Ca
ij z

a
ij + Ĉa

ij [1− za
ij])−

∑
j∈J

∑
k∈K

njk∑
l=1

(Cs
jkl z

s
jkl + Ĉs

jkl [1− zs
jkl]) (1)

subject to
∑

i∈I:j∈Ji

xi V
a

ij z
a
ij +

∑
k∈K

njk∑
l=1

V s
jkl z

s
jkl ≤ V̄j for all j ∈J (2)

0≤ za
ij ≤ 1 for all i∈ I, j ∈Ji (3)

zs
jkl ∈ {0,1} for all j ∈J , k ∈K, l= 1, . . . , njk. (4)

The decision variable za
ij corresponds to the fraction of the allotment from atomic bid i that we

load on flight j and the decision variable zs
jkl takes value one if we load the l-th booked spot market

request for flight j and cargo type k. The first set of constraints represent a requirement that

the total capacity utilization from all the allotment and sport market bookings cannot exceed the

available capacity. The variables and constraints of problem (1)-(4) can be grouped by flight so that

decisions associated with each flight do not participate in the constraints corresponding to other

flights. Therefore, the problem has a special separable structure: its feasible set is formed as a direct

product of the feasible sets for the decisions associated with each flight. Because of the linearity of

the objective, the problem decomposes by the flights, but this is simply due to the fact that the

loading decisions for different flights are independent. We shortly describe a possible relaxation of

this assumption after we elaborate on the booking control problem for the spot market.

Booking control for the spot market. We formulate the spot market booking control problem as

a dynamic program over the time periods {1, . . . , τ}. In this dynamic programming formulation,

we use n= {njk : j ∈ J , k ∈ K} as the state variable, where njk is the total number of accepted

spot market bookings for cargo type k on flight j up to the current time period. We use S ⊆J ×K

to capture the decisions, where S corresponds to the set of flight and cargo type combinations that

are open for spot market bookings at the current time period. At time t, a new booking for cargo

type k on flight j occurs with probability Pjkt(S) resulting in a new state n+ ejk, where we use
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ejk to denote the |J | × |K| dimensional unit vector with a one in the element corresponding to

(j, k)∈J ×K. In this case, we can find the optimal booking control policy for the spot market by

solving the optimality equation

Jt(x,n) = max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}+Jt+1(x,n+ ejk)
]
+

[
1−

∑
(j,k)∈S

Pjkt(S)
]
Jt+1(x,n)

}

= max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}+Jt+1(x,n+ ejk)− Jt+1(x,n)
]}

+Jt+1(x,n). (5)

In the expression above, the revenue Rs
jk associated with a spot market booking is assumed to be

random, since the revenue may depend on the realization of the size of the cargo at the departure

time. Therefore, we have to charge the expected revenue when making the booking control decision.

The boundary condition for the optimality equation above is Jτ+1(x,n) = E{Γ(x,n,U)
}
, accounting

for the total cost incurred at the departure time. In this case, letting 0̄ be the |J |×|K| dimensional

vector of zeros, J1(x, 0̄) corresponds to the optimal total expected profit from the spot market

bookings over the whole planning horizon and the loading decisions at the departure time, given

that the allotment contracts granted on the terms of the different atomic bids are captured by the

vector x= {xi : i∈ I}.

Even when the loading problem in (1)-(4) decomposes by the flights under independent

departures assumption, the optimality equation in (5) still does not decompose by the flights due

to the fact that an arriving spot market customer makes a choice over all flights according to

the choice probabilities {Pjkt(S) : j ∈J , k ∈K}. Furthermore, we emphasize that if there are two

flights j and j′ such that the cargo for flight j can be also be carried on flight j′, then we can extend

the model by minimal modifications in problem (1)-(4). In particular, we can introduce decision

variables into problem (1)-(4) to capture the portion of the cargo that is shifted from flight j to

j′. If the departure time of flights j and j′ are close enough in time that the spot market bookings

in between the two departure times are negligible, then the dynamic programming formulation in

(5) goes through with no modifications and we can still assume that all flight departures occur

at the end of the planning horizon. These modifications partially relax independent departures

assumption. We elaborate on this extension further in Online Appendix EC.4.
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Allotment selection. Noting that J1(x, 0̄) captures the total expected profit from the spot market

bookings and the costs associated with loading decisions at the departure time, we can choose the

allotment contracts by solving the nonlinear integer program

max
∑
i∈I

∑
j∈Ji

E{Ra
ij}xi +J1(x, 0̄) (6)

subject to
∑

i∈I:d∈Di

xi ≤ 1 for all d∈D (7)

xi ∈ {0,1} for all i∈ I. (8)

In the problem above,
∑

j∈Ji
Ra

ij is the total revenue from an allotment contract granted on the

terms of the atomic bid i. At the time of making the bid allocation decisions, we charge the expected

value of this revenue. The costs associated with serving this allotment are already included into

J1(x, 0̄).

Problem (6)-(8) looks similar to the traditional value determination problem in combinatorial

auctions, especially in the form of its constraints. However, the important difference is that the

substance being auctioned, which is the capacity of flights, does not enter the constraints at

all. Instead, the capacity utilization enters through the potentially nonlinear term J1(x, 0̄) in the

objective. In general, computing J1(x, 0̄) for a fixed value of x is difficult since the state variable in

the optimality equation in (5) is a high dimensional vector. This difficulty, coupled with a discrete

nonlinear optimization over x, makes problem (6)-(8) computationally intractable. In the next

section, we develop a method to approximate J1(x, 0̄), which allows us to find good solutions to

problem (6)-(8). An approximation to J1(x, 0̄) is also important in itself as it allows us to construct

booking control policies for the spot market.

4. Approximating the Booking Problem

In this section, we develop a method to approximate the value functions {Jt(x, ·) : t= 1, . . . , τ} in

the spot market booking control problem. We note that a major complicating factor in problem

(1)-(4) is the presence of the capacity constraints. This suggests relaxing these constraints by
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associating the positive Lagrange multipliers λ= {λj : j ∈ J } with them. In this case, the relaxed

version of problem (1)-(4) takes the form

Γ̃(x,n,λ,U) = max −
∑
i∈I

∑
j∈Ji

xi

{
Ca

ij z
a
ij + Ĉa

ij [1− za
ij] +λj V

a
ij z

a
ij

}
−

∑
j∈J

∑
k∈K

njk∑
l=1

{
Cs

jkl z
s
jkl + Ĉs

jkl [1− zs
jkl] +λj V

s
jkl z

s
jkl

}
+

∑
j∈J

λj V̄j (9)

subject to (3), (4). (10)

The shift in our notation from Γ(x,n,U) to Γ̃(x,n,λ,U) emphasizes that the problem above

provides only an approximation to the penalty cost that we incur at the departure time and its

optimal objective value depends on the Lagrange multipliers. If the capacity is measured in multiple

dimensions, such as weight and volume, then our development goes through as long as λj is a

multi-dimensional vector and λj V
a

ij , λj V
s

jkl and λj V̄j are understood as scalar products.

In this case, we can replace the boundary condition of the optimality equation in (5) with the

approximate boundary condition J̃τ+1(x,n,λ) = E{Γ̃(x,n,λ,U)} and obtain the value function

approximations {J̃t(x, ·, λ) : t= 1, . . . , τ} by solving the optimality equation

J̃t(x,n,λ) = max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}+ J̃t+1(x,n+ ejk, λ)− J̃t+1(x,n,λ)
]}

+ J̃t+1(x,n,λ). (11)

Once more, the shift in our notation from Jt(x, ·) to J̃t(x.·, λ) emphasizes that J̃t(x, ·, λ) is only an

approximation to Jt(x, ·), and the solution to the optimality equation in (11) with the approximate

boundary condition J̃τ+1(x,n,λ) = E{Γ̃(x,n,λ,U)} depends on the Lagrange multipliers. We

shortly dwell on how we should choose the Lagrange multipliers so that {J̃(x, ·, λ) : t = 1, . . . , τ}

are good approximations to the value functions {J(x, ·) : t= 1, . . . , τ}.

There are two important properties of the optimality equation in (11). First, this optimality

equation can be solved very efficiently. As a matter of fact, Proposition 1 below shows that there

is a closed form solution to this optimality equation. To motivate this result, we begin by defining

some notation. We let

Ba
ij(λj) = E{min(Ca

ij +λj V
a

ij , Ĉ
a
ij)}
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for all i ∈ I and j ∈ Ji. Intuitively speaking, the term Ba
ij(λj) captures the expected total cost

of serving the atomic bid i on flight leg j, when this cost is viewed from the beginning of the

planning horizon. In particular, the atomic bid i utilizes V a
ij units of capacity on flight j. Noting

that the Lagrange multiplier λj measures the opportunity cost of the capacity on flight j, the total

opportunity cost of the capacity consumed by the atomic bid i on flight j is λj V
a

ij . By adding a

direct regular cost Ca
ij we get the total cost of shipping as Ca

ij +λj V
a

ij . However, we also have the

option of not loading this cargo on the flight and the cost associated with this option is Ĉa
ij. It is

sensible to follow the option with the smallest cost, in which case, the cost of the atomic bid i on

flight j is min(Ca
ij + λj V

a
ij , Ĉ

a
ij). Since we do not know the capacity utilization of the atomic bid

at the beginning of the planning horizon, we take an expectation to capture the expected cost of

serving the atomic bid i on flight j, when this cost is viewed from the beginning of the planning

horizon. Similar to Ba
ij(λj), we also define

Bs
jk(λj) = E{min(Cs

jk +λj V
s

jk, Ĉ
s
jk)}

for all j ∈J and k ∈K. A similar intuitive reasoning indicates that the term Bs
jk(λj) captures the

expected total cost of serving a spot market booking request of cargo type k on flight j. We note

that both Ba
ij(λj) and Bs

jk(λj) are straightforward functions of the Lagrange multipliers. We are

now ready to show that there is a closed form solution to the optimality equation in (11). All of

our proofs are deferred to Online Appendix EC.1.

Proposition 1. Letting {J̃t(x, ·, λ) : t= 1, . . . , τ} be the solution to the optimality equation in (11),

we have the identity

J̃t(x,n,λ) =
∑
j∈J

λj V̄j −
∑
i∈I

∑
j∈Ji

xiB
a
ij(λj)−

∑
j∈J

∑
k∈K

Bs
jk(λj)njk +

τ∑
t′=t

Φt′(λ), (12)

where

Φt(λ) = max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}−Bs
jk(λj)

]}
. (13)
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The term J̃t(x,n,λ) on the left side of (12) is an approximation to the optimal total expected

profit from the spot market bookings over the time periods {t, . . . , τ} and the loading decisions

at the departure time. The right side of (12) separates this expected profit into four components

with interesting insights. The first component captures the total value of the capacity available on

all of the flights. Noting the intuitive interpretation of Ba
ij(λj) as expected total costs associated

with serving a flight j part of the atomic bid i, the second component corresponds to the expected

total costs associated with serving the accepted bids on all of the flight legs. Similarly, the third

component represents the expected total costs associated with serving all of the accepted spot

market bookings. Finally, the last component estimates the maximum total expected future profit

from the spot market. In particular, noting the intuitive interpretation for Bs
jk(λj) as expected

total cost, the difference E{Rs
jk} − Bs

jk(λj) is the expected profit from a spot market booking

for cargo type k on flight j. The weighted average represented by the summation over (j, k) ∈

S in expression (13) for Φt(λ) corresponds to the expected value over all possible spot market

bookings at time t. Therefore, the optimization problem in (13) finds a set of flight and cargo

type combinations to open at time period t so as to maximize the expected profit Φt(λ) at time

t. In Online Appendix EC.5, we discuss important choice models that make the solution of this

optimization problem particularly easy. An interesting aspect of our solution approach is that the

computation of J̃t(x,n,λ) does not get much more difficult when capacity is measured in multiple

dimensions, such as weight or volume. Furthermore, our Lagrangian relaxation approach gives a

natural way to assess the value of a unit of capacity, irrespective of how many different units are

used to measure capacity.

The second important property of the optimality equation in (11) is that it provides an upper

bound on the optimal expected spot market profits. In particular, the next proposition shows that

J̃1(x, 0̄, λ) is an upper bound on the J1(x, 0̄) as long as the Lagrange multipliers are nonnegative.

Proposition 2. If λ≥ 0, then we have J̃1(x, 0̄, λ)≥ J1(x, 0̄).

The implication of this result is that we can obtain the tightest possible upper bound on the
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optimal total expected profit from the spot market bookings and the loading decisions by solving

the problem

min
λ≥0

J̃1(x, 0̄, λ). (14)

Letting λ∗(x, 0̄) be an optimal solution to problem (14), we can use J̃1(x, 0̄, λ∗(x, 0̄)) as an

approximation to J̃1(x, 0̄). It is important to emphasize that problem (14) provides a concrete

method for choosing the Lagrange multipliers.

Closing this section, we note that Ba
ij(λj) and Bs

jk(λj) are concave functions of λj as minimum

of a linear function and a constant is concave. Noting that the maximum of convex functions is

also convex, (13) implies that Φt(λ) and, thus, J̃t(x, 0̄, λ) are convex functions of the Lagrange

multipliers. Therefore, problem (14) is a convex optimization problem and it can be solved by using

standard convex optimization tools. This observation becomes useful in the next section.

5. Approximating the Allotment Problem

Our development in the previous section suggests approximating J1(x, 0̄) by minλ≥0 J̃1(x, 0̄, λ). In

this case, we can replace J1(x, 0̄) in problem (6)-(8) with minλ≥0 J̃1(x, 0̄, λ) and choose the allotment

contracts by solving the problem

max
∑
i∈I

∑
j∈Ji

E{Ra
ij}xi +min

λ≥0
J̃1(x, 0̄, λ) (15)

subject to (7)-(8). (16)

Our approach for solving the problem above is based on the idea of Benders decomposition

or constraint generation. In a nutshell, we reformulate problem (15)-(16) as a mixed integer

programming problem with an infinite number of constraints and devise a method to sample a

finite subset of constraints resulting in an optimal solution to the original problem. To this end,

we replace minλ≥0 J̃1(x, 0̄, λ) in the problem above with a single decision variable y and impose

the constraint that y ≤ J̃1(x, 0̄, λ) for all λ ≥ 0 on this decision variable. Using the closed form

expression for J̃1(x, 0̄, λ) given in Proposition 1, this idea yields the problem

max
∑
i∈I

∑
j∈Ji

E{Ra
ij}xi + y (17)
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subject to (7)-(8) (18)∑
i∈I

∑
j∈Ji

Ba
ij(λj)xi + y≤

∑
j∈J

λj V̄j +
τ∑

t=1

Φt(λ) for all λ≥ 0. (19)

Problem (17)-(19) is equivalent to problem (15)-(16). Furthermore, the objective function and

constraints of this problem are linear in all of the decision variables x= {xi : i∈ I} and y. However,

problem (17)-(19) has an infinite number of constraints and cannot be solved directly.

Throughout this section, we refer to problem (17)-(19) as problem (P). We consider a relaxed

version of problem (P), where the infinite number of constraints (19) are replaced by the finite

number of constraints

∑
i∈I

∑
j∈Ji

Ba
ij(λj)xi + y≤

∑
j∈J

λj V̄j +
τ∑

t=1

Φt(λ) for all λ∈ {λ1, . . . , λS}, (20)

where {λ1, . . . , λS} is a finite set of Lagrange multipliers. We refer to this relaxed version of problem

(P) as (R-{λ1, . . . , λS}). In this case, we can solve problem (R-{λ1, . . . , λS}) for a finite set of

Lagrange multipliers to obtain the optimal solution (x̂, ŷ). Problem (R-{λ1, . . . , λS}) is a mixed

integer program with a finite number of constraints. Following this, we can solve the problem

minλ≥0 J̃1(x̂, 0̄, λ) to obtain an optimal solution λ∗(x̂, 0̄). If the optimal objective value of the last

problem matches ŷ, then (x̂, ŷ) provide an optimal solution to the full problem (P) and we stop.

Otherwise, we add λ∗(x̂, 0̄) to the set of Lagrange multipliers {λ1, . . . , λS} and solve problem (R-

{λ1, . . . , λS, λ∗(x̂, 0̄)}). This idea yields the following algorithm for solving problem (P).

1. Start with some initial set of Lagrange multipliers {λ1, . . . , λS} of size S. The set can be empty,

in which case S = 0.

2. Solve problem (R-{λ1, . . . , λS}) to within the accuracy ε
3

of the optimum. Let the resulting

feasible solution be (xS, yS).

3. Solve the problem minλ≥0 J̃1(xS, 0̄, λ) to within the accuracy ε
3

of the optimum. Let the

resulting feasible solution be λS+1.

4. If J̃1(xS, 0̄, λS+1)≥ yS − ε
3
, then stop. Otherwise, increment S by 1 and go back to Step 2.

We have the following result for the proposed algorithm.
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Proposition 3. The proposed algorithm terminates in a finite number of steps. At termination,

(xS, yS − 2ε/3) is an ε-optimal solution to problem (P).

This result implies that for every fixed ε, we can find ε-optimal solution to problem (P) in a

finite number of steps even though optimization algorithms used in practice for mixed integer

programming and convex minimization are approximate.

6. Practical Implementation of Spot Market Booking Control

Problem (15)-(16) provides a method to choose the allotment contracts. However, we also need to

make control decisions for the booking requests on the spot market. A practical implementation

of the booking control policy for the spot market has to be computationally efficient as well as

sufficiently robust to perform well under a variety of types of consumer behavior and demand

patterns. In this section, we focus on setting up a booking control policy for the spot market.

Letting x∗ be an optimal solution to problem (15)-(16), we choose the allotment contracts as

indicated by the solution x∗. In this case, we can solve the problem minλ≥0 J̃1(x∗, 0̄, λ) to choose a

good set of Lagrange multipliers λ∗∗ = λ∗(x∗, 0̄). This allows us to use {J̃t(x∗, ·, λ∗∗) : t= 1, . . . , τ}

as approximations to the value functions {Jt(x∗, ·) : t = 1, . . . , τ}. In other words, we can replace

{Jt(x∗, ·) : t= 1, . . . , τ} in problem (5) with {J̃t(x∗, ·, λ∗∗) : t= 1, . . . , τ} and solve this problem to

make the booking control decisions for the spot market at different time periods. Proposition

1 shows that J̃t(x,n,λ∗∗) is a linear function of n and the difference J̃t+1(x∗, n + ekt, λ
∗∗) −

J̃t+1(x∗, n,λ∗∗) in the right side of (5) is equal to −Bs
jk(λ∗∗j ). Therefore, we can solve the problem

max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}−Bs
jk(λ

∗∗
j )

]}
+ J̃t+1(x∗, n,λ∗∗) (21)

to make the booking control decisions for the spot market at time period t. This is to say that

if S∗ is the optimal solution to the optimization problem above, then set of flight and cargo type

combinations that the airline opens for sale at time period t is given by S∗. We note that the term

J̃t+1(x∗, n,λ∗∗) in (21) does not affect the booking control decisions at time period t, and the first

term is equal to Φt(λ∗∗) defined by (13).
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The chief drawback of the booking control policy obtained from problem (21) is that the optimal

solution to this problem does not depend on the numbers of accepted spot market bookings. In

particular, irrespective of whether we reach time period t with too many accepted spot market

bookings or with too few, we always open the same set of flight and cargo type combinations for

sale. One way to remedy this shortcoming is to refresh the Lagrange multipliers periodically over

the planning horizon. In other words, if the numbers of accepted spot market bookings by time

period t are given by n, then we can solve the problem minλ≥0 J̃t(x∗, n,λ) to obtain a new set of

Lagrange multipliers at the current time period and use these Lagrange multipliers in problem

(21) to make the spot market booking control decisions. In this way, since the optimal solution

to the problem minλ≥0 J̃t(x∗, n,λ) depends on the numbers of accepted booking requests n, the

booking control decisions from problem (21) also depend on the numbers of accepted bookings.

An interesting question is how problem (21) changes when we reach the same time period with

different numbers of accepted spot market bookings. The next proposition attempts to give an

answer to this question.

Proposition 4. Fix cargo allotment decisions x, flight j and cargo type k. Let λ∗(x,n) be an

optimal solution to the problem minλ≥0 J̃t(x,n,λ). If there are multiple optimal solutions to this

problem, then choose λ∗(x,n) as the one that yields the largest value for Bs
jk(λ∗j (x,n)). In this case,

we have Bs
jk(λ∗j (x,n+ ejk))≥Bs

jk(λ∗j (x,n)).

This result indicates that if we reach time period t with more accepted spot market bookings

for flight j and cargo type k and we solve the problem minλ≥0 J̃t(x∗, n,λ) to choose a set of

Lagrange multipliers at this time period, then the adjustment Bs
jk(λj) to the revenue Rs

jk in problem

(21) becomes larger. This makes flight and cargo type pair (j, k) less attractive to open for sale.

Therefore, if we reach time period t with larger number of accepted spot market bookings for flight

j and cargo type k, then we are less willing to open this flight and cargo type combination for sale.

A remaining issue of efficient calculation of the optimal set S in equation (21) or its dynamic

variant is addressed in Online Appendix EC.5.
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7. Computational Experiments

In this section, we describe numerical experiments with the model. We lay out the setup of these

experiments and provide practical motivation for the settings in §7.1. The simulated performance

of the proposed allotment/booking control policy is discussed in §7.2. Under the proposed control

policy, the average simulated profit is at least within 13% of the theoretical upper bound in all

experimental configurations and is within 6% of the bound in the best case. We also find that

profit and cost structures exhibit intuitive dependence on experimental parameters. For example,

all indicators suggest that the airline creates a higher capacity buffer for the spot market when

uncertainty in spot market cargo volume is high. Moreover, this buffer reduces the contribution of

penalties to the total costs. In §7.3, we generate additional insight into priorities of the decision

maker by analyzing allotment and spot market policies suggested by the model. Among other

findings, we see how the optimization process handles additional spot market risk by accepting a

larger number of smaller spot market bookings when uncertainty in their volume is high and by

increasing the shipping rates charged on oversized cargo. We conclude this section with a brief

discussion of time performance and scalability to industry-sized instances in §7.4.

7.1. Setup

The experimental setup consists of the following elements: 1) the planning horizon, the flight

schedule and capacities of flights; 2) classification of spot market bookings into cargo types and

their characteristics (volumes, weights, revenues, penalties, and costs); 3) allotment bids and their

characteristics; 4) the arrival process and the consumer choice model on the spot market; and,

finally, 5) options for allotment selection and spot market optimization procedures. In the main

body of the paper, we highlight only the most important elements of this setup, with more technical

details relegated to Online Appendix EC.2.

The planning horizon approximately corresponds to a typical half-a-year allotment contract. We

assume that the flight schedule follows a weekly pattern, and consider jointly 104 flight departures

arranged into 26 schedule cycles with 4 flights each (equally spaced during the cycle). Our earlier
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development in the paper assumed that the capacity of flight j is measured in terms of a single

quantity V̄j, but we also pointed out how to extend our model to the case where the capacity is

measured in terms of multiple units, such as volume and weight. In our computational experiments,

we indeed assume that the capacity of a flight is measured in terms of both volume and weight.

The volume V̄ and weight W̄ capacities of each flight are the same, but we consider 4 different

combinations of capacity settings. The maximum total cargo volume V̄ can be 75m3 or 150m3, and

the maximum structural payload (weight) W̄ can be 10 ton or 20 ton. These values are in the range

of the commonly used air cargo airplanes (for example, Boeing 727-100C aircraft has the maximum

cargo volume of 118m3 and the maximum structural payload from 14.7 to 18.6 ton depending on

its operational mode). To make the scale of capacity dimensions easier to compare, we convert all

volume values into dimensional weight by dividing them with the factor of 6000cm3/kg=6m3/metric

ton (the value commonly used in industry). This results in the volume capacity levels expressed as

12.5 and 25 tons of dimensional weight.

Cargo types and their characteristics. The variety of cargo encountered in practice is quite large,

and each type of cargo can, in general, have its own weight and volume distribution, shipping rate,

as well as cost/penalty characteristics. To represent this variety in our experiments while keeping

the number of different settings under control, we randomly generate 1000 cargo types according

to the rules described in Online Appendix EC.2. The generation procedure is repeated 8 times and

each set of classes is processed under each combination of the controlled experimental settings. The

form of the distribution of cargo weight and volume is the same as in numerical tests of Amaruchkul

et al. (2007b), and reflects an observation of Slager and Kapteijns (2003) that volume measurement

and registration are problematic, so there is significantly more uncertainty in volume. In particular,

since it is easy for shippers to provide accurate weight information at the time of booking, we

assume that the weight for each cargo type is known with certainty. On the other hand, the volume

of each cargo type is uncertain and follows a lognormal distribution. We test two levels of the

coefficient of variation of the volume distribution θs = 0.2 (low uncertainty) and θs = 0.8 (high

uncertainty). The rates of different types are randomly sampled from the interval [1500,3000] (in
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$/ton). Corresponding to industry practice, the actual amount charged to the customer is the rate

times the maximum of the shipment weight and its dimensional weight. The magnitude of shipping

costs and penalties for spot market cargo is proportional to its shipping rate.

Allotment bids and their characteristics. For each set of randomly chosen spot market cargo

types we randomly generate 20 allotment bids. Since we consider a particular origin-destination

pair, such number of bidders is reasonable. The bids generate the same capacity utilization pattern

for every schedule cycle and are equally likely 1) to require one flight or two flights in a cycle

conditional on each other, and 2) to be inflexible (only one flight/pair of flights in a cycle is

acceptable) or inflexible (two different flight/pairs are acceptable). The requested rate and size

of a bid are the same for all flights indicated in the bid. The rates are sampled from the interval

[1000,2000] (in $/ton) and the sizes (the maximum weight) from the normal distribution with mean

5 tons and standard deviation 2 tons. The allotment utilization (volume and weight) distribution

is selected to be the same for all bids so that the weight utilization reflects a practical rule of

“80% utilization 80% of the time” while the volume distribution is lognormal conditional on the

weight. We specifically examine two levels of the coefficient of variation of the allotment volume

distribution: θa = 0.2 (low uncertainty) and θa = 0.4 (high uncertainty). Thus, there are a total of

four combinations in the level of uncertainty in volume: low/high uncertainty for the spot market

combined with low/high uncertainty for the allotments. These four combinations together with

four combinations for flight capacity result in a total of 16 experimental scenarios. Each of these

scenarios is tested on 8 different instances of allotment bids and cargo types.

The remaining elements are the arrival process and the consumer choice model. The time between

consecutive flights is partitioned into 60 periods. There is a 0.5 probability of a spot market request

arrival in each period with each request equally likely to be any of the 1000 cargo types. Arriving

customers consider flights up to 2 cycles in advance (a total of 8 flights corresponding to a two-week

booking horizon common for cargo) as well as a no-purchase option. The choice probabilities for

each cargo type follow a multinomial logit model with randomly selected parameters.
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Finally, among the options for optimization procedures, we highlight the following practical

techniques to reduce dimensions of λ vectors used in upper bound calculations and associated

computational overhead:

• For allotment selection, the bound J̃1(x, 0̄, λ) is optimized under the restriction that

components of λ are the same for the corresponding flights in different schedule cycles. This results

in an 8-dimensional convex minimization problem.

• For spot market booking control, the bound J̃t(x, ·, λ) is reoptimized (as suggested in §6),

resulting in new λ, twice between consecutive flights (that is, every 30 decision periods – eight

times per schedule cycle and 208 times during the entire planning horizon). The components of

λ are allowed to vary individually for flights within the first two schedule cycles around t but are

constrained to be the same for all corresponding flights of the subsequent schedule cycles. This

results in a 24-dimensional convex minimization problem.

The problem minλ≥0 J̃t(x,n,λ), in all cases, is solved by a bundle method for nondifferentiable

convex minimization.

7.2. Performance and structure of profit, cost and penalty

We start this subsection by discussing simulated performance of the allotment selection method

and spot market booking control compared to the theoretical upper bound for the optimal expected

profit. The performance is measured as the average percentage ratio of simulated profit of the

104 flights to the upper bound on the profit value (the average is over different realizations of

allotment bids and cargo types). Table 1 shows the performance for each of the 16 experimental

settings. We observe that the simulated profit is in the range [87.1%,94.8%] of the upper bound,

and there are some intuitive patterns. For example, the relative performance deteriorates as the

level of uncertainty increases in three out of 4 capacity configurations. This is particularly clear

in the case of low volume capacity of 12.5. Uncertainty in spot market cargo volume compounds

with uncertainty in allotment volume. It is interesting to note that the level of volume uncertainty

has the highest impact when volume capacity is low but weight capacity is high. On the other
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θs = 0.2 θs = 0.8
V̄ W̄ θa = 0.2 θa = 0.4 θa = 0.2 θa = 0.4

12.5 10.0 92.5% 90.0% 89.8% 88.9%
12.5 20.0 89.9% 87.2% 89.2% 87.1%
25.0 10.0 93.6% 94.9% 93.5% 93.9%
25.0 20.0 94.8% 93.7% 94.7% 93.4%

Table 1 Performance as the average simulated profit relative to the theoretical upper bound

hand, the level of uncertainty has almost no effect on relative performance in the opposite situation

of high volume and low weight capacity. This is natural because, in the first case, the uncertain

capacity dimension (volume) is the most restrictive whereas, in the second case, the certain capacity

dimension (weight) is the most restrictive. Among all scenarios, the relative performance is the

worst when volume capacity is low but weight capacity is high.

Since the profit structure highlights the priorities of the decision maker, we examine the

percentage of simulated profits obtained from allotments in Table 2. The percentage of profit

from allotments significantly decreases when the level of uncertainty in spot market cargo volume

increases. There can be several explanations for this phenomenon but our subsequent analysis

suggests that the airline is taking fewer allotments and creating a larger capacity buffer for spot

market bookings. Moreover, the airline is taking advantage of the profit potential from the spot

market bookings with a high dimensional weight. (In this example, the revenue rate of the spot

market cargo is higher than that of allotments. Moreover, higher volume uncertainty, on average,

results in a higher dimensional weight, since the latter’s downside variability is restricted by known

cargo weight.) The percentage of profit from allotments increases when the level of uncertainty

in allotment volume increases. A possible explanation is that the airline is then forced to leave

more space for the allotments. This effect is confirmed when we look at the number of accepted

allotments and spot market bookings in the next subsection. Finally, we observe an increase in

the percentage of profit from allotments when weight capacity increases. This is especially clear

in situations when the level of uncertainty in spot market cargo volume is high and the level of

uncertainty in allotment volume is low.

More light can be shed on the role of uncertainty by considering a percentage of penalty costs in
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θs = 0.2 θs = 0.8
V̄ W̄ θa = 0.2 θa = 0.4 θa = 0.2 θa = 0.4

12.5 10.0 83.9% 87.6% 58.3% 67.1%
12.5 20.0 87.9% 91.3% 67.9% 72.8%
25.0 10.0 84.0% 88.1% 58.5% 67.8%
25.0 20.0 84.9% 88.8% 69.5% 73.3%
Table 2 Percentage of profit derived from allotments

θs = 0.2 θs = 0.8
V̄ W̄ θa = 0.2 θa = 0.4 θa = 0.2 θa = 0.4

12.5 10.0 13.0% 19.9% 14.2% 17.3%
12.5 20.0 17.5% 25.3% 15.8% 19.9%
25.0 10.0 11.5% 12.3% 9.6% 11.0%
25.0 20.0 7.3% 9.6% 7.6% 9.3%
Table 3 Percentage of penalties in the total cost

the total cost given in Table 3. Overall, the relative contribution of penalties into total costs is the

lowest when both volume and weight capacity is high, and the highest when weight capacity is high

but volume capacity is low. This points to uncertainty in volume as the main driver of penalties.

Interestingly, an increase in the level of spot market volume uncertainty decreases the relative

contribution of penalties. This agrees with our earlier observation that the airline is likely to leave

more space for spot market bookings by creating a larger capacity buffer when spot market volume

uncertainty is high. On the other hand, a higher level of uncertainty in allotment volume increases

the relative contribution of penalties, especially when volume capacity is tight. This suggests that a

good strategy for reduction of penalties is to decrease the level of uncertainty in allotment volume.

7.3. Decision structure and capacity utilization

In this subsection, we examine the structure of the airline decisions for the allotments and the spot

market. Table 4 shows the average characteristics of accepted allotments for each experimental

setting in terms of volume and weight capacity and the level of uncertainty in spot market cargo

and allotment volume. The percentage of accepted allotment bids is higher when weight capacity

increases. The volume capacity increase has no effect on allotment decisions if weight capacity

remains low but its effects become significant at the high level of weight capacity. Generally, the
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V̄ W̄ θs θa %Accepted %Single-flight %Flexible ∆rate ∆size
12.5 10.0 0.2 0.2 30% 46% 53% 293 0.031
12.5 10.0 0.2 0.4 32% 49% 56% 283 -0.045
12.5 10.0 0.8 0.2 22% 48% 52% 345 -0.070
12.5 10.0 0.8 0.4 25% 48% 55% 324 -0.004
12.5 20.0 0.2 0.2 35% 48% 47% 280 0.243
12.5 20.0 0.2 0.4 39% 47% 49% 271 -0.037
12.5 20.0 0.8 0.2 28% 40% 41% 320 0.229
12.5 20.0 0.8 0.4 32% 43% 46% 308 -0.010
25.0 10.0 0.2 0.2 30% 46% 53% 293 0.031
25.0 10.0 0.2 0.4 32% 49% 56% 283 -0.045
25.0 10.0 0.8 0.2 22% 48% 52% 345 -0.070
25.0 10.0 0.8 0.4 25% 48% 55% 324 -0.004
25.0 20.0 0.2 0.2 55% 47% 52% 226 0.029
25.0 20.0 0.2 0.4 59% 47% 51% 203 -0.035
25.0 20.0 0.8 0.2 48% 45% 48% 262 -0.001
25.0 20.0 0.8 0.4 51% 47% 52% 248 -0.091

Table 4 Average characteristics of accepted allotments for each scenario

percentage of accepted allotments is somewhat higher when the level of uncertainty in allotment

volume is high. This is accompanied by a slightly stronger preference for flexible bids. In contrast, a

higher level of spot market volume uncertainty reduces the fraction of accepted bids. This indicates

that more capacity is allocated to spot market bookings. The last two columns of the table show

the average difference (∆rate) in the rate of accepted allotment bids with the average bid rate (per

ton), and the average difference (∆size) of the size of accepted allotment bids with the average bid

size. When the airline accepts a smaller number of bids, the difference in the accepted rate with the

average rate increases (scenarios with low uncertainty in allotment volume or high uncertainty in

spot market volume). The sizes of accepted allotments remain close to the average except for one

scenario (low volume, high weight capacities, and low levels of uncertainty in volume of allotment

and spot market cargo).

Finally, we examine the preferences of the airline with respect to spot market cargo. Table 5

shows the average characteristics of the accepted spot market cargo for each scenario: The number

accepted in each capacity/uncertainty scenario averaged over 8 data instances, the average volume

and weight of bookings, as well as the linear regression model parameters expressing a relation of

the rate of accepted bookings to their volume and weight. The volume in all cases is expressed as
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Number Average Rate Sensitivity to
V̄ W̄ θs θa Accepted Volume Weight Intercept Volume Weight

12.5 10.0 0.2 0.2 135 0.409 0.296 2550 -524 750
12.5 10.0 0.2 0.4 99 0.447 0.300 2541 -504 807
12.5 10.0 0.8 0.2 334 0.346 0.296 2548 -505 615
12.5 10.0 0.8 0.4 266 0.362 0.298 2573 -495 625
12.5 20.0 0.2 0.2 142 0.306 0.296 2611 138 -133
12.5 20.0 0.2 0.4 105 0.304 0.293 2626 136 -133
12.5 20.0 0.8 0.2 321 0.291 0.296 2572 402 -405
12.5 20.0 0.8 0.4 274 0.293 0.301 2608 416 -417
25.0 10.0 0.2 0.2 137 0.408 0.297 2551 -522 738
25.0 10.0 0.2 0.4 100 0.450 0.301 2537 -520 819
25.0 10.0 0.8 0.2 329 0.348 0.298 2552 -482 580
25.0 10.0 0.8 0.4 267 0.362 0.298 2570 -523 665
25.0 20.0 0.2 0.2 284 0.353 0.297 2495 -446 565
25.0 20.0 0.2 0.4 215 0.372 0.294 2517 -459 623
25.0 20.0 0.8 0.2 488 0.330 0.297 2403 -297 358
25.0 20.0 0.8 0.4 437 0.333 0.297 2436 -407 476

Table 5 Average characteristics of accepted spot market cargo for each scenario

dimensional weight and the unit of measurement is one ton. The table shows that the number of

accepted bookings increases when the level of uncertainty in spot market cargo volume increases

or when the level of uncertainty in allotment volume decreases. Simultaneously with this increase

in number, the average volume of bookings goes down. This suggests that the proposed booking

control approach implements an implicit risk pooling by taking a larger number of, on average,

smaller volume bookings. The average weight (a deterministic capacity dimension) remains almost

the same throughout all scenarios. The regression model parameters describing the rate of accepted

bookings as a linear function of their volume and weight are interesting. The rate intercepts

are the highest when volume capacity is low but weight capacity is high (a scenario difficult for

optimization), but they are the lowest when both kinds of capacity are plentiful. According to

the rate sensitivity parameters, in most settings, the proportional increase in the volume and

weight of a package increases its shipping rate. This indicates that the airline prefers to charge

more for oversized cargo since it entails more uncertainty. The exception is the case of low volume

capacity combined with high weight capacity. In this case, the airline prefers to reduce the volume

of accepted bookings.
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7.4. Time performance and scalability to industry-sized instances

The time performance of the proposed solution method in these experiments indicates that it

is scalable to industry-sized instances. All simulations in the experiments are implemented in

C++ on an open-source system (Linux), and both the initial allotment selection problem and the

terminal off-loading problems are solved with a general open-source mixed-integer programming

solver CBC of the COIN-OR project. The bundle method used for solving minλ J̃t(x,n,λ) utilizes a

linear/quadratic programming solver CLP of COIN-OR. The jobs are executed on a SHARCNET

serial throughput cluster, and a typical simulation run takes, on average, about 7.5 hours with

allotment optimization taking approximately 3 minutes. We point out that a relatively long 7.5 hour

total execution time represents simulation of a process that takes 26 weeks to complete in reality.

The main source of complexity is the reoptimization of λ and, within it, the repeated calculation

of J̃t(x, ·, λ). However, because of the special structure of J̃t(x, ·, λ), this task can be efficiently

parallelized with existing technology. In practice, because of the short booking horizon for cargo,

and a limited number of flights for a particular origin-destination pair, the dimensions of λ would

not exceed an order of 100 (if its components are restricted as suggested in our experiments).

With a high-quality quadratic programming solver, the bundle method for optimizing J̃t(x, ·, λ)

is quite efficient for problems of this dimension. (In our experiments, a typical reoptimization

of λ takes approximately 10-30 seconds at the allotment selection stage, and 1-3 minutes at the

booking control stage.) The remaining concern is a solution of the allotment selection problem.

However, this problem needs to be solved only twice a year, and the proposed algorithm for the

allotment selection problem employs an integer programming problem similar to the ones arising

in combinatorial auctions. There exist efficient parallel methods for mixed-integer programming

problems, as well as considerable practical experience in computing the outcomes of combinatorial

auctions of a very large size. Therefore, scalability challenges posed by the proposed solution

method are purely technical in nature and can be resolved in practice.
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8. Conclusions

In this article, we propose a method to coordinate allotment and spot market cargo capacity

allocations for collections of parallel flights. Allotment contracts are chosen from multiple bids

specifying the combinations of flights. The form of the contract and associated capacity utilization

patterns considered in the model are general. Moreover, the combinations included in bids can be

related to each other by means of a general OR* bidding language developed in the combinatorial

auctions literature.

The coordination method employs a direct estimate of the expected profit from the spot market,

which is a challenging task in the case of cargo capacity management. This estimate is useful even

in the absence of the accurate margin data for the allotments. The proposed numerical procedure

is efficient, performs well in the numerical experiments, and results in allotment assignments that

have intuitive properties. Moreover, the approach also suggests a bid-price based booking policy

which compares well against the theoretical upper bound in numerical experiments. Among other

findings, numerical experiments indicate that the proposed model accepts more of a lower size spot

market cargo bookings when the level of uncertainty in the spot market cargo volume increases. In

effect, this indicates that risk pooling among capacity requirements of different cargo is captured

by the proposed capacity allocation method.

In future work, it would be interesting to consider the problem of allotment and spot market

coordination across a network of flights. Moreover, the proposed general method facilitates a

comparative study of specific forms of allotment contracts in detailed operational settings.
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Online Appendix

EC.1. Proofs

Proof of Proposition 1

We show the result by using induction over the time periods. We begin by showing the result for

time period τ + 1. Rearranging the objective function of problem (9)-(10), we observe that this

problem is equivalent to maximizing
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ij)−

∑
j∈J

∑
k∈K

njk∑
l=1

min(Cs
jkl +λj V

s
jkl, Ĉ

s
jkl)+

∑
j∈J

λj V̄j.

Taking expectations in the expression above, noting the definitions of Ba
ij(λj) and Bs

jk(λj) and the

fact that E{min(Cs
jkl +λj V

s
jkl, Ĉ

s
jkl)}= E{min(Cs

jk +λj V
s

jk, Ĉ
s
jk)}=Bs

jk(λj), we obtain

E{Γ̃(x,n,λ,U)}=−
∑
i∈I

∑
j∈Ji

xiB
a
ij(λj)−

∑
j∈J

∑
k∈K

njkB
s
jk(λj)+

∑
j∈J

λj V̄j

and the result holds for time period τ +1.

Assuming that the result holds for time period t + 1, noting that J̃t+1(x,n + ejk, λ) −

J̃t+1(x,n,λ) =−Bs
jk(λj) and plugging this expression in (11), we obtain

J̃t(x,n,λ) = max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt(S)
[
E{Rs

jk}−Bs
jk(λj)]

}
+

∑
j∈J

λj V̄j −
∑
i∈I

∑
j∈Ji

xiB
a
ij(λj)−

∑
j∈J

∑
k∈K

Bs
jk(λj)njk

+
τ∑

t′=t+1

max
S⊆J×K

{ ∑
(j,k)∈S

Pjkt′(S)
[
E{Rs

jk}−Bs
jk(λj)

]}
and the result holds at time period t. This concludes the proof.
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Proof of Proposition 2

The proof is immediate by the relaxation argument since Γ̃(x,n,λ,U) is an upper bound for

Γ(x,n,U) as long as λ≥ 0. The optimality equations in (11) is identical to the one in (5), except that

its boundary condition is an upper bound on the boundary condition of the optimality equation

in (5). Therefore, the value functions computed through the optimality equation in (11) are upper

bounds on those computed through the optimality equation in (5).

Proof of Proposition 3

Suppose the algorithm terminated. Consider (xS, yS) and λS+1 at termination. Since λS+1 is within

ε
3

of the optimum, that is

J̃1(xS, 0̄, λS+1)≤min
λ≥0

J̃1(xS, 0̄, λ)+
ε

3
,

and J̃1(xS, 0̄, λS+1)≥ yS − ε
3

by the termination criterion, it follows that

yS − 2ε
3
≤min

λ≥0
J̃1(xS, 0̄, λ),

which can be written as∑
i∈I

∑
j∈Ji

xS
i B

a
ij(λ)+ yS − 2ε

3
≤

∑
j∈J

λj V̄j +
τ∑

t=1

Φt(λ) for all λ≥ 0.

That is, (xS, yS − 2ε/3) is feasible for problem (P). Since the optimal objective value of problem

(R-{λ1, . . . , λS}) is within ε/3 of the objective value provided by the solution (xS, yS), the optimal

objective value of problem (R-{λ1, . . . , λS}) is within ε of the objective value provided by the

solution (xS, yS −2ε/3). Since problem (R-{λ1, . . . , λS}) is a relaxation of problem (P), this implies

that (xS, yS − 2ε/3) has a value within ε of the optimal solution to problem (P).

To prove finite termination, suppose on the contrary that the algorithm does not terminate

in a finite number of steps. We observe that yS = mins=1,...,S J̃1(xS, 0̄, λs) at any iteration of the

algorithm. Moreover, since there is only a finite number of feasible values for the binary x-variables,

at least one of them must be visited more than once. That is xS = xs′
for some s′ < S. Since the

algorithm does not terminate at step S, it must be that

yS > J̃1(xS, 0̄, λS+1)+
ε

3
≥min

λ≥0
J̃1(xS, 0̄, λ)+

ε

3
.
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On the other hand, since λs′
is ε/3-optimal at xs′

= xS, the fact that yS = mins=1,...,S J̃1(xS, 0̄, λs)

implies

yS ≤ J̃1(xs′
, 0̄, λs′

)≤min
λ≥0

J̃1(xs′
, 0̄, λ)+

ε

3
,

which is a contradiction.

Proof of Proposition 4

We begin by defining the partial ordering �jk to write λ+ �jk λ
− when Bs

jk(λ+) ≥ Bs
jk(λ−). To

prove the proposition, we equivalently show that λ∗(x,n+ejk)�jk λ
∗(x,n). For notational brevity,

we let λ+ = λ∗(x,n+ ejk) and λ0 = λ∗(x,n). We choose λ− such that λ0 �jk λ
−. By (12), we have

J̃t(x,n,λ0)− J̃t(x,n+ ejk, λ
0) =Bs

jk(λ
0)

≥Bs
jk(λ

−) = J̃t(x,n,λ−)− J̃t(x,n+ ejk, λ
−),

where the inequality follows from the fact that λ0 �jk λ
−. Arranging the terms, the expression

above can be written as

J̃t(x,n+ ejk, λ
0)≤ J̃t(x,n+ ejk, λ

−)+ J̃t(x,n,λ0)− J̃t(x,n,λ−). (EC.1)

Since λ0 is an optimal solution to problem minλ≥0 J̃t(x,n,λ), we have J̃t(n,x,λ0)≤ J̃t(n,x,λ−). In

this case, by (EC.1), we have

J̃t(x,n+ ejk, λ
0)≤ J̃t(x,n+ ejk, λ

−) (EC.2)

for all λ− such that λ0 �jk λ
−. This result immediately implies that λ+ �jk λ

0. In particular, if,

on the contrary, λ+ 6�jk λ
0, then we have Bs

jk(λ0
j)>Bs

jk(λ
+
j ). This implies that λ0 �jk λ

+, in which

case, we can use (EC.2) with λ− = λ+ to obtain J̃t(x,n+ejk, λ
0)≤ J̃t(x,n+ejk, λ

+). This inequality

and the fact that Bs
jk(λ0

j) > Bs
jk(λ

+
j ) contradict the fact that (λ+) is an optimal solution to the

problem minλ≥0 J̃t(x,n+ ejk, λ) that is largest according to the partial ordering �jk.
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EC.2. Elements of Experimental Setup

In this section, we describe further elements of experimental setup, including the distributions used

in the random sampling of data, the volume and weight distributions of allotments and spot market

cargo, as well as the details of the revenue, cost, and penalty models for the cargo.

We start by describing the spot market cargo types and the model for their volumes, weights,

revenues, costs and penalties. As already mentioned, the weight of each cargo type is assumed to be

constant in the experiments. The value of constant weight V s
2k of each type k is randomly sampled

from the exponential distribution with the mean of 0.25 truncated to the interval [0.05,3.5] (all

values in tons). The reference density δk is sampled from the normal distribution with the mean

0.167 and the standard deviation 0.04 truncated to the interval [0.03,0.4] (all values in ton/m3).

The volume V s
1k of cargo type k is then a lognormal random variable with the mean V s

2k/δk and the

coefficient of variation θs (common for all types and varied in a controlled fashion). The revenue

of type k cargo (payment by a customer to the airline) is computed as Rk = ρk max{V s
2k, V

s
1k/γ},

where γ = 6 m3/ton is an industry-standard constant and ρk is the shipping rate randomly sampled

from the interval [1500,3000] (in $/ton). The regular shipping cost and penalty of type k are

proportional to the shipping rate and are computed in the experiments as Cs
k = ρk(0.04V s

1k +0.4V s
2k)

and Ĉs
k = ρk(0.15V s

1k +1.5V s
2k) (a lower scale in volume is selected primarily to adjust for the units

of measurement).

The demand for each cargo type on the spot market is subject to consumer choice among the

flights departing within the next two weeks. There are a total of 8 flights within this time span. The

choice between flights is described by a multinomial logit model (EC.3) in which the preference

weights vjkt depend on the time of the flight j within a week as well as on the number of weeks

before the week of flight departure (this number can be 0, 1 or 2). The required 3×4 = 12 preference

weights are generated as 0.9e0.1Z where Z is a standard normal random variable. The no-purchase

option has a constant preference weight v0kt = 0.1.

Finally, we sample the maximum allotted weight Wi of each bid i from the normal distribution

with mean 5 and standard deviation 2 tons (the same for all flights included in the bid). Utilization
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of capacity by allotments is described by a hierarchical model. The utilized fraction Fij of the

allotted weight of bid i on flight j is distributed as normal with mean 0.9 and standard deviation

1/9.7 truncated to the interval [0,1] (the parameters are selected so that utilized weight follows a

practical rule of thumb – at least 80% weight utilization at least 80% of the time). Conditionally

on utilized weight V a
2ij = FijWi, utilized volume V a

1ij is distributed as a lognormal random variable

with the mean V a
2ij/γ and the coefficient of variation θa (controlled in the experiments). Allotment

i revenues from flight j are Rij = ρi max{V a
2ij, V

a
1ij/γ}. The cost and penalty models are similar to

those of spot market cargo (although the costs are potentially lower and penalties are potentially

higher, both unrelated to the rates). In particular, we let Ca
ij = 25V a

1ij +250V a
2ij and Ĉa

ij = 150V a
1ij +

1500V a
2ij.

EC.3. Uncertainty Structure, Its Implications for Independence Between
Flights and Possible Generalizations

In this section, we provide a detailed discussions of the uncertainty structure in our model, and,

in particular, its independence assumptions. There are three source of uncertainty in the model:

(1) capacity utilizations, payments and costs associated with allotments, (2) capacity utilizations,

payments and costs associated with accepted spot market bookings, and (3) spot market demand

resulting from consumer choice behavior. In each case, we choose to keep specifications of

distributions general as long as the same modelling and analytic approach can be used. Moreover,

the general form of distributions, particularly for payment and cost structures, has the advantage

of capturing the industry practices which vary across different cargo carriers. The essence of

independence assumptions can be summarized by two aspects: independence of distributional

specifications and statistical independence.

By independence of specifications, we mean that distributions depend only on the indices of the

object they describe: allotment quotes indexed by atomic bid/flight combinations, spot market

cargo bookings by flight and cargo type, and spot market choice probabilities by flight, type and

time. This excludes any dependence of input distributions on the allotment decisions, the current

number of spot market bookings or cargo loading decisions.
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The statistical independence is used in its usual sense: allotment capacity utilizations/revenues

for each atomic bid/flight combination, spot market cargo capacity utilizations/revenues for each

flight/cargo type combination, and spot market demand realizations for each decision period are

mutually independent. The immediate implication of statistical independence is that probability

measure describing future behavior of the system does not depend on any past realizations

of uncertain quantities. Moreover, since all bookings which cannot be accommodated on their

scheduled flight are outsourced, this probability measure also does not depend on loading decisions

made at departure times of the flights.

The most important implication of independence assumption is that the state of the system

can be completely described by the allotment decisions and the current numbers of spot

market bookings by flight/type. Since the state is not affected by loading decisions, and the

objectives/feasible sets of cargo loading problems for each flight are independent, it is irrelevant

when the departures occur. This explains why it is appropriate to assume that all departures

occur at the end and all loading decisions are made at the same time. In practice, the loading

problems for each flight are solved on on-going basis but without affecting the system state. This

does not affect the allotment selection problem since all of the flights occur in the future. For the

spot market booking control, the state components which apply to departed flights are irrelevant

and can be ignored in the dynamic programming formulation. In the practical approximation of

booking control (described in §6 and §EC.5), we can ignore the flights which have already departed.

Since the ability to treat flight departures in independent fashion is clearly very attractive from

an analytic point of view and important in our approach, it is also interesting how independence

assumptions can be relaxed without affecting the independence of the flights. One concern is

that allotment utilization/revenues and spot market demand usually depend on macroeconomic

environment characterized by such factors as interest rates, consumer confidence, and others. It

is possible to extend our approach by introducing an uncertain but observable discrete states of

the environment with Markovian dynamics. (The notion of a “fluctuating demand environment”

of this form is discussed, for example, by Song and Zipkin (1993).) All steps in the analysis and
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computational approach go through with minimal changes. Another concern is a likely dependence

of spot market demand on allotment decisions. In terms of our model, this means dependence

of the booking probabilities Pjkt(·) on allotment decisions. While handling general dependence is

difficult, we can extend our approach to the case where the dependence of Pjkt(·) on xi’s is linear.

This is reasonable, for example, if each accepted spot market booking is estimated to cause a given

reduction in booking probabilities:

Pjkt(x,S) = P 0
jkt(S)−

∑
i∈I

xi π
i
jkt(S),

where P 0
jkt(S) is a booking probability when no bids are granted, and πi

jkt(S) is a reduction in the

booking probability if atomic bid i∈ I is granted. With the booking probabilities of this form, our

approach is still applicable, because the Lagrangian bound remains convex in λ for fixed x and

linear in x for fixed λ.

EC.4. Perfect Hindsight Upper Bound for the Case of Related Departures

In this section, we relax the assumption of independent loading decisions for different flights and

allow the possibility to rebook a shipment, at a cost, for a later flight. The cost model for the

shipments is generalized as follows. Let the shipping cost of a type k package originally booked for

flight j but shipped on flight j′ be described by a random variable C̃s
jj′k. If it is not possible to shift

cargo from flight j to j′, then we can assume that C̃s
jj′k takes a prohibitively large value. Similarly,

let the shipping cost of allotment i allocated to flight j but shipped on flight j′ be C̃a
ijj′ . Finally, let

flight φ be a dummy flight such that shipping on this flight represents outsourcing and outsourcing

costs are represented by C̃s
jφk and C̃a

ijφ. The main difficulty in the exact handling of the loading

decisions in this case is that if there are booking requests in between an earlier and a later flight,

then the load on the later flight is not known at the time of departure of the early flight. Thus,

loading problems of the earlier flight are subject to significant additional uncertainty. However,

one can construct an upper bound to the combined loading problem of all flights by finding the

loading decisions in hindsight, that is, under the assumption that all loading decisions are made
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simultaneously and with perfect knowledge of the number of shippings and their characteristics for

all flights. Thus, the combined loading problem becomes

max −
∑
j∈J

∑
k∈K

njk∑
l=1

∑
j′∈J∪{φ}

C̃s
jj′kl z

s
jj′kl −

∑
i∈I

∑
j∈Ji

∑
j′∈J∪{φ}

xi C̃
a
ijj′ za

ijj′

subject to
∑
j∈J

∑
k∈K

njk∑
l=1

V s
jkl z

s
jj′kl +

∑
i∈I

∑
j∈Ji

xi V
a

ij z
a
ijj′ ≤ V̄j′ for all j′ ∈J∑

j′∈J∪{φ}

zs
jj′kl = 1 for all l= 1, . . . , njk, k ∈K, j ∈J ,∑

j′∈J∪{φ}

za
ijj′ = 1 for all i∈ I, j ∈Ji,

zs
jj′kl ∈ {0,1} for all l= 1, . . . , njk, k ∈K, j ∈J , j′ ∈J ∪{φ}

0≤ za
ijj′ ≤ 1 for all i∈ I, j ∈Ji, j

′ ∈J ∪{φ}.

In the problem above, the decision variable zs
jj′kl takes value one if the l-th booked spot market

request for cargo type k on flight j is served through flight j′. Similarly, za
ijj′ corresponds to the

portion of the cargo generated by atomic bid i on flight j that is served through flight j′. Using

the problem in the boundary condition of the optimality equation in (5), all of our development

goes through without any modifications to the methodology. In the resulting expressions (such as

equations (12) and (13) of Proposition 1), the functions Ba
ij(λj) and Bs

jk(λj) are replaced by

B̃a
ij(λ) = E

[
min

j∈J∪{φ}
(C̃a

ijj′ +λjV
a

ij)
]
, and

B̃s
jk(λ) = E

[
min

j∈J∪{φ}
(C̃s

jj′kl +λjV
s

jkl)
]
,

respectively (with a convention that λφ ≡ 0).

EC.5. Consumer choice model for efficient implementation

Whether we compute the Lagrange multipliers once at the beginning of the planning horizon

by solving the problem minλ≥0 J̃1(x∗, 0̄, λ) or recompute them at every time period by solving

the problem minλ≥0 J̃t(x∗, n,λ), the spot market booking control decisions require solving the

optimization problem in (21). This is a challenging combinatorial optimization problem as it

involves choosing a subset of J ×K and there are potentially 2|J |×|K| such subsets. Enumerating
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over all possible subsets is clearly not an option. However, it turns out that there is an important

class of consumer choice models that make the optimization problem in (21) tractable. In this

section, we briefly review this class of consumer choice models.

We recall that Pjkt(S) is the probability that there is a spot market booking for flight j and

cargo type k at time period t given that the set of open flight and cargo type combinations at

time period t is S. To construct a tractable model for Pjkt(S), we assume that a customer that is

interested in making a spot market booking for cargo type k arrives into the system at time period

t with probability πkt. We naturally have
∑

k∈K πkt ≤ 1 and the difference between the two sides

of the inequality gives the probability that there is no customer arrival at time period t. Once a

customer that is interested in cargo type k arrives into the system, this customer makes a choice

among the flights according to the multinomial logit choice model. The multinomial logit choice

model stipulates that if a customer that arrives into the system is interested in cargo type k,

then this customer associates the preference weights {vjkt : j ∈J } with the different flights. These

preference weights characterize the attractiveness of different flights to the customer. The customer

also associates the preference weight v0kt with the no booking option. In this case, if the set of open

flight and cargo type combinations at time period t is given by S, then the customer chooses flight

j with probability vjkt/[
∑

j′:(j′,k)∈S vj′kt + v0kt], which is the preference weight of flight j relative

to the preference weights of all available options. Therefore, the probability that there is a spot

market booking for flight j and cargo type k at time period t is given by

Pjkt(S) = πkt

vjkt∑
j′:(j′,k)∈S vj′kt + v0kt

. (EC.3)

Multinomial logit choice model is a widely used tool in marketing and economics [see Anderson

et al. (1992)] as well as, more recently, in revenue management [see Talluri and van Ryzin (2004)

and van Ryzin and Liu (2008)].

Plugging the expression above for Pjkt(S) into the optimization problem in (21) and dropping

the term J̃t+1(x∗, n,λ∗∗) that does not affect the spot market booking control decisions, we need

to solve the problem
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max
S⊆J×K

{ ∑
(j,k)∈S

πkt vjkt

[
E{Rs

jk}−Bs
jk(λ∗∗j )

]∑
j′:(j′,k)∈S vj′kt + v0kt

}
= max

S⊆J×K

{∑
k∈K

[∑
j:(j,k)∈S πkt vjkt

[
E{Rs

jk}−Bs
jk(λ∗∗j )

]∑
j′:(j′,k)∈S vj′kt + v0kt

]}

to make the booking control decisions at time period t. In the expression above, the equality follows

from the fact that a sum over all (j, k) ∈ S can be written as one sum over all k ∈K and another

sum over all j ∈ J satisfying (j, k) ∈ S. The expression in the square brackets corresponds to the

contribution from cargo type k and the contributions from different cargo types do not interact

with each other. This implies that we can solve the problem on the right side above by maximizing

the contribution from each cargo type individually. In particular, if we let Jk be the set of flights

that are open for spot market bookings for cargo type k, then the optimal objective value of the

problem on the right side above is given by
∑

k∈Kψkt(λ∗∗), where we have

ψkt(λ∗∗) = max
Jk⊆J

{∑
j∈Jk

πkt vjkt

[
E{Rs

jk}−Bs
jk(λ∗∗j )

]∑
j′∈Jk

vj′kt + v0kt

}
. (EC.4)

Problem (EC.4) is slightly more tractable than problem (21) as this problem involves the subsets

of J , which number on the order of 2|J |, whereas problem (21) involves the subsets of J × K,

which number on the order of 2|J |×|K|. However, for practical applications, J may still have too

many subsets to enumerate explicitly.

It turns out that problem (EC.4) has a very special structure that makes it solvable in a tractable

fashion. To illustrate this property, we assume without loss of generality that the set of flights is

indexed by J = {1, . . . , |J |} and the flights are ordered such that

E{Rs
1k}−Bs

1k(λ
∗∗
1 )≥E{Rs

2k}−Bs
2k(λ

∗∗
2 )≥ . . .≥E{Rs

|J |,k}−Bs
|J |,k(λ

∗∗
|J |).

In this case, Talluri and van Ryzin (2004) show that there is an optimal solution to problem (EC.4)

of the form {1,2, . . . , j} ⊆ J for some j ∈ J . Therefore, the possible candidates for an optimal

solution to problem (EC.4) are ∅,{1},{1,2}, . . . ,{1,2, . . . , |J |}. Since there are only |J |+1 possible

candidates for an optimal solution to (EC.4), we can check the objective function value provided by

each one of these candidates and choose the best one. This result eliminates the need to enumerate

over all subsets of J to solve problem (EC.4).


