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SUMMARY. We examine differences between independent component analyses (ICAs) arising from different assumptions,
measures of dependence, and starting points of the algorithms. ICA is a popular method with diverse applications including
artifact removal in electrophysiology data, feature extraction in microarray data, and identifying brain networks in functional
magnetic resonance imaging (fMRI). ICA can be viewed as a generalization of principal component analysis (PCA) that
takes into account higher-order cross-correlations. Whereas the PCA solution is unique, there are many ICA methods—whose
solutions may differ. Infomax, FastICA, and JADE are commonly applied to fMRI studies, with FastICA being arguably the
most popular. Hastie and Tibshirani (2003) demonstrated that ProDenICA outperformed FastICA in simulations with two
components. We introduce the application of ProDenICA to simulations with more components and to fMRI data. ProDenICA
was more accurate in simulations, and we identified differences between biologically meaningful ICs from ProDenlCA versus
other methods in the fMRI analysis. ICA methods require nonconvex optimization, yet current practices do not recognize
the importance of, nor adequately address sensitivity to, initial values. We found that local optima led to dramatically
different estimates in both simulations and group ICA of fMRI, and we provide evidence that the global optimum from
ProDenICA is the best estimate. We applied a modification of the Hungarian (Kuhn-Munkres) algorithm to match ICs from
multiple estimates, thereby gaining novel insights into how brain networks vary in their sensitivity to initial values and ICA

method.
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1. Introduction
In independent component analysis (ICA), multivariate ob-
servations are linearly transformed to minimize dependencies
between variables resulting in so-called independent compo-
nents (ICs). The goal of ICA is to identify both the mixing
matrix and the ICs, and the problem is not identifiable if more
than one component has a Gaussian distribution (Comon,
1994). ICA has diverse applications including artifact removal
in electrophysiology (Iriarte et al., 2003), extracting gene ex-
pression features in microarray data (Kong et al., 2008), facial
recognition (Bartlett, Movellan, and Sejnowski, 2002), and
separating mixed audio signals (Bell and Sejnowski, 1995). In
addition, it has been used in thousands of studies to identify
brain networks from functional magnetic resonance imaging
(fMRI) (Beckmann, 2012). In fMRI studies, the blood oxy-
gen level dependent (BOLD) signal is an aggregate measure
of neural activity across many brain networks that is mea-
sured across time. In spatial ICA, the BOLD signal is decom-
posed into a mixing matrix containing the temporal loadings
of ICs and into ICs representing spatial networks. The spatial
networks may capture distinct functionalities (e.g., somato-
motor, auditory, or visual network), physiological processes
(e.g., breathing, heart-beating), and/or artifacts (e.g., head
movement) (Damoiseaux et al., 2006).

Networks and their loadings estimated via an ICA con-
tribute to our understanding of the human brain. Recently,
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there has been a collaborative effort to make a large amount of
resting-state IMRI (rs-fMRI) publicly available (Biswal et al.,
2010). The BOLD signals in rs-fMRI are measured in subjects
who are assigned no particular task, which contrasts with ex-
perimental (i.e., task-based) fMRI. Group ICA can be used
to combine data from hundreds of subjects (Calhoun et al.,
2001). Coupled with basic biological assumptions regarding
spatial contiguity of networks and association with paradigm-
related fMRI, group ICA can greatly facilitate the evaluation
of resting-state brain networks. The resulting weight matri-
ces of group ICA are often used in inference, for example
to compare diseased and non-diseased populations. ICA has
been used to identify abnormalities and biomarkers of disor-
ders including Alzheimer’s disease (Celone et al., 2006), ma-
jor depression (Veer et al., 2010), and schizophrenia (Jafri
et al., 2008). ICA will likely play an integral role in the Hu-
man Connectome Project, which seeks to create a database of
all neurological pathways to further our understanding of dis-
ease, brain development, and aging (Beckmann, 2012). Many
ICA methods exist, and disentangling the differences between
methods could improve the ability to use ICA for clinical ap-
plication and biomarker development.

ICA is a semiparametric problem with a finite dimensional
matrix parameter and infinite dimensional IC distributions.
Since the IC distributions are latent, one challenge is to find
an estimator that is accurate for a wide variety of source
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distributions. Parametric ICA methods such as information
maximization (Infomax) (Bell and Sejnowski, 1995) and
FastICA (Hyvarinen, 1999) assume a parametric source
distribution and/or properties of higher order moments to
derive comparatively simple algorithms. Infomax assumes
a distribution (typically logistic), and FastICA assumes
a quasi-likelihood function (typically the negative of the
hyperbolic cosine). Both methods are commonly used in
fMRI studies in part because they are fast even for large
datasets. Although these algorithms work well for a variety
of IC distributions, a large mismatch between the assumed
densities and the true densities can result in inconsistent
estimates of ICs (Cardoso, 1998). A semiparametric approach
to modeling ICs, product density ICA via tilted Gaussians
(ProDenICA), outperformed FastICA in simulations for a
large class of IC distributions (Hastie and Tibshirani, 2003).
Other methods using nonparametric estimation of the IC
densities have also been developed (Chen and Bickel, 2006;
Eloyan and Ghosh, 2013). These are similar to ProDenlCA
but typically computationally more expensive.

From a biological perspective, a voxel (volumetric pixel)
might be a non- or primary contributor to a network, sug-
gesting the use of mixture distributions for some networks in
spatial ICA of fMRI (Guo, 2011). Two to three mixtures of
normals for an IC has been found to work well in task-based
fMRI, where voxels can be regarded as activated by the ex-
periment or their fluctuations may correspond to background
noise (Beckmann and Smith, 2004). Simulation studies with
two ICs found that FastICA performed poorly when densi-
ties were a mixture of normals, while semiparametric meth-
ods performed well (Hastie and Tibshirani, 2003; Eloyan and
Ghosh, 2013). However, the performance of FastICA, Info-
max, and ProDenICA has not been evaluated in dimensions
typically found in fMRI applications (e.g., 20 components).
Moreover, ProDenICA has not been applied to ICA of fMRI.
This suggests a need to determine whether ProDenICA out-
performs FastICA and Infomax in simulations with higher
dimensions and whether ProDenlICA differs from other meth-
ods when applied to fMRI.

ICA methods require nonconvex optimization, yet fMRI
toolboxes that address the issue of sensitivity to initial values
are problematic, and most statistical packages do not address
the issue whatsoever. A method called Icasso uses agglomera-
tive hierarchical clustering on absolute correlations to match
ICs from multiple starting values (Himberg, Hyvérinen, and
Esposito, 2004), and the centroids of tight clusters from mul-
tiple initializations are regarded as the best estimates for reli-
able ICs from fMRI (Correa, Adali, and Calhoun, 2007). ICs
that do not tightly cluster spatially are excluded from subse-
quent analyses. Consequently, this approach may mistakenly
exclude ICs from analyses of neurological disorders simply be-
cause they have local optima.

The global maximum usually corresponds to the best es-
timate of the true mixing matrix when an ICA method is
statistically consistent (e.g., Matteson and Tsay 2013); unfor-
tunately, some ICA methods are not consistent for many IC
distributions. For the FastICA estimator, the set of local max-
ima of the expected value of the objective function contains
the true unmixing matrix under certain conditions relating
the true and hypothesized densities, which is referred to as
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local consistency (Hyvarinen, 1999). However, the FastICA
objective function does not provide a way to identify which
local maximum corresponds to a consistent estimator (if one
exists). To investigate, we simulate distributions with large
samples sizes and present examples where a local maximum
corresponds to the true unmixing matrix but the global max-
imum is spurious. We also conduct simulations with five, ten,
and twenty components and show none of the local optima
of FastICA or Infomax that we located are close to the true
unmixing matrix, thereby identifying reasonable distributions
for which these estimators perform poorly.

It is well known that ICs are only identifiable up to scaled
permutations, which is sometimes called the permutation
problem. As a result, ICs from different initializations or meth-
ods are difficult to compare. In contrast to fMRI studies rely-
ing upon Icasso (e.g., Correa et al., 2007) or upon matching
by highest absolute correlation (e.g., Guo, 2011), we optimally
match components from different methods via a modification
of the Hungarian (Kuhn-Munkres) algorithm (Tichavsky and
Koldovsky, 2004). This allows a more detailed comparison of
ICs within each method that vary due to initialization, as
well as a comparison of ICs between methods that vary due
to their assumptions and dependency measures.

To quantify the practical impacts of initialization and
choice of methodology, we consider a large collection of rs-
fMRI data from multiple data collection centers worldwide
on children and adolescents with Attention Deficit Hyperac-
tive Disorder (ADHD) (Milham et al., 2012). This data was
made publicly available in a competition on automated diag-
nosis of ADHD, and two of the authors of this article were
part of the declared winning team (Eloyan et al., 2012). Here,
we use the dataset as a source of multi-subject, multi-site rs-
fMRI. We use the group ICA of Calhoun et al. (2001), which
is easily adapted to any ICA algorithm and to multi-site rs-
fMRI. We evaluate the impact of initial values and compare
the mixing matrices and group ICs estimated using FastICA,
Infomax, joint approximate diagonalization of eigenmatrices
(JADE; Cardoso and Souloumiac, 1993), and ProDenICA.

In Section 2, we describe the noise-free ICA model and
characterize the objective functions used by FastICA, Info-
max, JADE, and ProDenlCA. We formalize group ICA as a
noisy ICA model with a known number of components, and
then we discuss a canonical ordering of ICs and the match-
ing algorithm. In Section 3, we demonstrate the existence of
spurious global optima in the FastICA and Infomax objective
functions—but not ProDenlCA—for simulations with large
sample sizes and two components. We also show that the Fas-
tICA, Infomax, and ProDenICA algorithms are sensitive to
initial values for 5, 10, and 20 components, and that Pro-
DenlCA is the most accurate. In Section 4, we conduct a
group ICA of the ADHD-200 sample using the four methods.
In Section 5, we conclude that multiple starting values are
necessary and that ProDenlCA may be more reliable in fMRI
studies.

2. ICA Methods

2.1. The Noise-Free ICA Model

Let Z, be a random vector in R with finite second moments.
Without loss of generality, assume EZ, =0 and EZ,Z, =1,
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where Z! is the transpose of Z,. Let the mixing matrix, A,
be a Q x Q matrix of full rank, and denote the unmixing
matrix as W, which is equal to A~!. Let S, € R? be a random
vector in which the components are mutually independent
with ES, =0 and ES,S! = I. The noise-free ICA model is

Z, = AS,. (1)

We observe V identically distributed samples of Z,. Then
the goal is to estimate W, which we can then use to esti-
mate the ICs. We briefly describe four methods to estimate
W below.

2.2.  Mutual Information, Maximum Likelihood, and

Infomaz ICA

Minimization of mutual information (MI) provides a unifying
framework for a variety of ICA methods, including maximum
likelihood (ML), Infomax, and negentropy (Cardoso, 1997,
1998). MI measures the Kullback—Leibler divergence between
a joint density (assumed to be known) and the product of its
marginal densities. Let Fs denote the joint distribution of a
random vector S € R?, and suppose Fg is absolutely continu-
ous with density fg(s). Let Fs, denote the marginal distribu-
tion of the gth component of S and f;, (s) the corresponding
density. Let ® = {s € R? : fs(s) > 0}. MI is defined as

Q
(o) - o

Then, i, ..., Sp are mutually independent if and only if their
MI is equal to zero.
Suppose we have the noise-free ICA model in (1) with W

fs(s)

denoting the true unmixing matrix and Fg = Hle Fs,. Let O
be the set of Q x Q orthogonal matrices, and let P be the set
of Q x Q signed permutation matrices. Define the equivalence
relation A = B if there exists some Py € P such that A =
P.B. Then,

4
W = argmin € (Foz; H Fo'r]z> ,

OecO =1

where o} is the gth row of O. Let H(S) denote the differential
entropy,

H(S) = — / og /(5))/(s)ds, 3)

and note that the MI is equal to the sum of the

marginal entropies less the joint entropy, K (Fs; HqQ=1 F5q> =
Q
H(S,) — H(S).

g=1
If the true joint density of the ICs is known, we can define
the objective function for identically distributed observations

Z1,...,Zy as

Vo0 v
Iui (0) = — Z Z log fs, (0}, 2,) + Z log fs(0Oz,).
v=1

v=1 ¢=1
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Since 21‘1/:1 log fs(Oz,) is invariant to rotations O, we
obtain

Vv Q0
W = argmin — log fs, (0, 2,). 4
g ZZ 5, (0)) 4

From (4), it is clear that the MI criterion is equal to the
negative of the ML criterion.

In practice, the densities f;, are not known, so most ML
ICA methods assume a parametric density f;;. In particular,
the Infomax criterion is equal to the ML criterion in which the
information transfer function described in Bell and Sejnowski
(1995) equals the (assumed) common cumulative distribution
function of the ICs (Cardoso, 1997). The information transfer
function is most commonly taken to be the logistic distribu-
tion, Fy (x) =1/(1+¢™) for x € R, and W is not restricted
to O (Bell and Sejnowski, 1995). Let B be the set of full rank
0 x Q matrices, and let B € B with rows b). Then the info-
max objective function is

Y
Tinp(B) = Viog | det B+ > > {log f;(Bz,)}.

v=1 g=1

The wrong F§ may still result in a consistent estimator of W
and successfully recover ICs from a variety of distributions,
although the use of F§ # Fg always results in some loss of
efficiency. Cardoso (1998) provided a heuristic treatment of
the consistency of ICA estimators, where W may be inconsis-
tent when there is a large mismatch between the hypothesized
and true IC distributions. Here, we investigate the accuracy
of estimators via simulations with large sample sizes, which
is suggestive of consistency properties; a formal consistency
analysis is beyond the scope of this article. We modify the In-
fomax algorithm from Bell and Sejnowski (1995) as described
in Web Appendix A.1. Our R code is available in the Supple-
mentary Materials.

2.3.  Negentropy and the FastICA Algorithm

The FastICA algorithm is based on maximizing the sum of
the marginal negentropies. Under the constraint of orthogo-
nal ICs, maximizing negentropy is equal to minimizing MI
(Hyvarinen, 1999). Using the notation from (3), negentropy
is defined as

where Y ~ N0, EXXT). Note that for X ~ (0,I), H(Y) =
QH(Y) with ¥ ~ N(0, 1). Then the MI for linear transforma-
tions in (2) equals

Y Qo
K (Fs; 1T qu> =7(0Z) - Y 1(o,Z).

Since multivariate negentropy is invariant to orthogonal ro-
tations, it follows that minimizing MI is equal to maximizing
the negentropy of the marginals.



Evaluating ICA Methods

Approximations to marginal negentropy can take the form
(Hyvarinen, 1999)

I(X) « [B{G (X)} — E{G (Y)}]*, (5)

where G is a non-quadratic function referred to as the “non-
linear function.” A common choice is G(x) = % log{cosh(ax)}
for 1 < a < 2. Then for observations v=1,...,V, define the
objective function

0 v 2
Tranies (0)= 3" | 237G (o)) ~EIGON| . (6)

g=1 v=1

where E {G (Y)} is a known constant. This is maximized using
an approximative Newton algorithm, or fixed-point algorithm
(Hyvarinen, 1999). The fixed-point algorithm assumes a diag-
onal Hessian matrix, which allows for faster rates of conver-
gence than the Infomax algorithm and fewer computations
than an exact Newton algorithm. It can also be derived as
a stochastic gradient ascent algorithm for quasi-MLE, where
the derivative of G equals the score function (Hyvérinen and
Oja, 2000). We implement FastICA using the R package of
that name by Marchini, Heaton, and Ripley (2010) with the
log cosh nonlinearity, « = 1, and the symmetric estimation
scheme.

2.4. ProDenICA

ProDenICA combines semiparametric estimation of the IC
distributions with a fixed-point algorithm (Hastie and Tibshi-
rani, 2003). The joint density of independent ICs is modeled
as the product of tilted Gaussians, fs(s) = HqQ:l B(s,)etala).
Here, ¢ is a standard normal density and g,(s,) is estimated
with cubic B-splines. Let h,(x) denote the second derivative
of g,(x). The objective function is a penalized log likelihood,

[ Vv
Tropen(0) = % (Z log ¢(0;2.) + g(0; zv)> (7)

V=

g=1 1
—log/d)(x)egq(")dx—k/{hq(x)}de, (8)

where the first penalty enforces the constraint that q.’)(x)egq(x)
integrates to one, and the second is a roughness penalty.

This objective function is maximized by alternately esti-
mating g,, which is found using an application of generalized
additive models, and updating O with one-step of the fixed-
point algorithm used in FastICA. Since it is the log likelihood
ratio of the tilted Gaussian to Gaussian, g, is used as an es-
timate of marginal negentropy in the fixed-point algorithm.
Thus, ProDenICA adapts to the IC distributions while mini-
mizing dependencies. We implement ProDenICA using the R
package of that name by Hastie and Tibshirani (2010), and
we describe solutions to computational issues that arose when
using ProDenICA in Web Appendix A.2.

2.5. JADE

For mutually independent random variables, the cross cumu-
lants of all orders are equal to zero. JADE seeks a rotation
of whitened data that approximately diagonalizes the fourth-
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order cross-cumulant tensor (Cardoso and Souloumiac, 1993).
The JADE algorithm requires all but one of the excess kur-
toses to be non-zero, and it is based on necessary, but not
sufficient, conditions for independence. An important differ-
ence betwen JADE and other algorithms is that it does not
require initialization. We implement JADE using the R pack-
age of that name by Nordhausen et al. (2011).

2.6. A Group ICA Model

We estimate group ICs using the approach proposed by
Calhoun et al. (2001), which involves a two-stage dimension
reduction via the singular value decomposition prior to ap-
plying a noise-free ICA. Let 5,4, ¢ € 1, ..., Q, denote mutually
independent random variables and s, = [s,1, ..., Syo]. We as-
sume s, are iid F for F € F, in which Fis the class of Q-variate
non-Gaussian mean zero distributions with covariance equal
to the identity matrix. Let M be a T, x Q matrix of mix-
ing weights for the ICs for the mth subject. Our probabilistic
spatial group ICA model is

X0 = MM, 4 €0, ©)

where /™ has mean zero and is the error that is not explained
by the group ICs.

Suppose X is a V x T, matrix where each column corre-
sponds to a three-dimensional snapshot of the BOLD signal
that has been vectorized, and suppose the data have been
centered such that both rows and columns have zero mean.
Now, consider the singular value decomposition (SVD) of ob-
servations from subject m: X0 = UMDV Let [AJ(Q"O
denote the first Q left singular vectors and Z(Qm) = \/Vﬁg’),

where +/V standardizes Q(Qm) to have sample covariance equal
to the identity matrix.

We can align the voxels across subjects from multiple sites,
while in general we cannot align time courses in rs-fMRI. Con-
sequently, we concatenate the data matrices 28') across sub-
jects into a matrix Y with dimensions V x MQ. Next, a sec-
ond SVD is performed, and the first Q* left singular vectors
are retained and multiplied by +/V . Here, we let 0* = Q. This
results in a whitened data matrix Z with dimensions V x Q.
Applying the methods described in Section 2, we now find
a linear transformation W that results in group ICs S that
minimize a measure of dependence. Thus, the multi-subject
ICA problem is reduced to the noise-free ICA model in (1).

Note that we can estimate M for each subject using
standard multivariate regression, such that for a given S, we
use least squares to solve X = SM®™ + E(  where E(™
is the V x T, matrix of residuals not accounted for by the
group components. With this approach, any ICA method can
be applied to fMRI from multiple subjects and sites.

2.7.  Canonical Form for ICA and Matching ICs

The ICA model as presented in (1) is only identifiable on
an equivalence class of signed permutations since both W
and S are unknown (Section 2.2). Eloyan and Ghosh (2013)
demonstrate that the ICA model is uniquely identified if
Es > ... > Es} > 0. Since Es, = 0 and Es] = 1, this is the
same as assuming the skewnesses are distinct and positive.
Then we define a canonical form for the ICs:



228

DEFINITION 1. Let y, denote the sample skewness for the

qgth IC. Then the canonical form for S is the signed permuta-
tion that results in y; > --- > Yy > 0.

In fMRI, assuming positive skewness is biologically plau-
sible because voxels that have very positive BOLD signals
may be considered primary contributors to a network, and in
practice, many IC densities have large skewnesses.

We matched ICs from multiple estimates using a modi-
fication of the Hungarian algorithm proposed by Tichavsky
and Koldovsky (2004). For two estimates S(1y and S(a), let

/s\fl) and /5\52) be the ith and jth columns, respectively. Let
[| - || denote the L2 norm. Let C be the cost matrix with
elements defined by an auxiliary metric c;; :min(||§,-(1> —
/s\(j2)||, ||/s\,-(1) + /s\(j2>||)7 which accounts for the sign ambiguity.
Let S={o:0={c(1),...,0(Q)} be the set of all permuta-
tions {1, ..., Q}. The Hungarian algorithm is used to find the
permutation o* such that

[
o = argmin g Cio(i)-
oeS 1

Details are described in Web Appendix B. R code implement-
ing the canonical form and the matching algorithm is available
in the Supplementary Materials.

3. Simulation Study

3.1.

We simulated pairs of identically distributed ICs for eigh-
teen distributions that were used in previous ICA studies
(Bach and Jordan, 2003; Hastie and Tibshirani, 2003) includ-
ing the t-distribution, exponential, double exponential, uni-
form, a mixture of exponentials, and various symmetric and
asymmetric mixtures of normals (Web Appendix A.3; Web
Figure 1).

First, we examined the objective functions for two compo-
nents for each distribution. We defined W using the Givens
parameterization with 6,,, = 7/6. For each distribution, we
conducted one simulation with a very large sample size
(V=131,072), such that inaccuracies would be suggestive of
consistency issues rather than chance variability or small-
sample bias. We evaluated the objective functions on a grid
for 6 € [0, /2] with mesh size 7/100. Then for each estimator
we estimated 6; using N = 25 equally spaced starting values
in [0, 7/2].

For FastICA and ProDenlICA, there are distributions for
which the objective functions include local maxima (Fig-
ure 1). For the symmetric, unimodal, and super-Gaussian
(having positive excess kurtosis) distributions a, b, and
d (t-distribution with df =3, double exponential, and ¢
distribution with df = 5, respectively), the global maximum
for each method correctly identifies 6,,., and there are no
complications owing to local maxima. In contrast, the asym-
metric mixture of two normals in distribution k contains a lo-
cal maximum for both FastICA and ProDenICA. Thus, even
when Q = 2, local maxima can be an issue.

It also appears that Infomax and FastICA typically and
occasionally, respectively, identify the wrong optima, while

Convexity and Accuracy for Q = 2
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the global maxima for ProDenICA correctly identify 6,.,,.
The global maxima is associated with 6,,, for all meth-
ods for distributions a, b, d, and e, which are all super-
Gaussian, unimodal distributions. For sub-Gaussian distribu-
tions f through r, the minimum of Infomax, rather than a
maximum, usually appears to correspond to 6,,, (the one ex-
ception is distribution ¢, which has the largest kurtosis among
all sub-Gaussian distributions examined). This is indicative
of the Infomax estimator being inaccurate for sub-Gaussian
distributions (see Lee, Girolami, and Sejnowski, 1999). Fas-
tICA misidentifies 6,,, for distributions j and k, which are
asymmetric mixtures of normals. For these distributions, a
local maximum is associated with 6., but the global maxi-
mum suggests that the FastICA estimator is not consistent.
Additionally, theta,,, in distribution r is associated with a
minimum of the FastICA objective function instead of a max-
imum, which suggests the FastICA method may not be locally
consistent for some mixtures of normals.

3.2.

To examine convexity and accuracy in higher dimensions, we
conducted 100 simulations of the ICA model in (1) for 0 = 5,
10 and 20 randomly chosen (with replacement) distributions
from those in Web Figure 1. We used 25 initial values gen-
erated via latin hypercube sampling of the rotation angles
for each simulation, as described in the Web Appendix A.3.
We used the minimum distance (dyp) measure introduced
in Ilmonen et al. (2010) and defined in Web Appendix A.4.

Let \/7\\7(,-) denote the unmixing matrix estimated from the ith

initial value, i = 1, ..., N. We then examined dyup (\/7\\7(,-), W).

From these simulations, the methods ordered from most to
least accurate were ProDenICA, FastICA, JADE, and Info-
max (Figure 2). The MD measure tended to increase as the
number of components increased, although this is partly ow-
ing to the manner in which dyp scales with dimension.

Infomax was inaccurate in part because it performs poorly
for sub-Gaussian distributions, and fourteen of the eighteen
distributions in Web Figure 1 are sub-Gaussian. We also in-
vestigated the performance of the methods when all ICs had
a logistic distribution, which is the best-case scenario for In-
fomax. Using ten components and the simulation design de-
scribed above, the means + standard errors of dyp for Fas-
tICA, Infomax, JADE, and ProDenICA were 0.273 £ 0.007,
0.263 £ 0.005, 0.377 + 0.008, and 0.350 £ 0.014. Not surpris-
ingly, in the unlikely situation where the IC distributions are
known, there is a benefit to using the true likelihood in (4)
rather than the semi-parametric likelihood in (7).

For FastICA, two issues are clear from Figure 2: there are
many stationary points, and in most instances, there exist
stationary points that are closer than the global minimum
to the true unmixing matrix. Regarding the first issue, com-
paring the negentropy approximations (6) from many initial
values would eliminate the use of estimators to the right of the
global maximum. The second issue is more problematic. Ide-
ally, we would like to identify the left-most stationary point as
our estimate rather than the global maximum. This left-most
point represents an empirical oracle since it is only known
when 6,,, is known. Given the local consistency properties
of FastICA (Hyvarinen, 1999), it is not surprising that there

Convexity and Accuracy for Q =5, 10, and 20
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Figure 1. Objective functions (standardized J(6); lines) for V = 131,072 and Q = 2 from distributions a-r (Web Figure 1)
using the angular (Givens) parameterization with 6,,, = 7/6 and 0 € [0, 7/2] and parameter estimates (characters; y-value
chosen for display purposes) from 25 initial values equally spaced in [0, 7/2]. This figure appears in color in the electronic

version of this article.

exist local maxima that are closer to the true unmixing ma-
trix than the FastICA solution. But in FastICA, the left-most
gray point is often still a poor estimate of W.

In contrast to the other methods, the ProDenICA global
maximum usually corresponded to the left-most gray point,
and ProDenICA clearly dominated all other estimators (Fig-
ure 2). ProDenICA is computationally more expensive than
other methods (Web Appendix A.5; Web Table 1). For Q = 20
and V =1, 024, ProDenICA, Infomax, FastICA, and JADE
took approximately 9 minutes, 25seconds, 7.5seconds, and
4 seconds, respectively.

4. Group ICA of Resting-State fMRI

4.1. Resting-State fMRI Dataset

Data were selected for analysis from the ADHD-200 Data
Sample (Milham et al., 2012), which consists of rs-fMRI data
from children and adolescents (ages 7-21) from eight sites

comprising 491 typically developing subjects and 285 with
ADHD (Web Table 2). The number of time slices recorded
varied by site from 76 to 261. We restricted our analysis to
subjects that were right-hand dominant with no history of
drug therapy and to images with no quality control flags. This
resulted in 206 typically developing and 78 ADHD children
and adolescents from four sites (Web Table 2). Data were reg-
istered and masked using the MNI 152 T1 3 mm template.
Processing scripts were based on the 1000 Functional Connec-
tome project’s (Biswal et al., 2010) processing scripts (avail-
able at http://www.nitrc.org/frs/?group_id=296). We ag-
gregated adjacent voxels to result in 6 x 6 x 6 mm voxels.
Additional information is provided in Web Appendix C.1.
To determine the number of components, rs-fMRI studies
frequently fix the number of ICs at twenty, which is sufficient
to capture the most frequently observed large-scale resting-
state networks (Smith et al., 2009). Task-based fMRI studies
sometimes use a probabilistic PCA (PPCA) prior to ICA to
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Figure 2. Simulations using Q = 5, 10, or 20 from randomly chosen distributions with V = 1024. For k = FastICA, Infomax,
and ProDenlICA, the results from 25 initial values for 100 simulations are depicted: small gray points correspond to stationary

points (V/\\/"El.), i=1,...,25), and symbols correspond to the global maximum (W’EO)). For each method k, simulations are

sorted from lowest to highest dMD(\/A\’éo), W). The JADE algorithm is not initialized with multiple values. This figure appears

in color in the electronic version of this article.

determine the number of ICs (Beckmann and Smith, 2004).
The signal-to-noise ratio is smaller in rs-fMRI than task-based
fMRI, and a low signal-to-noise ratio can be problematic for
PPCA. Consequently, we followed previous studies and let

0 = 0* = 20.

4.2.  Differences Within Algorithms

We examined the sensitivity to initialization of FastICA, In-
fomax, and ProDenICA on group ICA of the ADHD-200
dataset. We generated N = 1,000 initial values using latin hy-
percube sampling of the Givens rotation angles. We created a
dissimilarity matrix with entries dMD(Wfi>, W’@) for the kth

method, i # je1,...,1000, and Q = 20. We also created a
dissimilarity matrix for each IC. Define

Let glEO) be the estimated ICs associated with W’EO) and or-
dered as in Definition 1. Define S’(‘i>, i=1,...,N,tobetheICs
associated with W’(‘i) that have been matched to S’(‘O>. The dis-
similarity matrix for the gth IC has entries ||Slfi),q - S’(‘j),qllg,

in which /S\’El.),q is the gth column of §fi). ‘We then used classical
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Figure 3. Multidimensional scaling of dyp ({7\V’(‘i), {7\ij)) with the number of points in each basin and the average dyp from

the basin to {7\\7’20) in parentheses, where k indexes method and i # j € 1, ..., 1000 (left), and ||§’Ei)’q — /S\Iéj)’qHQ forg=1,...,20

(right). The coordinates of W'(‘O) and §’(‘0)_q, g =1,...20, are depicted by solid triangles. This figure appears in color in the

electronic version of this article.

multidimensional scaling (Torgerson, 1952) with two dimen-
sions to visualize the dissimilarities among unmixing matrices.

In estimates of the mixing matrix, there were four basins
of attraction for both FastICA and Infomax (Figure 3). For
ProDenICA, there were two major basins of attraction and
four smaller basins. In all methods, the basin with the most
points contained the argmax, along with 60%, 47.5%, and
54.1% of estimates for FastICA, Infomax, and ProDenICA,

respectively. The remaining 40% of FastICA estimates had
an MD (relative to W'(‘O)) of approximately 0.38; 52.5% of
Infomax estimates had an MD of approximately 0.37; and
42% of ProDenICA estimates had an MD of 0.07 and another
3.5% had an MD of approximately 0.34.

In estimates of the individual ICs, it is clear that some
ICs were nearly identical for most starting values (e.g., ICs
1 through 6 for all methods; recall that the ICs are ordered
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by decreasing skewness; see Figure 3), while others were more
sensitive to initialization in all methods (e.g., ICs 13, 17, 18,
and 20), and some were sensitive in some methods but not
others (e.g., IC 15 was sensitive in FastICA and Infomax, but
not ProDenICA; IC 19 was sensitive in ProDenICA, but not
FastICA or Infomax). Overall, the estimation of ICs with the
largest skewnesses and kurtoses (where kurtosis was generally
higer in lower-numbered ICs) tended to be more stable than
those that were more nearly symmetric with lower kurtoses
(see Web Figure 2).

We estimated the probability of obtaining Q\V’z()) using j
starting values. Consider the probability of obtalnlng an ini-
tial value that is close to the argmax, P(dump (W(O), W ) <
8) > €, when using j starting values. We chose § such that
{dyp < 8} is the event that we have found the global max-
imum (within some numerical tolerance). Here, we let § =
0.01. Now recall the hypergeometric distribution, P(X =
X|N, my, j) = {(’"‘) (Nj:'_:k)}/(l;]), where N is the total number
of starting values (N = 1,000), m; is the number of times
W'El.) was within § of \/7\\712()), Jj is the number of starting val-
ues for which we wish to calculate the probability /o\f get-

ting within §, and x is the number of times that Wf” is

within 8 of W’Em when using j starting values. We calcu-
lated P(X > 0[N = 1,000, my, j) for je1,...,10. We also cal-

culated mm r(S( N S’EO) q), where r is the Pearson correla-
q=1,..., ’

tion, and examlned the relationship of this minimum correla-
tion to dyp-

In our application, FastICA, Infomax, and ProDenICA re-
quired 4, 5, and 4 initial values, respectively, to have a ;0.95
probability of obtaining the argmax (Figure 4). When com-

paring ICs from different initializations, min r(g(,-),q, §(0)_q)
g=1,...0 )

was on average approximately 0.60 and as low as 0.25 for
dyvp > 0.3. Overall, a mmlmum dlstance measure less than
0.10 for some pair of W() and W(O) translated to a mini-

mum correlation (over ¢g) between S( )¢ and S(O) 4 of at least
0.95.

4.3.

We matched V/\\/"EO)7 for k indexing Infomax, JADE, and Pro-
DenlICA, to the canonically ordered results from FastICA. We
also compared each method to the SVD, which represents a
baseline for understanding the impact of the additional ro-
tation via ICA. We compared unmixing matrices using three
measures: (1) the MD measure, dyp; (2) the Amari measure
(Amari, Cichocki, and Yang, 1996); and (3) the Frobenius
norm between matched unmixing matrices.

FastICA and Infomax had very similar results, while Pro-
DenICA and JADE differed from each other and from Fas-
tICA and Infomax (Web Table 4). All ICA solutions were
substantially different from the SVD solution. The measures
between ICA unmixing matrices were all substantially smaller
than between random matrices (see Web Appendix C.2).

We compared estimated ICs between methods using
Pearson correlations, where all methods were matched to the
canonically ordered FastICA. We used Kolmogorov—Smirnov
(KS) two-sample tests to examine differences in the CDFs
of matched ICs. We did not formally test for equality in
distribution because IC samples (i.e., values at different
voxels) were spatially dependent. Nonetheless, we calculated
FDR-adjusted p-values (Benjamini and Hochberg, 1995) as

Differences Between Algorithms
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Table 1
Pearson correlation between matching ICs for each method from the rs-fMRI study
Method1 Method2 1C 1 1C 2 IC 3 IC 4 IC 5 IC 6 IcC 7 IC 8 IC 9 IC 10
SVD FastICA 0.51 0.47 0.33 0.35 0.43 0.44 0.48 0.46 0.49 0.41
SVD Infomax 0.51 0.48 0.35 0.38 0.43 0.42 0.48 0.46 0.49 0.43
SVD JADE 0.53 0.43 0.40 0.37 0.44 0.38 0.50 0.47 0.53 0.40
SVD ProDenlCA 0.49 0.44 0.36 0.48 0.44 0.45 0.41 0.47 0.48 0.41
FastICA Infomax 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FastICA JADE 0.96 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.94 0.98
FastICA ProDenICA 0.99 0.97 0.98 0.83 0.99 0.99 0.98 0.98 0.96 0.98
Infomax JADE 0.97 0.97 0.98 0.99 1.00 0.99 0.98 0.99 0.94 0.98
Infomax ProDenICA 0.99 0.97 0.98 0.85 0.99 0.99 0.99 0.98 0.97 0.98
JADE ProDenICA 0.96 0.97 0.95 0.83 0.99 0.97 0.96 0.99 0.96 0.96
Method1 Method2 1IC 11 I1C 12 I1C 13 I1C 14 IC 15 1C 16 1C 17 1C 18 1C 19 1C 20
SVD FastICA 0.51 0.61 0.51 0.35 0.39 0.27 0.71 0.59 0.36 0.46
SVD Infomax 0.51 0.60 0.52 0.32 0.40 0.27 0.74 0.59 0.36 0.48
SVD JADE 0.55 0.67 0.21 0.31 0.26 0.27 0.70 0.70 0.42 0.25
SVD ProDenlCA 0.42 0.61 0.23 0.44 0.33 0.17 0.79 0.40 0.32 0.18
FastICA Infomax 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FastICA JADE 0.99 0.95 0.63 0.97 0.92 0.80 0.95 0.96 0.78 0.74
FastICA ProDenICA 0.82 0.93 0.69 0.95 0.94 0.89 0.90 0.89 0.89 0.69
Infomax JADE 0.98 0.96 0.60 0.97 0.92 0.80 0.96 0.96 0.78 0.74
Infomax ProDenICA 0.80 0.93 0.66 0.94 0.94 0.87 0.90 0.89 0.90 0.69
JADE ProDenlCA 0.83 0.94 0.87 0.96 0.94 0.83 0.85 0.85 0.74 0.95

a measure of the difference between ICs, as described in Web
Appendix C.2. Lastly, we estimated the density of ICs for
each method using Gaussian kernels (Web Appendix C.2).
The Pearson correlations were high for most ICs but not
all (Table 1), and the shapes of the estimated densities across
the four methods were similar for most distributions with
some notable exceptions (Web Figure 2). In contrast, the KS
statistics often indicated differences in the distributions of ICs
by method (Web Table 4). Overall, r(S Sl(o),q) > 0.95 in

k
(0).q°

78/120 comparisons (excluding SVD) and r(gléo)‘q,ls\l(o)yq) <
0.80 in 12/120 comparisons. Some ICs were highly correlated
for all methods (e.g., ICs 1-3, 5-10, and 14), while for other
ICs, ProDenIlCA and JADE had relatively low correlations
with FastICA and Infomax (e.g., ICs 13 and 20), and occa-
sionally, ProDenICA differed from all other methods (e.g., IC
11) or JADE differed from all other methods (e.g., IC 19). In
the KS tests, FDR~adjusted p < 0.01 in 72/120 comparisons.
In some cases, p < 0.01 even though the ICs were highly cor-
related (e.g., IC 3). For FastICA and Infomax, p > 0.05 for all
ICs except IC 4. In cases with low correlations, differences in
the density plots were often visible (e.g., in IC 13, ProDenICA
was less peaked; also see ICs 3, 4, 18, and 19). Sometimes
correlations were high, but KS-statistics and density plots in-
dicated differences between ProDenICA and other methods
(e.g., IC 12), or differences between JADE, ProDenICA, and
FastICA /Infomax (e.g., IC 3).

A visual comparison of the spatial configuration of the
group ICs revealed that moderate correlations, e.g., less than
0.80, were sometimes associated with large differences. For
each IC, we used thresholding and retained 2.5% of voxels
corresponding to the most positive values. We visually asso-
ciated our ICs with networks from Damoiseaux et al. (2006)
and present images for selected ICs (Web Figure 3). IC 13 has

strong lateralization in FastICA and Infomax but is nearly
symmetric in JADE and ProDenICA. IC 20 appears to con-
tain areas associated with memory and has strong lateral-
ization in all methods, but FastICA and Infomax suggest a
different spatial configuration than ProDenICA and JADE.
ICs 13 and 20 were previously noted to be sensitive to ini-
tialization (Section 4.2). These networks may be ignored in
fMRI studies that use Icasso despite the fact that they do not
appear to be artifactual. Parts of the visual cortex are con-
tained in IC4, in which all correlations were greater than 0.80
and the methods look similar, although ProDenlCA shows
some deviations. IC 3 contains parts of the default network,
an area associated with day-dreaming that is often examined
in rs-fMRI studies, and the spatial configuration was similar
across methods.

We also estimated ICs from a single individual randomly
chosen from the ADHD-200 Data Sample. The spatial con-
figuration in individual ICs is less pronounced than in the
corresponding group ICs (Web Figure 4). The default net-
work (IC 3) in the individual IC is very similar to the group
IC, and similarities between IC 4 and IC 20 are also apparent,
while IC 13 did not appear to be recovered in this individual.

5. Discussion

There is a collaborative effort to share rs-fMRI data from
multiple sites in order to improve sample sizes, as in the 1,000
Functional Connectomes Project, the ADHD-200 Sample, and
the Autism Brain Imaging Dataset (ABIDE). Thus, there is
an urgent need to evaluate whether widely used ICA meth-
ods effectively recover resting-state networks, or whether more
robust, but typically computationally more expensive, meth-
ods produce different results. We have applied a semipara-
metric method, ProDenICA, to an analysis of rs-fMRI data
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and demonstrated that multiple initial values are necessary to
identify the argmax. In contrast to other fMRI studies, we ap-
plied the Hungarian algorithm to match ICs from multiples
estimates, and thereby gained novel insights into how some
brain networks are more sensitive to initial values than others,
and how some brain network estimates varied little by ICA
method while others differ. Given the results from simulations
and the fact that IC distributions are rarely, if ever, known in
practice, we suggest the use of ICA methods that are effective
for a wide range of IC distributions and methods wherein the
argmax estimates from multiple initializations correspond to
the best estimate. Thus, we suggest ProDenICA be used over
FastICA, Infomax, or JADE.

The few studies that considered the impact of starting val-
ues on ICA estimation suggested that spurious optima were
rarely a problem or excluded ICs that were sensitive to ini-
tial values from further analyses; however, we found that ICs
that were not sensitive to initialization were the exception
and not the rule. In an application of ICA to signal pro-
cessing, Tichavsky et al. (2005)Tichavsky, Koldovsky, and
Oja (2005) claimed that approximately 1-100 cases in 10,000
initializations produced estimates from spurious stationary
points, and that these cases could be recognized by extremely
low signal to interference ratios. In our simulations, local op-
tima were nearly always problematic for twenty components
(Figure 2). Furthermore, in our fMRI study, spurious optima
were found in 40% of initializations for FastICA, 52.5% for
Infomax, and 46% for ProDenICA (Figure 3).

We argue that evaluating a modest number of randomly
chosen initial values and comparing the values of their ob-
jective functions is effective and computationally practica-
ble. Tichavsky et al. (2005) proposed a method that imi-
tates a global search for the argmax for a single starting
value, although there is no guarantee that it converges to the
global maximum. Alternatively, Icasso assumes that cluster
centroids accurately characterize ICs. Using cluster centroids
produces two sources of error in IC estimates: potential mis-
matches due to matching via clustering, and error due to the
use of cluster centroids instead of the argmax. Furthermore,
when multiple estimates of an IC do not tightly cluster, the
IC is typically discarded. Consequently, biologically relevant
networks may be ignored simply because their local optima
are very different from the argmax. In task-based fMRI, Guo
(2011) and Beckmann and Smith (2005) suggest using normal
mixtures to model activated and inactived voxels, but Figures
1k and 1j indicate that FastICA has spurious optima for cer-
tain mixtures. Thus, in some cases, biological networks may
be ignored in FastICA studies owing to multiple optima that
in turn correspond to diffuse clusters.

Moreover, some biological networks may be mischaracter-
ized owing to the poor performance of FastICA and Infomax
in recovering some IC distributions, whereas ProDenICA is
more robust to IC distributions. For rs-fMRI, the differences
between methods were relatively small according to our sim-
ilarity measures (Web Table 4), although visual inspection
suggests substantive differences (Web Figure 4). In our simu-
lations with two components and very large sample sizes (V =
131,072), Infomax failed for most mixture distributions, and
FastICA failed to have a global and/or local maximum at the
true unmixing matrix for some assymetric mixture distribu-

Biometrics, March 2014

tions (Figure 1). In contrast, the argmax for ProDenICA with
two components corresponded to the true unmixing matrix for
all simulated distributions. In simulations with 5, 10, and 20
components, FastICA and Infomax suffered from two prob-
lems: oftentimes, an empirical oracle existed that was closer
to the true unmixing matrix than the argmax, and secondly,
this empirical oracle was inaccurate. JADE was also inaccu-
rate. These issues were resolved in ProDenICA, where the
empirical oracle usually corresponded to the argmax, and the
argmax was close to the true unmixing matrix (Figure 2).
These results suggest the difference between methods may
be larger in task-based fMRI where normal mixtures model
activated/innactive voxels than observed in the resting-state
networks.

One approach to examining brain functioning from fMRI
studies is to compare mixing matrices between groups, which
is often done by assuming a tensor structure that decomposes
sources of group variation and sources of individual variation
(Beckmann and Smith, 2005; Guo, 2011). In our application,
the use of multi-site data with differing numbers of time points
precludes the use of a tensor group structure. Here, we focused
on the spatial activation patterns rather than the individual
and/or group time courses because an examination of mixing
matrices of varying dimensions is not trivial. Future research
should investigate methods to compare groups where individ-
uals have varying numbers of time points. For example, con-
verting the temporal patterns of activation (columns of M
in (9)) to the spectral domain may facilitate an examination
of the pathophysiology of diseases.

We conclude that the performance of methods differed dra-
matically in simulations, and the IC estimates in our fMRI ap-
plication exhibited variability for some, but not all, ICs. Thus,
ProDenICA may improve estimates of ICs in fMRI. Addition-
ally, multiple initial values were essential for identifying the
argmax in FastICA, Infomax, and ProDenICA.

6. Supplementary Materials

Web Appendices, Figures, Tables, and R Code referenced in
Sections 2, 3, 4, and 5 are available at the Biometrics website
on Wiley Online Library.
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