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Example (data from Hastie and James, this
analysis in RWC)

spinal bone mineral density

1.4

1.2

1.0

0.8

0.6

10 15 20 25
age (years)

Possible Model

SBMD, ; is spinal bone mineral density on ith subject at
age equal to age, ;.

Slide 3 SBMD; ; = U; + m(age, ;) + €,

1=1,....m=230, j=14,...,n,

U; is the random intercept for subject i.

{U;} are assumed i.i.d. N(0,07).

Underlying philosophy
1. minimalist statistics
Slide 4 e keep it as simple as possible
2. build on classical parametric statistics

3. modular methodology



Reference

Semiparametric Regression by Ruppert, Wand, and
lide 5 Carpoll (2003)

e Lots of examples from biostatistics.

Recent Example — April 17, 2003
Canfield et al. (2003) — Intellectual impairment
and blood lead.

e longitudinal (mixed model)
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e nine covariates (modelled linearly)

e effect of lead modelled as a spline (semiparametric
model)

— disturbing conclusion
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Thanks to Rich Canfield for data and estimates.

Semiparametric regression

Partial linear or partial spline model:

Y = W, By +m(X;) + e

m(z) = X] By + BT (x)b.

B'(z) = (Bi(z) -+ Bxl(x)).

XI=(X; --- XP)

K3 3

BT(x) ={(z—r)} - (z—rx)}}

35



Fitting LIDAR data with plus functions

Example '
lide 9 m(z) = Bo+ Bz +bi(z — K1)y + -+ + b (T — ki) Slide 11 g
e slope jumps by by at kg |
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0l E e pth derivative jumps by p! b, at ki
0.61 E e first p — 1 derivatives are continuous
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Quadratic “plus” function

4r = plus fn.
= = derivative
3.51 = = 2nd derivative
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Penalized least-squares

Minimize
ST{Y — (W] By + X[ By +BT(X))b)}’ + AbTDb.
=1

E.g.,
D=L

Penalized Least Squares
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Ridge Regression

From previous slide:

S Y — (W] By + X[ Bx +BT(X)b)}* + Ab"Db.
=1

ide 17 Let & have row (W] XT BT(X;)). Then
By |
Bx | = {XTX + A blockdiag(0,0,D)}* Ty
b

e Also, a BLUP in a mixed model and an empirical
Bayes estimator.

Linear Mixed Models
Y=XB8+Zb+e¢
where b is N(0,02%).

X3 are the “fixed effects” and Zb are the “random

ide 18 effects.

Henderson’s equations.
B (XX X'z /XY
b) \Z'X ZTZ+)x;" 7Y )

A:

09[\3 | ""ql\')

From previous slides:

Let X have row (W] X! BT(X;)). Then

Bw
By | = {XTX + A blockdiag(0,0,D)} " ATY.
b
Slide 19 Linear mixed model:
B (XX X'z \'/XY
b) \ZX Z'Z+)\%;! 7Y
-1
— {(X Z) (X Z) +)\blockdiag(0,2b_1)} (X 2)Y
Selecting A\
1. cross-validation (CV)
Slide 20

2. generalized cross-validation (GCV)
3. ML or REML in mixed model framework
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Selecting the Number of Knots

(a) SpaHet, j = 3, typical data set
15

(b) MASE comparisons
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Return to spinal bone mineral density study

1.0 12 14

spinal bone mineral density
08
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age (years)

SBMD; ; = U; + m(age,; ;) + €i;,

i=1,...,m=230, j=41,...,n
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1 age;

1 agey,,
X =

1 age,,;

1 age,,,..

(age;; — K1)+
(agelnl - "il)Jr
(age,,; — K1)+

(agemnm - Hl)'ﬁ‘

(age; — KK)+
(agelnl - K:K>+
(age,,; — KK )+

(agemnm - HK)-F
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Broken down by ethnicity Only requires an expansion of the fixed effects by adding

10 15 20 25 the columns

— e
e N e black, hispanic, white
o

Loz f
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ol ‘ Slide 31 black; hispanic, white;

o s e 4 . black hispanic white
PR 7 g f o
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Model with ethnicity effects

SBMD;;, = U, + m(ageij) + (iblack; + ohispanic;
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0.05

+ﬁ3Whitei -+ €ij; 1< j < n,, 1< <m.

contrast with Asian subjects

Asian is the reference group.

0.0

Black Hispanic White
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In this model, the age effects curve for the four ethnic
groups are parallel.

Could we model them as non-parallel?

e Might be problematic in this example because of the
small values of the n;.

But the methodology should be useful in other
contexts.

e Add interactions between age and black, hispanic,
and white.

— These are fixed effects.

e Then add interactions between black, hispanic,
white, and asian and the linear plus functions in
age.

— These are mean-zero random effects with their own
variance component

— This variance component control the amount of
shrinkage of the enthicity-specific curves to the
overall effect.

Penalized Splines and Additive Models
Additive model:
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YL' = ml(XLi) 4+ ...+ mp(XRz’) + €;
Bivariate additive spline model
Yi = Bo+ 8o Xi+ bp1(Xi—kzp)++- -+ by k (Xi— Kok, )+
+B.1Zi + b1 (Zi — Kon)s + -+ bk (Zi — Kok, )+ T 6
Slide 36

e no need for backfitting
e computation very rapid
e no identifiability issues

e inference is simple



Bayesian methods

The linear mixed model is half-Bayesian.
e The random effects have a prior.

ide 37 e The parameters without a prior are:
— fixed effects
x give them diffuse normal priors
— variance components

x give them diffuse inverse gamma priors

Bayesian methods

Can be easily implemented in WinBUGS or programmed

in, say, MATLAB.

ide 38 . .
Allows Bayes rather than empirical Bayes inference.

e Uncertainty due to smoothing parameter selection is
taken into account.
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The Bias-Variance Trade-off and Confidence Bands
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How does one adjust confidence intervals for bias?

e undersmooth — so variance dominates and bias can

be safetly ignored.
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Adjustment for bias continued

e estimate bias by a higher order method and subtract

off bias (essentially the same as above)
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e Wahba/Nychka Bayesian intervals

— bias is random so adds to posterior variance

— interval is widened but there is no “offset”.

Wahba/Nychka Bayesian Intervals

u o2 0
y=XB+Zu+e, Cov = o7 |
0
Slide 43 © >
C=(X Z)
B and u are BLUPs.
Cov ([ f ] ‘u) — 02(C"C+%D)"'CTC(CTC+ZD) !
u u u
Slide 44 (Frequentist variance. Ignores bias)

u—u u

Cov ([N h D — g%(CTC+ % D).

(Bayesian posterior variance. Takes bias into account.)
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X plus error

W = X + error and Var(X) = Var(error).

Correction for measurement error

Relatively little research in this area.

Fan and Truong (1993): deconvolution kernels
— first work

— inefficient in finite-sample studies

— no inference

— strictly for 1-dimensional smoothing

Carroll, Maca, Ruppert

— functional SIMEX methods and structural spline
methods

— more efficient than Fan and Truong

Berry, Carroll, and Ruppert (JASA, 2002)

— fully Bayesian

— smoothing or penalized splines

— rather efficient in finite-sample studies

— inference available

— scales up — semiparametric inference is easy

— structural
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Berry, Carroll, and Ruppert

starts with mixed-model spline formulation

— but fully Bayesian

conjugate priors

true covariates are i.i.d. normal
— but surprisingly robust
normal measurement error

in Gibbs, only sampling of true (unknown) covariates

requires a Hastings-Metropolis step

Effect of measurement error

0.6

0.4r

> 0r

X plus error

W = X + error and Var(X) = Var(error).
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Correction for measurement error
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Solid: true. Dotted: uncorrected. Dashed: corrected.

Measurement Error, continued

Ganguli, Staudenmayer, Wand:
e EM maximum likelihood estimation in BCR model.
e Works about as well as the fully Bayesian approach.

e Extension to additive models.



Generalized Regression

e Extension to non-Gaussian responses is conceptually

easy.

ide 53 ¢ Qet a GLLM.

— However, GLIM’s are not trivial. Can use:
x Monte Carlo EM
x Or MCMC

Single-Index Models
Y= 9(X70) +Z] B + e

Yu and Ruppert (2002, JASA).

Let

‘|‘Cl($ — /ﬁll)ﬁ + -+ CK([L' — KK)ﬁ

Becomes a nonlinear regression model

Y; = m(Xu Zia 05:87 v C) + €.



