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Given uncertainty in the input model and parameters of a stochastic simulation

study, the goal of the study often becomes the estimation of a conditional expec-

tation. The conditional expectation is expected performance conditioned on the

selected model and parameters. The distribution of this conditional expectation

describes precisely, and concisely, the impact of input uncertainty on performance

prediction. In this thesis we estimate the density of a conditional expectation us-

ing ideas from the field of kernel density estimation. We show that our estimator

converges under reasonable conditions and present results on optimal rates of con-

vergence. We present two modifications of this estimator, a local estimator and a

bias-corrected estimator. Convergence results are given for these estimators. We

study the performance of our estimators on a number of test cases.

We also study the problem of computing performance for a service system in

which there is input uncertainty. It is commonly assumed that the arrival process

of customers to a service system is a nonhomogeneous Poisson process. We consider

the case in which the rate function for the Poisson process is unknown. We also

consider a related problem in which the rate function for the Poisson process varies

from day to day. For each of these problems, we develop steady-state approxima-

tions for both the long-run fraction of calls answered quickly, and the distribution

of the fraction of calls answered quickly within a short period. We also describe

the corresponding simulation-based estimates. We perform a computational study



to evaluate the approximations and simulation-based estimates and improve our

understanding of such systems.
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Chapter 1

Introduction

1.1 Problem Motivation

In this thesis, we study the estimation of the density of a conditional expectation

and apply this work in part to the problem of computing service system perfor-

mance. Let X be a real-valued random variable with E(|X|) < ∞. Let Z be

some other random object. The object Z could be a real-valued random variable,

a random vector, or even a sample path of a stochastic process. The conditional

expectation E(X|Z) is a random variable that represents the average value of X

given only the value of the random variable Z. Then E(X|Z) can be thought of as

one’s best guess as to the value of X knowing only the value of Z. In this thesis we

assume that the random variable E(X|Z) has a density with respect to Lebesgue

measure and develop a method for estimating it. Our main assumptions are that

1. we can generate i.i.d. replicates of the random object Z, and

2. we can generate i.i.d. observations from the conditional distribution

P (X ∈ · | Z = z)

for any z in the range of Z.

Our primary motivation for studying this problem stems from the issue of input

model uncertainty in stochastic simulation. This form of uncertainty arises when

one is not completely certain what input distributions and associated parameters

should be used in a stochastic simulation model. There are many methods for

dealing with such uncertainty; see Henderson [2003] for a review. Many of these

1
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methods impose a probability distribution on the unknown input distributions and

parameters. For example, this is the case in the papers Cheng [1994], Cheng and

Holland [1997, 1998, 2003], Chick [2001], Zouaoui and Wilson [2003, 2004]. See

Henderson [2003] for further discussion.

The input model uncertainty problem maps to the setting in this thesis as fol-

lows. The random object Z corresponds to a selection of input distributions and

associated parameters for a simulation experiment. The random variable X cor-

responds to output from the stochastic simulation model such that performance

is measured by E(X). The distribution of X is dependent on the choice Z of in-

put distributions and parameters. The conditional expectation E(X|Z) represents

the performance measure as a function of the input distributions and parameters.

Notice that it is still a random variable due to the uncertainty in the input distri-

butions and parameters. A density of E(X|Z) concisely captures the distribution

of performance given the uncertainty in the inputs. It gives a sense of the un-

certainty in the performance measure due to the uncertainty in the values of the

input distributions and parameters.

For example, consider a service system such as a call center in which the arrival

process of calls over the course of a day is thought to be a nonhomogeneous Poisson

process (NHPP) with time-dependent rate function λ = (λ(t) : t ≥ 0). Let us

focus on a single period (e.g., 10am-10:15am) in the day and assume that the rate

function takes on the constant value λ∗ in that period. Suppose we are uncertain of

the arrival rate λ∗ and we can model our uncertainty in terms of a random variable

Λ. For reasons explained in Chapter 4, one particular performance measure of

interest is ES/EN where S is the number of calls in the period that wait less than

some prescribed time before being answered and N is the total number of calls in
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the period. For a given arrival rate λ, EN = λt where t is the length of the period.

Then the performance measure for a given λ is

ES

EN
= E

(
S

λt

)
.

It follows that the performance measure given the uncertainty in the arrival rate

modeled by Λ is

E

[
S

Λt

∣∣∣∣ Λ

]
. (1.1)

The distribution of S/Λt is dependent on the arrival rate. If we generate obser-

vations of S/(Λt) for a given realization of the arrival rate Λ via simulation, then

this is precisely an example of input model uncertainty in stochastic simulation

described above.

The density of the random variable in (1.1) captures the distribution of the

performance in the period given our uncertainty in the arrival rate. It gives general

insight into how the uncertainty in the arrival rate translates into uncertainty about

performance. Of particular interest to the call center manager, the density captures

the effect of uncertainty on the risk of poor performance.

In this thesis, we study this problem as well as a related problem in which

the arrival rate in the period is randomly varying from day to day. Though these

problems are related in that they both have a kind of uncertainty in the arrival

process, we stress they are different and require different approaches. We will

discuss this problem further in Section 1.3.

Little work has been done on the estimation of the distribution of a conditional

expectation. The most closely related work to ours involves the estimation of the

distribution function of the conditional expectation E(X|Z). Lee and Glynn [1999]

considered the case where Z is a discrete random variable. This work was an
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outgrowth of Chapter 2 of Lee [1998], where the case where Z is continuous is also

considered. We prefer to directly estimate the density because we believe that the

density is more easily interpreted (visually) than a distribution function. Steckley

and Henderson [2003] estimated the density of E(X|Z) for the case in which Z is

univariate and expected performance is monotone in Z. In this thesis, results are

presented for a case that applies to a multivariate Z. The results presented here

are important in the context of the input uncertainty problem since it is rarely the

case that input uncertainty is restricted to only one parameter.

Andradóttir and Glynn [2003] discuss a certain estimation problem that, in our

setting, is essentially the estimation of EX. Their problem is complicated by the

fact that they explicitly allow for bias in the estimator. Such bias can arise in

steady-state simulation experiments, for example.

1.2 Kernel Density Estimation

In this thesis we apply kernel smoothing methods to the estimation of the density

of the conditional expectation. There has been a great deal of work done on kernel

density estimation beginning with the seminal papers of Rosenblatt [1956] and

Parzen [1962]. See Wand and Jones [1995] for an introduction and review of the

subject. The standard setting for kernel density estimation is as follows: Suppose

Y is a random variable with an unknown density g and (Yi : 1 ≤ i ≤ n) is a

sequence of i.i.d. copies of the random variable Y . The standard kernel density

estimator, sometimes called the “naive” estimator, is

ĝ(x; h) =
1

n

n∑
i=1

1

h
K

(
x− Yi

h

)
, (1.2)
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where the kernel K is typically chosen to be a unimodal probability density function

(p.d.f.) that is symmetric about zero, and the smoothing parameter h, often

referred to as the bandwidth, is a positive number (e.g., Wand and Jones [1995]).

For all x ∈ R, define the mean squared error (mse) of the estimator evaluated

at x as

mse(ĝ(x; h)) = E
(
ĝ(x; h)− g(x)

)2
.

Define the mean integrated squared error (mise) of the estimator as

mise(ĝ(·, h)) = E

∫ (
ĝ(x, h)− g(x)

)2
dx.

It is well known that if g is continuous, the naive estimator is consistent in quadratic

mean. That is to say, mse(ĝ(x; h)) converges to zero for all x ∈ R. It is also well

known (e.g., Rao [1983]) that if g is twice continuously differentiable such that

g′′ is bounded and square integrable, mise converges to zero at an optimal rate of

n−4/5 where n here is the sample size. In Section 2.2, we will show that our density

estimator is consistent in quadratic mean and mise converges to zero at an optimal

rate of c−4/7 where c is the computer budget and can be thought of as the sample

size. This is the same rate that Steckley and Henderson [2003] computed for the

case in which Z is univariate.

We also consider a local version of our estimator. A local kernel density estima-

tor is a modification of the naive estimator that is often quite effective in practice.

It allows the bandwidth to be a function of the point at which g is being estimated.

Let ĝL denote the local estimator in the standard density estimation setting. It

has the form (e.g., Jones [1990])

ĝL(x; h) =
1

n

n∑
i=1

1

h(x)
K

(
x− Yi

h(x)

)
. (1.3)
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It has been shown that mise convergence for this estimator is better than that of

the naive estimator. The optimal rate of convergence is actually the same but the

constant multiplier of the rate is smaller (e.g., Jones [1990]).

We will also consider a bias-corrected version of our estimator. Jones and

Signorini [1997] review bias-correction in kernel density estimation. We implement

a method similar to jackknife bias-correction. For an introduction to the jackknife,

see Efron and Tibshirani [1993]. In Section 2.4, we show that mse converges to

zero at a rate of c−8/11.

Kernel smoothing methods require the selection of the smoothing parameter

which essentially controls the width of the kernel which in turn determines how

much of the neighboring data is used in estimation at a particular location. The

performance of kernel smoothing is quite dependent on this choice of the band-

width. A good part of the kernel density estimation literature is devoted to the

selection of the smoothing parameter. For a review of this literature see Wand and

Jones [1995]. Schulman [1998] reviews some modern bandwidth selection methods

in the context of local polynomial regression, a type of kernel regression. One such

method is the empirical-bias bandwidth selection (EBBS) developed by Ruppert

[1997]. In our setting, we must choose the bandwidth but equally important, we

must choose the number of samples of Z and conditional on a given Z, the number

of samples of X for a given computer budget. Applying the ideas from EBBS, we

develop a data-driven method to select each of these parameters.

In the next section we introduce the problem of computing service system

performance. As we mentioned before, given an unknown customer arrival process,

this problem is an example of the kind of input model uncertainty problem to which

our kernel density estimator can be applied.
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1.3 Service System Performance Given Uncertainty in the

Arrival Process

Finding the optimal staffing level in service systems involves computing perfor-

mance and cost for a range of potential staffing levels. Computing the cost is

straightforward. Computing performance is more difficult. We explore the ques-

tion of how to compute performance for a given staffing level, focusing on the

situation when the arrival rate of calls to the call center cannot be determined

with certainty. More specifically we examine the questions of what to compute,

how to compute it, and what are the probable implications of ignoring uncertainty

associated with the arrival process.

We define performance to be the fraction of customers that wait less than a

prescribed amount of time in the queue before being served. This is a commonly

used metric and is sometimes referred to as the “service level” metric.

As we alluded to in Section 1.1, the term “uncertainty” has several possible

interpretations. One interpretation is as follows. On any given day (the choice of

days as a time scale is arbitrary but seems appropriate) it is quite reasonable to

model the arrival process of calls as a nonhomogeneous Poisson process (NHPP)

with time-dependent rate function Λ = (Λ(t) : t ≥ 0). This follows from the

Palm-Khintchine theorem (e.g., Whitt [2002, p. 318]) that states that the super-

position of arrivals from a large number of independent potential customers is well

approximated by a Poisson process. The rate function depends on the propensity

of customers to call, which in turn can depend on factors that cannot be planned

for in advance, such as weather, marketing promotions, and competitor behavior.

This situation can be modeled by viewing the rate function Λ as random. Once
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the rate function is realized for a given day (e.g., after the weather, marketing pro-

motions, or behavior of competitors is revealed), the arrival rate function is then

fixed, and call arrivals follow a NHPP with the realized rate function. We call

this interpretation the randomly varying arrival rate (RVAR) case. This situation

seems to be quite common (Avramidis et al. [2004], Brown et al. [2005], Steckley

et al. [2005]).

A second interpretation relates to forecast error. In this setting we believe that

there is a true deterministic arrival rate function λ = (λ(t) : t ≥ 0) but we do not

know what it is. Unlike the RVAR case, the arrival rate function does not vary from

day to day. The uncertainty here arises due to our lack of perfect knowledge of λ.

For example, the response to a one-time marketing campaign fits this framework.

If we model our uncertainty through a random function Λ = (Λ(t) : t ≥ 0) then we

again have a random arrival rate, but the interpretation is quite different to the

RVAR case. We call this case the unknown arrival rate (UAR) case. The example

in Section 1.1 is a UAR case. It is this type of situation, one that is characterized

by input uncertainty, that is the motivation for the work on estimating the density

of a conditional expectation.

A hybrid situation where the distribution of the arrival rate in the RVAR case

is unknown is also possible, if not typical, but while it may be the “correct”

abstraction it also seems unwieldy. We do not consider that possibility further.

For each of these interpretations of uncertainty in the arrival process, we iden-

tify the appropriate measures for both long-run and short-run performance. Long-

run performance measures the long-run fraction of satisfactory calls over a large

number of days. Short-run performance measures performance for a single instance

of a day. It answers the question: “What might happen tomorrow?”
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We also discuss how to compute each of these performance measures. A com-

mon approach is to use closed-form expressions based on steady-state results for

simple queueing models. When such approximations are inaccurate or infeasible,

simulation provides an alternative way to compute performance. We discuss both

steady-state approximations and simulation-based estimates.

Grassmann [1988] modeled forecast errors using a random arrival rate. Thomp-

son [1999] and Jongbloed and Koole [2001] gave methods for staffing when the

arrival rate is random. Whitt [1999] suggested a particular form of the random

arrival rate for capturing forecast uncertainty. Chen and Henderson [2001] studied

the potential impact of ignoring the issue on predictions. Ross [2001, Chapter 4]

developed extensions to the “square-root staffing rule” to account for a random

arrival rate. Avramidis et al. [2004] developed several different arrival process

models and compared their fit to call center data. They also found that perfor-

mance measures depend fairly strongly on the arrival process. Deslauriers et al.

[2004] show that it is appropriate in their setting to weight performance by the

arrival rate. Gans et al. [2003] discuss this issue as part of a survey of the area of

call center design and management. Brown et al. [2005] developed an autoregres-

sive model for the arrival rate that can capture correlation across different days.

Harrison and Zeevi [2005] developed an economic model based on attaching costs

to abandonment and agent levels. Mathematical support for their model is given

in Bassamboo et al. [2004]. Whitt [2004] gives an economic analysis for a special

case of the Harrison-Zeevi model, offering 2 computational approaches for estimat-

ing performance. Both the Harrison-Zeevi and Whitt papers address the RVAR

case. We do not adopt an economic model here, instead working directly with

performance measures associated with the waiting time distribution of a “typical”
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customer. In addition to a random arrival rate, Whitt [2004] deals explicitly with

absenteeism, which he models through a random number of servers being available.

We do not consider a random number of servers, although it is possible to capture

that phenomenon in a straightforward manner in the RVAR case.

1.4 Thesis Organization

In the remaining section of this introductory chapter, Section 1.5, we present some

mathematical preliminaries. We give some basic definitions and elementary results

that serve as the foundation for this work.

In Chapter 2 we formulate estimators for the density of the conditional expec-

tation and present convergence results. In Section 2.1, we formulate our “naive”

estimator of the conditional expectation. This estimator is motivated by the naive

estimator for standard kernel density estimation. In Section 2.2, we present con-

vergence results and proofs for our naive estimator. We show the estimator is

consistent in quadratic mean and, under stronger assumptions, derive expressions

for the asymptotic mse and mise, respectively. Using the expression for the asymp-

totic mise, we compute the optimal rate of convergence of mise. In Sections 2.3

and 2.4 we present estimators that are modifications of the one formulated in Sec-

tion 2.1. In Section 2.3 we consider a local version and in Section 2.4 we consider

a bias-corrected version. We derive asymptotic expressions of the mse for both

estimators and in the case of the bias-corrected estimate, we see an improvement

in the optimal rate of convergence.

In Chapter 3, we address the implementation of the estimators for the density of

the conditional expectation discussed in Chapter 2 and study their performance.

Section 3.1 considers the implementation which requires specifying a number of
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inputs. For some of these inputs, we develop a data-based selection method based

on the ideas of empirical-bias bandwidth selection (EBBS) used in local polynomial

regression (Ruppert [1997]). We discuss the reasons for choosing this method and

present the algorithm. In Section 3.2, we then compare the performance of the

estimators for some simulated test cases. We consider representative plots and

study the behavior of estimated mise for each of the estimators.

In Chapter 4 we turn to the computation of service system performance in

the presence of an uncertain arrival rate. In Section 4.1 we consider the RVAR

case and the performance measure giving the long-run fraction of customers that

wait less than a prescribed amount of time in queue before receiving service. We

give an expression for this quantity, and then consider approximations given by

steady-state expectations. We also show that performance will typically be over-

estimated if a randomly-varying arrival rate is ignored. We then turn to short-run

performance, which is the distribution of the fraction of calls answered in the given

time limit for a single instance of a period. We give a steady-state approximation

based on a central limit theorem. The section concludes by discussing how one

can use simulation to estimate both short-run and long-run performance measures

efficiently. In Section 4.2 we consider the UAR case and again suggest appro-

priate performance measures for the short-run and long-run. We again consider

approximations based on steady-state expectations. The section concludes with

a discussion of simulation procedures to estimate the performance measures, in-

cluding one which involves the density of a conditional expectation. In Section 4.3

we describe a set of experiments designed to examine performance for the RVAR

case. Specifically, we wanted to determine which factors impact the performance

measures discussed in Section 4.1, assess the quality of the approximations as com-
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pared to the simulation-based estimates of performance, and learn more about the

behavior of systems with a random arrival rate.

1.5 Mathematical Preliminaries

In this section we give basic definitions and results for the conditional expectation

(Section 1.5.1), the conditional distribution (Section 1.5.2), and the conditional

density (Section 1.5.3).

1.5.1 Conditional Expectation

The following definition of a conditional expectation can be found in, e.g., Billings-

ley [1995].

Definition 1 Let X be an integrable random variable on the probability space

(Ω,F , P ) and let G be a σ-field in F . There exists a random variable E(X|G )

called the conditional expected value of X given G , having these two properties:

(i) E(X|G ) is measurable G and integrable;

(ii) E(X|G ) satisfies the functional equation

∫

G

E(X|G ) dP =

∫

G

X dP, G ∈ G .

In general, there will be many random variables that satisfy the properties of the

definition, and each of these random variables is considered a version of the condi-

tional expected value of X given G . Any two versions are equal with probability

one.

Let Z be a random variable defined on the probability space (Ω, F , P ). We

write E(X|Z) for E(X|σ(Z)).
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1.5.2 Conditional Distribution Function

A conditional expectation can also be defined in terms of the conditional proba-

bility distribution. The conditional probability distribution itself is important to

us. Breiman [1968] gave the following definition.

Definition 2 Let G be a σ-field in F . The conditional probability of A ∈ F given

G is a random variable P(A|G ) on (Ω,G ) satisfying

∫

G

P(A|G ) dP = P (A ∩G), G ∈ G .

Once again there could be many random variables that satisfy the definition, all of

which are referred to as versions of the conditional probability of A ∈ F given G .

There may not exist a version P∗(A|G ) that gives a probability distribution on F

for every ω ∈ Ω. When such a version does exist, it is called a regular conditional

probability.

Let B1 denote the Borel σ-field in one-dimension. Breiman [1968] defined a

Borel space (Ω,B) as follows.

Definition 3 Call (Ω,B) a Borel space if there is an E ∈ B1 and a one-to-one

mapping φ : Ω ↔ E such that φ is B-measurable and φ−1 is B1-measurable.

In a certain sense, a space (Ω,B) is a Borel space if it looks like the measurable

space (R,B1). Breiman [1968] showed that if X takes values in a Borel space

then there is a regular conditional distribution for X given Z. Of course, if X is a

(real-valued) random variable, then there exists a regular conditional distribution.

The existence of a regular conditional distribution will be important to us beyond

simply allowing us to define the conditional expectation. For example, in assuming

that we can generate i.i.d. observations from the conditional distribution P (X ∈
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· |Z = z) for any z in the range of Z it is enough to assume that the regular

conditional distribution exists.

1.5.3 Conditional Density

The existence of densities is also of obvious importance. Billingsley [1995] gave the

following definition of the density of a measure.

Definition 4 A measure ν on (Ω,F ) is said to have density δ with respect to µ

on (Ω, F ) if δ is a nonnegative measurable function that satisfies

ν(A) =

∫

A

δ dµ, A ∈ F .

Again, there can be multiple versions of the density but any two versions differ

on a set of µ-measure 0. The Radon-Nikodym theorem states that if ν and µ are

σ-finite and ν is absolutely continuous with respect to µ, then the density δ exists.

We are concerned only with the case that ν is some probability measure P

and µ is Lebesgue measure. In this case, P has density f if f is a nonnegative

measurable function that satisfies

P(A) =

∫

A

f(x) dx, A ∈ F .



Chapter 2

Estimating the Density of the

Conditional Expectation and

Convergence Results
In this chapter we formulate the estimators for the conditional expectation and

present convergence results. In Section 2.1, we formulate a naive estimator that

is motivated by the naive estimator for standard kernel density estimation. In

Section 2.2, we present convergence results and proofs for the naive estimator. In

Section 2.2.1, we show the estimator is consistent in quadratic mean. In Section

2.2.2 expressions for the asymptotic mse and mise are derived under stronger as-

sumptions. In practice these assumptions will be difficult to verify but the results

suggest the kind of asymptotic behavior that we might expect. Using the expres-

sion for the asymptotic mise, we compute the optimal rate of convergence of mise.

The proofs of the results are given in Section 2.2.3. In Sections 2.3 and 2.4 we

present estimators that are modifications of the one formulated in 2.1. In Section

2.3 we consider a local version and in Section 2.4 we consider a bias-corrected ver-

sion. We derive asymptotic expressions of the mse for both estimators and in the

case of the bias-corrected estimate, we establish an improvement in the optimal

rate of convergence.

15
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2.1 Estimation Methodology

Our problem is very similar in structure to that of Lee and Glynn [2003]. Accord-

ingly, we adopt much of their problem structure and assumptions in what follows.

We assume the ability to

1. draw samples from the distribution P (Z ∈ ·), and

2. for any z in the range of Z, to draw samples from the conditional distribution

P (X ∈ · |Z = z).

Let f denote the (target) density of E(X|Z), which we assume exists. Let (Zi :

1 ≤ i ≤ n) be a sequence of independent, identically distributed (i.i.d.) copies of

the random variable Z. Conditional on (Zi : 1 ≤ i ≤ n), the sample (Xj(Zi) :

1 ≤ i ≤ n, 1 ≤ j ≤ m) consists of independent random variables in which

Xj(Zi) follows the distribution P (X ∈ · |Z = Zi). For ease of notation define

µ(·) ≡ E(X|Z = ·) and σ2(·) ≡ var(X|Z = ·).
In Section 1.2 we introduced the naive kernel estimator in the standard density

estimation setting. In this setting we have a random variable Y with unknown

density g, and a sequence (Yi : 1 ≤ i ≤ n) of i.i.d. copies of the random variable

Y . In (1.2) we gave the formula of the naive kernel density estimator ĝ evaluated

at x. We repeat the formula here:

ĝ(x; h) =
1

n

n∑
i=1

1

h
K

(
x− Yi

h

)
.

The kernel K is typically chosen to be a unimodal probability density function

(p.d.f.) that is symmetric about zero, and the smoothing parameter h, often

referred to as the bandwidth, is a positive number (e.g., Wand and Jones [1995]).

The estimator can be crudely described as the sum of equally weighted kernels
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centered at each realization Yi. If the kernel is a p.d.f., the kernel spreads out the

mass of 1/n symmetrically about the neighborhood of Yi. In the case that K is

the p.d.f. of a standard normal random variable, h is the standard deviation and

thus gives the spread of the kernels.

This estimator immediately suggests that we can estimate f(x), the density of

E(X|Z) evaluated at x, by

f̂(x; m,n, h) =
1

n

n∑
i=1

1

h
K

(
x− X̄m(Zi)

h

)
, (2.1)

where

X̄m(Zi) =
1

m

m∑
j=1

Xj(Zi) for i = 1, . . . , n.

Note that the values X̄m(Zi) at which the kernels are centered are not realizations

of the random variable E(X|Z) as in the standard kernel density estimation setting

described above, but rather estimates thereof. The observations used in the kernel

density estimator are thus measured with error.

This measurement error will lead to additional smoothing in our estimator.

For the kernel density estimator (1.2), the data is smoothed by the kernel K. The

extent to which the data is smoothed is determined by the bandwidth h. The

larger the bandwidth, the more the data is smoothed. For the kernel estimator

of the conditional expectation (2.1), along with the smoothing from the kernel

K, there is additional smoothing that results from the measurement error. A

similar double smoothing was noted in Staudenmayer [2000]. He considered the

problem of local polynomial regression in which the covariates are measured with

error. The double smoothing increases the bias of our estimator given in (2.1) as

compared with the estimator (1.2). Specifically, the additional smoothing results

in an additional leading term in the bias expansion, and thus an additional leading
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term in the mse and mise expansions given in Theorems 2 and 3 of Section 2.2.2.

There has been work on a related problem known as the deconvolution problem.

Similar to our problem, the goal is density estimation when the observations are

measured with error. See Wand and Jones [1995] for a discussion of this work.

But to the best of my knowledge, as the name suggests, all such work on the

deconvolution problem makes a crucial assumption that we do not. In particular,

let (Xi : 1 ≤ i ≤ n) be a random sample with common density g which is to be

estimated. Let (Yi : 1 ≤ i ≤ n) be the actual observed data. In the deconvolution

problem it is assumed that

Yi = Xi + Ui, i = 1, . . . , n,

where, for each i, the random variable Ui is independent of Xi and has a common

distribution (Carrol and Hall [1988]). In our setting,

X̄m(Zi) = E(X|Zi) + Ui, i = 1, . . . , n.

We assume that Ui has a known distribution but we do not assume that Ui is

independent of E(X|Zi).

2.2 Convergence Results

In this section we study the error in the estimator f̂(x; m(c), n(c), h) as the com-

puter budget c goes to infinity. For any fixed c, the number of internal samples m,

and the number of external samples n, must be chosen so that the total computa-

tional effort required to generate the estimator is approximately c. Note that m(c)

and n(c) are thus functions of the computer budget c. Following Lee and Glynn

[2003], the computational effort required to compute f̂(x; m(c), n(c), h) is taken as

δ1n(c) + δ2n(c)m(c),
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where δ1 and δ2 are the average computational effort used to generate Zi and

Xj(Zi) conditional on Zi, respectively.

We assume that m(c) → ∞ as c → ∞ so that X̄m(c)(z0) → E(X|z0) almost

surely. Assuming m(c) →∞, δ1n(c) + δ2n(c)m(c) ≈ δ2n(c)m(c). One can assume

δ2 = 1 without loss of generality. Then m(c) and n(c) must be chosen to satisfy

the asymptotic relationship m(c)n(c)/c → 1 as c →∞.

The bandwidth h = h(c) is also a function of c. To keep the notation less cum-

bersome, the dependence of m, n, and h on c will be suppressed in the calculations.

We will present results concerning the convergence of the estimator as the

computer budget c tends to ∞. We consider the following two error criterion. For

all x ∈ R, define the mean squared error (mse) of the estimator evaluated at x as

mse(f̂(x; m,n, h)) = E
(
f̂(x; m,n, h)− f(x)

)2
.

Define the mean integrated squared error (mise) of the estimator as

mise(f̂(·; m,n, h)) = E

∫ (
f̂(x; m,n, h)− f(x)

)2
dx.

These error criteria are not without drawbacks (see Devroye and Lúgosi [2001])

but the mathematical simplicity is appealing.

Before stating our results, we consider the distribution of the observations

(X̄m(Zi) : 1 ≤ i ≤ n) and in doing so, we will collect some of the assump-

tions needed for the results. Let N(α1, α2) denote a normally distributed random

variable with mean α1 and variance α2. For two random objects X and Y , de-

fine the notation X =d Y to mean X and Y are equal in distribution. Recall

µ(·) ≡ E(X|Z = ·) and σ2(·) ≡ var(X|Z = ·). Throughout this thesis we assume

the following:
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A1. Conditional on (Zi : 1 ≤ i ≤ n), X̄m(Zi) =d N(µ(Zi),m
−1σ2(Zi)) for

i = 1, . . . , n and (X̄m(Zi) : 1 ≤ i ≤ n) are conditionally independent.

This essentially implies that the internal samples X(Z) conditional on Z are unbi-

ased and normally distributed. Of course, if the central limit theorem holds, then

for large m this assumption is approximately true.

We now turn to the distribution of the unconditional observations (X̄m(Zi) :

1 ≤ i ≤ n) (unless otherwise specified, the random variables (X̄m(Zi) : 1 ≤
i ≤ n) are taken to be unconditional on (Zi : 1 ≤ i ≤ n)). First note that

(X̄m(Zi) : 1 ≤ i ≤ n) are i.i.d., Second, observe that under Assumption A1,

X̄m(Zi) =d Yi + Si
1

m

m∑
j=1

Uij for i = 1, . . . , n,

where

(i) ((Y1, S1), . . . , (Yn, Sn)) are i.i.d. with (Yi, Si) =d (µ(Z), σ(Z));

(ii) (Uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m) are i.i.d. with Uij =d N(0, 1).

Let Um
i = m−1/2

∑m
j=1 Uij so that for i = 1, . . . , n,

X̄m(Zi) =d Yi + Si
1

m

m∑
j=1

Uij

= Yi +
Si√
m

Um
i .

Note that Um
i =d N(0, 1) for i = 1, . . . , n, and (Um

i : 1 ≤ i ≤ n) are i.i.d.,

Let Fm denote the distribution function of X̄m(Zi). Assuming P(S = 0) = 0,

Fm(x) = P

(
Yi +

Si√
m

Um
i ≤ x

)

= P

(
Um

i ≤ (x− Yi)
√

m

Si

)
.

The following is also assumed throughout:
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A2. For each y ∈ R such that f(y) > 0, the conditional density with respect to

Lebesgue measure of the conditional distribution P(σ(Z) ∈ · |µ(Z) = y)

exists. Denote this density g(·|y).

Since σ(Z) and µ(Z) are random variables we know that the regular conditional

distribution P(σ(Z) ∈ · |µ(Z) = y) exists for all y ∈ R. This assumption simply

requires that for each y ∈ R such that f(y) > 0, P(σ(Z) ∈ · |µ(Z) = y) is

absolutely continuous with respect to Lebesgue measure.

We believe that when Z is of dimension 2 or greater, there will be many cases in

which A2 is satisfied. However, for univariate Z, A2 will rarely hold. By assuming

A2 in this thesis, we focus on the case in which Z is of dimension 2 or greater.

Steckley and Henderson [2003] treat the case in which Z is univariate and µ is

monotone. Their results for mise are very similar to the ones presented in this

thesis. The proofs are somewhat simpler but require different methods. For the

sake of space, we omit these results and proofs and refer the reader to Steckley

and Henderson [2003].

Assuming A2,

Fm(x) = P

(
Um

i ≤ (x− Yi)
√

m

Si

)

=

∫ ∫
P

(
Um

i ≤ (x− y)
√

m

s

)
g(s|y)f(y) ds dy,

where g(·|y) can be defined arbitrarily for y ∈ R such that f(y) = 0. Let Φ

and φ denote the standard normal cumulative distribution function and density,

respectively. In this notation,

Fm(x) =

∫ ∫
Φ

(
(x− y)

√
m

s

)
g(s|y)f(y) ds dy

= E

(
Φ

(
(x− Y )

√
m

S

))
.
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Assuming we can differentiate the RHS, and interchange the derivative and expec-

tation, we have that the density fm of the distribution function Fm exists and is

given by

fm(x) =

∫ ∫ √
m

s
φ

(
(x− y)

√
m

s

)
g(s|y)f(y) ds dy. (2.2)

A sufficient condition for the interchange is

A3.
∫∫

(1/s) g(s|y)f(y) ds dy < ∞.,

as can be seen from Lemma 1 below, which comes from a result given by L’Ecuyer

[1990] and L’Ecuyer [1995] (see also Glasserman [1988]).

Lemma 1 Let G be a probability measure on a measurable space (Ω,F). Define

h(x) =

∫
h(x, ω) dG(ω)

and

h′(x0, ω) =
d

dx
h(x, ω)|x=x0 .

Let x0 ∈ S0, where S0 is an open interval. Let H be such that G(Hc) = 0. Assume

that for all ω ∈ H, there exists D(ω) where D(ω) is at most countable, such that

1. for all ω ∈ H, h(·, ω) is continuous everywhere in S0;

2. for all ω ∈ H, h(·, ω) is differentiable everywhere in S0 \D(ω);

3. for all ω ∈ H, |h′(x, ω)| ≤ b(ω) for all x ∈ S0 \D(ω) and
∫

b(ω) dG(ω) < ∞;

4. h(x, ω) is almost surely differentiable at x = x0.

Then h is differentiable at x0 and

h′(x0) =

∫
h′(x0, ω) dG(ω).
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Returning to the density of the observations X̄m(Z) given in (2.2), the change

of variable z = (x− y)
√

m, gives

fm(x) =

∫ ∫
1

s
φ

(z

s

)
g(s|x− z√

m
)f(x− z√

m
) ds dz.

Suppose f(·) is continuous. For y such that f(y) = 0, suppose that g(·|y) can be

defined so that g(s|·) is continuous for all s ∈ R. We assume the following:

A4. For almost all y ∈ R, g(·|y) is nonnegative;

A5. For almost all y ∈ R, g(s|y) = 0 for s < 0.

The Assumptions A4 and A5 are certainly true for y such that f(y) > 0 since in

that case g(·|y) is a density for a nonnegative random variable. Under A4, the

order of integration can be changed so that

fm(x) =

∫ ∫
1

s
φ

(z

s

)
g(s|x− z√

m
)f(x− z√

m
) dz ds. (2.3)

It will be useful to think in terms of the joint density of µ(Z) and σ(Z). Let

us denote this density by α. Of course

α(x, s) = g(s|x)f(x). (2.4)

Define for nonnegative integer k,

α(k+1)(x, s) =
d

dy
α(k)(y, s)

∣∣
y=x

, (2.5)

where α(0)(x, s) = α(x, s). Also define for nonnegative integer k,

g(k+1)(s|x) =
d

dy
g(k)(s|y)

∣∣
y=x

,

where g0(s|x) = g(s|x).

For ease of notation we define the following set of Assumptions parameterized

by nonnegative integer k as A6(k).
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1. f(·) is k times continuously differentiable;

2. for all s ∈ R, g(s|·) is k times continuously differentiable;

3. ∃Bf > 0 such that |f (j)(·)| ≤ Bf for j = 0, 1, . . . , k;

4. ∃Bg > 0 such that |g(j)(·|·)| ≤ Bg for j = 0, 1, . . . , k;

5. ∃BS > 0 such that σ2(·) ≤ BS everywhere.

Note that f (0) and g(0) are simply f and g, respectively, and when k = 0, Assump-

tions 1 and 2 imply that f(·) and g(s|·) are continuous.

2.2.1 Consistency in quadratic mean

The following theorem gives sufficient conditions for the consistency in quadratic

mean for the estimator formulated in (2.1).

Theorem 1 Assume A1-A5, and A6(0). Also assume that

1. K is a bounded probability density;

2. m →∞, h → 0, and nh →∞, as c →∞.

Then for all x ∈ R,

lim
c→∞

mse(f̂(x; m,n, h)) = 0.

A proof is given in Section 2.2.3.

2.2.2 Asymptotic expressions for mse and mise

We now turn to the asymptotic expressions of mse and mise. More restrictive

Assumptions are needed to compute these asymptotic expansions. For one thing,
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it is assumed that the function f(·) and the set of functions {g(s|·) : s ∈ R} are

four times continuously differentiable.

Before stating the results let us introduce the notation o and O. For sequences

of real numbers an and bn, we say that

an = o(bn) as n →∞ iff lim
n→∞

an/bn = 0.

For sequences of real numbers an and bn, we say that

an = O(bn) as n →∞ iff ∃C s.t. an ≤ Cbn for n sufficiently large.

Theorem 2 Assume A1-A5, and A6(4). Also assume

1. K is a bounded probability distribution function symmetric about zero with

finite second moment;

2. m →∞, n →∞, h → 0, and nh →∞ as c →∞.

Then

mse(f̂(x; m,n, h)) =

(
h2 1

2
f ′′(x)

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

+
1

nh
f(x)

∫
K2(u) du + o

((
h2 +

1

m

)2

+
1

nh

)
, (2.6)

where α is defined in (2.4) and (2.5).

The asymptotic expansion of mise follows.

Theorem 3 Assume A1-A5 and A6(4). Also assume

1. f ′′(·) is ultimately monotone;

2. f (k)(·) is integrable for k = 1, 2, 3, 4;
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3. K is a bounded probability density function symmetric about zero with finite

second moment;

4. m →∞, n →∞, h → 0, and nh →∞ as c →∞.

Then

mise(f̂(·; m,n, h)) =

∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

+
1

nh

∫
K2(u) du

+ o

((
h2 +

1

m

)2

+
1

nh

)
, (2.7)

where α is defined in (2.4) and (2.5).

Theorem 3 follows from Theorem 2 provided the o term in (2.6) is integrable.

Proofs of Theorems 2 and 3 are presented in Section 2.2.3.

Compare (2.7) to the mise for standard kernel density estimation (e.g., Wand

and Jones [1995]),

mise(ĝ(·; h)) =

∫ (
h2 1

2

(∫
u2K(u) du

)
g′′(x)

)2

dx +
1

nh

∫
K(u)2 du

+ o

(
h4 +

1

nh

)
. (2.8)

To aid in the comparison, recall that mse can be decomposed into a squared bias

term and a variance term:

mse(f̂(x; m,n, h)) = bias2(f̂(x; m,n, h)) + var(f̂(x; m,n, h)) ∀x ∈ R (2.9)

where

bias(f̂(x; m, n, h)) = E(f̂(x; m, n, h))− f(x).

We have a similar decomposition for mise:

mise(f̂(·; m, n, h)) =

∫
bias2(f̂(x; m,n, h)) dx +

∫
var(f̂(x; m,n, h)) dx. (2.10)
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We see that mise can be decomposed into integrated squared bias and integrated

variance. We get similar formulas for the standard kernel density estimator ĝ.

Note the O(1/nh) terms in the mise expansions in (2.7) and (2.8) are the same for

both estimators. In the proof of Theorem 3 we show that this term is the leading

term for the integrated variance. The remaining leading terms in (2.7) and (2.8)

are those of the integrated squared bias.

For our estimator f̂ , the bias itself can be further decomposed. Suppose that

the density of an observation X̄m(Z) exists and is given by fm(·). Then

bias(f̂(x; m,n, h)) = (E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x)) (2.11)

The first component, E(f̂(x; m,n, h)) − fm(x), is the expected distance from our

kernel estimator to the density of the observations X̄m(Z). We can think of this

as the bias due to the kernel smoothing. The second component, fm(x)− f(x), is

the distance from the density of the observations to the true target density. If the

observations were measured with no error, then this distance would be zero. We

can therefore think of this as the bias due to measurement error.

Both the standard kernel density estimator and our estimator are biased due to

the kernel smoothing. The proof of Theorem 3 shows that the leading term of this

bias is the O(h2) term seen in the mise expansion (2.7) for f̂ . This same O(h2)

term is present in (2.8), the mise expansion of ĝ. This term shows that bias is

dependent on the curvature of the target density through the second derivative of

the target density. In addition, our estimator also has a bias component due to the

measurement error. The leading term of this component is the O(1/m) term in

(2.7). As expected, the bias of our estimator due to the measurement error in the

observations X̄m(Zi), i = 1, . . . , n, decreases as the number of internal samples m

increases. Also note that the bias of our estimator due to the measurement error
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depends on the distribution of the conditional variance function σ2(·) through α.

The asymptotic mise for our estimator f̂ is

∫ (
h2 1

2

(∫
u2K(u)du

)
f ′′(x)+

1

m

1

2

∫
s2α(2)(x, s)ds

)2

dx+
1

nh

∫
K2(u)du.(2.12)

By choosing m, n, and h to minimize this asymptotic mise, we can achieve the

optimal asymptotic convergence. Define

A =

√√√√
√ ∫

β2(x)2 dx

2
∫

β1(x)2 dx
+

(
∫

β1(x)β2(x) dx)2

16(
∫

β1(x)2 dx)2
−

∫
β1(x)β2(x) dx

4
∫

β1(x)2 dx
,

where

β1(x) =
f ′′(x)

2

∫
u2K(u) du

and

β2(x) =
1

2

∫
s2α(2)(x, s) ds.

Then the optimal m, n, and h, denoted m∗, n∗, and h∗, are

m∗ =

(
2A3

∫
β1(x)β2(x) dx + 2A

∫
β2(x) dx∫

K2(u) du

)2/7

c2/7, (2.13)

n∗ =

( ∫
K2(u) du

2A3
∫

β1(x)β2(x) dx + 2A
∫

β2(x) dx

)2/7

c5/7, and (2.14)

h∗ = A

( ∫
K2(u) du

2A3
∫

β1(x)β2(x) dx + 2A
∫

β2(x) dx

)1/7

c−1/7. (2.15)

Substituting m∗, n∗, and h∗ into (2.12) shows that the optimal rate of convergence

is of the order c−4/7. In fact, when m, n, and h are chosen such that m is of the

order c2/7, n is of the order c5/7, and h is of the order c−1/7 the optimal rate of

convergence of mise is achieved. We note that for the case in which Z is assumed to

be univariate, the optimal rate of convergence is also c−4/7 (Steckley and Henderson

[2003]).

In standard kernel density estimation, the optimal rate of convergence is c−4/5

(Wand and Jones [1995]). The decrease in the rate of convergence is a consequence



29

of the additional bias in our estimator due to measurement error. For each of the

n observations X̄m(Zi), we must use m units of computer time to deal with the

measurement error bias, and m → ∞ as c → ∞. In the standard kernel density

estimation setting, each observation requires only one unit of computer time since

there is no measurement error.

Although we phrased the optimal rate of convergence in terms of mise, the same

applies to the mse. So the optimal rate of convergence of mse for our estimator

f̂(x; m,n, h) is c−4/7.

2.2.3 Proofs

In this section, we present the proofs of Theorems 1, 2, and 3.

The proof of the consistency in quadratic mean

The following lemma is useful in the proof of Theorem 1.

Lemma 2 Assume A1-A4 and A6(0). Also assume that

1. K is nonnegative and integrable;

2. m →∞ and h → 0 as c →∞.

Then

lim
c→∞

∫
1

h
K

(
x− y

h

)
fm(y) dy = f(x)

∫
K(u) du.
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Proof: By (2.3),

∫
1

h
K

(
x− y

h

)
fm(y) dy

=

∫
1

h
K

(
x− y

h

)∫∫
1

s
φ

(z

s

)
g(s|y − z√

m
)f(y − z√

m
) dz ds dy

=

∫∫∫
1

h
K

(
x− y

h

)
1

s
φ

(z

s

)
g(s|y − z√

m
)f(y − z√

m
) dz ds dy

=

∫∫∫
K(u)

1

s
φ

(z

s

)
g(s|x− uh− z√

m
)f(x− uh− z√

m
) dz ds du.(2.16)

We will show that there exists an integrable function f̃ such that for all c > C, for

some nonnegative number C,

K(u)
1

s
φ

(z

s

)
g(s|x− uh− z√

m
)f(x− uh− z√

m
) ≤ f̃(s, z, u). (2.17)

Then by Lebesgue’s dominated convergence theorem,

lim
c→∞

∫
1

h
K

(
x− y

h

)
fm(y) dy

=lim
c→∞

∫∫∫
K(u)

1

s
φ

(z

s

)
g(s|x− uh− z√

m
)f(x− uh− z√

m
) dz ds du

=

∫∫∫
lim
c→∞

K(u)
1

s
φ

(z

s

)
g(s|x− uh− z√

m
)f(x− uh− z√

m
) dz ds du

=

∫∫∫
K(u)

1

s
φ

(z

s

)
lim
c→∞

g(s|x− uh− z√
m

)f(x− uh− z√
m

) dz ds du.(2.18)

For any given u ∈ R, uh → 0 and for any given z ∈ R, z/
√

m → 0 as c → ∞.

Then, by the continuity of f(·) and g(s|·),

lim
c→∞

g(s|x− uh− z√
m

)f(x− uh− z√
m

) = g(s|x)f(x) ∀s ∈ R.

Thus,

lim
c→∞

∫
1

h
K

(
x− y

h

)
fm(y) dy =

∫∫∫
K(u)

1

s
φ

(z

s

)
g(s|x)f(x) dz ds du

= f(x)

∫∫∫
K(u)

1

s
φ

(z

s

)
g(s|x) du dz ds

= f(x)

∫
K(u) du

∫
g(s|x) ds.
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The second equality follows from an application of Fubini’s Theorem for a nonneg-

ative integrand. For x ∈ R such that f(x) is nonzero,
∫

g(s|x) ds = 1. The result

then follows, once we establish (2.17). By Assumptions A5 and A6(0),

K(u)
1

s
φ

(z

s

)
g(s|x− uh− z√

m
)f(x− uh− z√

m
)

≤ K(u)
1

s
φ

(z

s

)
I(0 < s ≤ BS)BgBf

= f̃(s, z, u).

¤

Proof of Theorem 1: Let x be arbitrary. Recall the decomposition of

mse(f̂(x; m,n, h)) in (2.9). Since (X̄m(Zi) : 1 ≤ i ≤ n) are i.i.d. with common

probability density fm,

E(f̂(x; m,n, h)) = E

(
1

n

n∑
i=1

1

h
K

(
x− X̄m(Zi)

h

))

= E

(
1

h
K

(
x− X̄m(Zi)

h

))

=

∫
1

h
K

(
x− y

h

)
fm(y) dy.

Since K is a probability density and thus nonnegative and integrable, all of the

assumptions for Lemma 2 hold, and so

lim
c→∞

E(f̂(x; m,n, h)) = f(x)

∫
K(u) du

= f(x).

It follows that bias2(f̂(x; m,n, h)) tends to zero as c →∞.
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Again since (X̄m(Zi) : 1 ≤ i ≤ n) are i.i.d. with common probability density

fm,

var(f̂(x; m,n, h)) = var

(
1

n

n∑
i=1

1

h
K

(
x− X̄m(Zi)

h

))

=
1

n
var

(
1

h
K

(
x− X̄m(Zi)

h

))

=
1

n
E

(
1

h
K

(
x− X̄m(Zi)

h

))2

− 1

n

(
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

=
1

nh
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
− 1

n

(
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

(2.19)

≤ 1

nh
E

(
1

h
K2

(
x− X̄m(Zi)

h

))

=
1

nh

∫
1

h
K2

(
x− y

h

)
fm(y) dy.

Since K is a bounded probability density, K2 is integrable. Therefore Lemma 2

holds and

lim
c→∞

∫
1

h
K2

(
x− y

h

)
fm(y) dy = f(x)

∫
K2(u) du < ∞.

Now, 1/nh tends to zero as c →∞, and so

lim
c→∞

var(f̂(x; m,n, h)) = 0.

By the decomposition in (2.9),

lim
c→∞

mse(f̂(x; m,n, h)) = 0,

and since x was arbitrary, the result follows.

¤

The proofs of the asymptotic expressions for mse and mise

To compute the rates at which mse and mise converge to zero, we will make use

of the decomposition of bias given in (2.11). As a reminder, the decomposition is

bias(f̂(x; m, n, h)) = (E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x)).
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Computing the rates at which mse and mise converge to zero, requires addi-

tional smoothness in f and g. Recall that for all x ∈ R and s ∈ R,

α(x, s) = g(s|y)f(y),

and for nonnegative integer k,

α(k+1)(x, s) =
d

dy
α(k)(y, s)

∣∣
y=x

,

where α(0)(x, s) = α(x, s).

Lemmas 4 and 5 presented below are useful for both the mse result and the

mise result. Both results use Taylor’s theorem with integral remainder, presented

here as a lemma.

Lemma 3 Let k ≥ 0 be an integer. Assume f is k times continuously differentiable

and k + 1 times differentiable. Also assume that f (k+1) is integrable on (x, x + h).

Then

f(x+h) = f(x)+hf ′(x)+
h2

2!
f (2)(x)+· · ·+hk

k!
f (k)(x)+

hk+1

k!

∫ 1

0

(1−t)kf (k+1)(x+th) dt.

The proof of Taylor’s theorem with integral remainder involves repeated applica-

tion of integration by parts which follows from the fundamental theorem of calculus

(e.g., Rudin [1987, p.149]).

Lemma 4 Assume that for some k ≥ 1,

1. f(·) is 2k times continuously differentiable, and

2. for all s ∈ R, g(s|·) is 2k times continuously differentiable.

Then for all x,

fm(x) =
k−1∑
j=0

1

mj

1

2jj!

∫
s2jα(2j)(x, s) ds

+
1

mk

1

(2k − 1)!

∫∫∫ 1

0

(1− t)2k−1z2k 1

s
φ(

z

s
)α(2k)(x− t

z√
m

, s) dt dz ds.
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Remark 1 Since
∫

α(x, s) ds = f(x), if k = 1,

fm(x) = f(x) +
1

m

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2)(x− t

z√
m

, s) dt dz ds,

and for k = 2,

fm(x) = f(x) +
1

m

1

2

∫
s2α(2)(x, s) ds

+
1

m2

1

3!

∫∫∫ 1

0

(1− t)3z4 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s) dt dz ds.

Proof of Lemma 4: By (2.3) and Taylor’s theorem with integral remainder

fm(x) =

∫∫
1

s
φ

(z

s

)
α(x− z√

m
, s) dz ds

=

∫∫
1

s
φ

(z

s

) 2k−1∑
j=0

1

j!

( −z√
m

)j

α(j)(x, s) dz ds

+

∫∫∫ 1

0

1

s
φ

(z

s

) 1

(2k − 1)!

(
z√
m

)2k

(1− t)2k−1α(2k)(x− t
z√
m

, s) dt dz ds

=
2k−1∑
j=0

1

j!

( −1√
m

)j ∫
α(j)(x, s)

∫
zj 1

s
φ

(z

s

)
dz ds (2.20)

+
1

mk

1

(2k − 1)!

∫∫∫ 1

0

(1− t)2k−1z2k 1

s
φ(

z

s
)α(2k)(x− t

z√
m

, s) dt dz ds.

Note that (1/s) φ(·/s) is the density of a normal random variable with mean 0

and variance s2. Then the odd moments of this distribution are zero and the jth

moment for j even is

j!sj

(j/2)!2(j/2)
.

Substituting the moments into (2.20) gives the result.

¤

The next lemma gives conditions that ensure that fm is differentiable and the

jth derivative f
(j)
m (x) is given by f (j)(x) plus bounded, lower order terms.

Lemma 5 Assume A1-A5 and A6(2k) for some k ≥ 1. Then fm(·) is 2k-2 times

differentiable everywhere and
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1. for j = 0, . . . , 2k − 2, and for all x

f (j)
m (x) = f (j)(x) +

1

m
R(j)

m (x),

where

R(j)
m (x) =

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2+j)(x− t

z√
m

, s) dt dz ds; (2.21)

2. for j = 0, . . . , 2k − 2, and for all x and c, ∃B1 > 0 such that

|R(j)
m (x)| ≤ B1.

If, in addition to the above assumptions, assume

1. f (j)(·) is integrable for j = 1, . . . , 2k,

then for j = 0, . . . , 2k − 2 and for all c, ∃B2 > 0 such that

∫
|R(j)

m (x)| dx ≤ B2.

Proof: Note that the first result for the case in which j = 0 is Lemma 4, so

fm(x) = f(x) +
1

m

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2)(x− t

z√
m

, s) dt dz ds.

Since f(·) is 2k times continuously differentiable, to prove the first result for

the remaining j it is enough to show that

∂

∂x

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2+j)(x− t

z√
m

, s) dt dz ds (2.22)

exists and is equal to

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(3+j)(x− t

z√
m

, s) dt dz ds

for j = 0, 1, . . . , 2k−3. Assumption A6(2k) imply that for any s, α(x, s) is 2k times

continuously differentiable in its first argument, so all that needs to be shown is
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that the derivative and integration operations can be interchanged in (2.22). The

integrand in question can be rewritten

I(0 < t < 1)I(0 < s < BS)(1− t)z2 1

s
φ(

z

s
)α(2+j)(x− t

z√
m

, s).

Note the integrand is continuous and differentiable in x. And for all x, the deriva-

tive of the integrand is

I(0 < t < 1)I(0 < s < BS)(1− t)z2 1

s
φ(

z

s
)α(3+j)(x− t

z√
m

, s).

Now, by Assumption A6(2k), α(3+j)(x − t z√
m

, s) ≤ dBfBg for some constant d,

so the derivative of the integrand is bounded in absolute value by the integrable

function

I(0 < t < 1)I(0 < s < BS)dBfBgz
2 1

s
φ(

z

s
).

Then by Lemma 1, the interchange is valid. For j = 0, 1, . . . , 2k − 2, the second

result follows from the fact that the above bound is uniform in x.

Turning to the final result of this lemma, for any j = 0, 1, . . . , 2k − 2,

∫
|R(j)

m (x)| dx =

∫ ∣∣
∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2+j)(x− t

z√
m

, s) dt dz ds
∣∣ dx

≤
∫∫∫∫ 1

0

z2 1

s
φ(

z

s
)
∣∣α(2+j)(x− t

z√
m

, s)
∣∣ dt dz ds dx

=

∫∫∫∫ 1

0

z2 1

s
φ(

z

s
)
∣∣f (2+j)(x− t

z√
m

)g(s|x− t
z√
m

) +

· · ·+ f(x− t
z√
m

)g(2+j)(s|x− t
z√
m

)
∣∣ dt dz ds dx

≤
∫∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

(∣∣f (2+j)(x− t
z√
m

)
∣∣ +

· · ·+ ∣∣f(x− t
z√
m

)
∣∣) dt dz ds dx

≤
∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

∫ (∣∣f (2+j)(x− t
z√
m

)
∣∣ +

· · ·+
∣∣f(x− t

z√
m

)
∣∣) dx dt dz ds.
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Since f (j)(·) is integrable for j = 0, . . . , 2k, the above bound is finite and uniform

in c.

¤

The following two lemmas concern the two bias components in (2.11) and are

useful for the mse result.

Lemma 6 Assume A1-A5 and A6(2). Also assume that m →∞ as c →∞. Then

fm(x) = f(x) +
1

m

1

2

∫
s2α(2)(x, s) ds + o(

1

m
).

If in addition A6(4) is assumed, then

fm(x) = f(x) +
1

m

1

2

∫
s2α(2)(x, s) ds +

1

m2

1

8

∫
s4α(4)(x, s) ds + o(

1

m2
).

Proof: We present only the proof to the second result. The proof of the first

result is similar. First note by Assumption A6(4),

lim
c→∞

α(4)(x− t
z√
m

, s) = α(4)(x, s).

By Lemma 4,

fm(x) = f(x) +
1

m

1

2

∫
s2α(2)(x, s) ds

+
1

m2

1

3!

∫∫∫ 1

0

(1− t)3z4 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s) dt dz ds.

The integrand in the last term can be written

I(0 < t < 1)I(0 < s < BS)(1− t)3z4 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s),

and is bounded in absolute value by the integrable function

I(0 < t < 1)I(0 < s < BS)dBfBgz
4 1

s
φ(

z

s
),
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where d is some constant. Then by Lebesgue’s dominated convergence theorem,

lim
c→∞

1

3!

∫∫∫ 1

0

(1− t)3z4 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s) dt dz ds

=
1

3!

∫∫∫ 1

0

(1− t)3z4 1

s
φ(

z

s
) lim

c→∞
α(4)(x− t

z√
m

, s) dt dz ds

=
1

3!

∫∫∫ 1

0

(1− t)3z4 1

s
φ(

z

s
)α(4)(x, s) dt dz ds

=
1

3!

∫ (∫ 1

0

(1− t)3 dt

)(∫
z4 1

s
φ(

z

s
) dz

)
α(4)(x, s) ds

=
1

3!

1

4

4!

2!4

∫
s4α(4)(x, s) ds

=
1

8

∫
s4α(4)(x, s) ds.

¤

Lemma 7 Assume A1-A5 and A6(4). Also assume

1. K is a probability distribution function symmetric about zero with finite

second moment;

2. m →∞ and h → 0 as c →∞.

Then

E
(
f̂(x; m,n, h)

)− fm(x) = h2 1

2
f ′′(x)

∫
u2K(u) du + o(h2).

If in addition A6(6) is assumed and K has a finite fourth moment, then

E
(
f̂(x; m, n, h)

)− fm(x) = h2 1

2
f (2)(x)

∫
u2K(u) du

+
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du + h4 1

24
f (4)(x)

∫
u4K(u) du

+ o

(
h2

m
+ h4

)
.
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Proof: We present only the proof to the second result. The proof of the first

result is similar. As in the proof of Theorem 1,

E(f̂(x; m,n, h)) = E

(
1

n

n∑
i=1

1

h
K

(
x− X̄m(Zi)

h

))

= E

(
1

h
K

(
x− X̄m(Zi)

h

))

=

∫
1

h
K

(
x− y

h

)
fm(y) dy

=

∫
K(u)fm(x− uh) du.

By Lemma 5, fm is four times differentiable and the fourth derivative is bounded.

Then by Taylor’s theorem with integral remainder

∫
K(u)fm(x− uh) du = fm(x)

∫
K(u) du− hf (1)

m (x)

∫
uK(u) du

+h2 1

2
f (2)

m (x)

∫
u2K(u) du + h3 1

6
f (3)

m (x)

∫
u3K(u) du

+h4 1

6

∫∫ 1

0

u4K(u)(1− t)3f (4)
m (x− tuh) dt du.

Since K is a probability distribution symmetric about zero, K integrates to one

and its odd moments are zero. Then

∫
K(u)fm(x− uh) du = fm(x) + h2 1

2
f (2)

m (x)

∫
u2K(u) du

+ h4 1

6

∫∫ 1

0

u4K(u)(1− t)3f (4)
m (x− tuh) dt du. (2.23)

Again by Lemma 5,

f (2)
m (x) = f (2)(x) +

1

m

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s) dt dz ds.

As in the proof of Lemma 5, the integrand in the above expression can be bounded

for all c in absolute value by an integrable function. Therefore by Lebesgue’s



40

dominated convergence theorem and by continuity

lim
c→∞

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(4)(x− t

z√
m

, s) dt dz ds

=

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(4)(x, s) dt dz ds

=
1

2

∫
s2α(4)(x, s) ds.

It follows that the second term in the right hand side of (2.23) is

h2 1

2
f (2)

m (x)

∫
u2K(u) du = h2 1

2
f (2)(x)

∫
u2K(u) du

+
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du + o

(
h2

m

)
.

Consider the integral in the last term in the right hand side of (2.23). By Lemma

5,

f (4)
m (x−tuh) = f (4)(x−tuh)+

1

m

∫∫∫ 1

0

(1−t)z2 1

s
φ(

z

s
)α(6)(x−tuh−t′

z√
m

, s) dt′ dz ds,

and ∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(6)(x− tuh− t′

z√
m

, s) dt′ dz ds,

is bounded for all c. Then

lim
c→∞

f (4)
m (x− tuh) = f (4)(x).

Since f
(4)
m is bounded, the integrand in the last term in the right hand side of

(2.23) is bounded in absolute value for all c by an integrable function. Lebesgue’s

dominated convergence theorem then gives

lim
c→∞

∫∫ 1

0

u4K(u)(1− t)3f (4)
m (x− tuh) dt du =

∫∫ 1

0

u4K(u)(1− t)3f (4)(x) dt du

=
1

4
f (4)(x)

∫
u4K(u) du.

It follows that the last term in the right hand side of (2.23) is

h4 1

6

∫∫ 1

0

u4K(u)(1− t)3f (4)
m (x− tuh) dt du = h4 1

24
f (4)(x)

∫
u4K(u) du + o(h4).
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The result follows.

¤

Now we prove the result on the asymptotic expression of mse.

Proof of Theorem 2: Recall from (2.9) that

mse(f̂(x; m, n, h)) = bias2(f̂(x; m,n, h)) + var(f̂(x; m,n, h)) ∀x ∈ R

Since K is a bounded probability distribution function, K and K2 are inte-

grable. Then by Lemma 2,

lim
c→∞

∫
1

h
K2

(
x− y

h

)
fm(y) dy = f(x)

∫
K2(u) du,

and

lim
c→∞

(∫
1

h
K

(
x− y

h

)
fm(y) dy

)2

= f 2(x)

(∫
K(u) du

)2

.

From (2.19) in the proof of Theorem 1

var(f̂(x; m,n, h)) =
1

nh
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
− 1

n

(
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

=
1

nh

∫
1

h
K2

(
x− y

h

)
fm(y) dy+

1

n

(∫
1

h
K

(
x− y

h

)
fm(y) dy

)2

.

Then

var(f̂(x; m,n, h)) =
1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)
.

Recall from (2.11),

bias(f̂(x; m,n, h)) = (E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x))

Then by Lemmas 6 and 7,

bias(f̂(x; m,n, h)) = h2 1

2
f ′′(x) dx

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds

+ o

(
h2 +

1

m

)
.
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The result follows.

¤

A brief outline of the proof of Theorem 3 follows. Recall the decomposition of

mise(f̂(·; m,n, h)) in (2.10). In (2.11) the bias term was further decomposed. The

bias term in mise(f̂(·; m,n, h)) is then given by

∫
bias2(f̂(x; m, n, h)) dx =

∫
((E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x)))2 dx

=

∫
(E(f̂(x; m,n, h))− fm(x))2 dx (2.24)

+2

∫
(E(f̂(x; m,n, h))− fm(x))(fm(x)− f(x)) dx (2.25)

+

∫
(fm(x)− f(x))2 dx. (2.26)

In Lemma 10, the normalized limit for the variance term in the decomposition of

mise(f̂(·; m,n, h)) in (2.10) is computed. In Lemmas 11, 12, and 13, normalized

limits are computed for the terms (2.24), (2.25), and (2.26), respectively. Theorem

3 follows immediately from Lemmas 10, 11, 12, and 13. Before stating and proving

Lemmas 10, 11, 12, and 13, a couple of useful lemmas are presented first including

the following lemma in which the assumption that f ′′ is ultimately monotone is

introduced. A function γ whose domain is the real line is said to ultimately mono-

tone if there exists a B > 0 such that γ is monotone on [B,∞) and monotone on

(−∞,−B). This assumption is useful in satisfying the assumptions for Lebesgue’s

dominated convergence theorem which is used in Lemmas 12 and 13.

Lemma 8 Assume

1. f ′′(·) is ultimately monotone;

2. f ′(·) and f ′′(·) are integrable;

3. f ′′(·) is continuous.
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Then

1. for j = 1, 2 and k = 1, 2, ∃ Cjk ≥ 0 and an integrable function f̃jk such that

for all c > Cjk,

∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f (k)(x−t

z√
m

)j| dt dz ds ≤ f̃jk(x) ∀x ∈ R;

2. for j = 1, 2, ∃ Cj ≥ 0 and an integrable function h̃j such that for all c > Cj,

∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
f(x− z√

m
)j dt dz ds ≤ h̃j(x) ∀x ∈ R.

Proof: Assumption 1 implies that f ′′(·)2 is ultimately monotone. Assumption

1 also implies that f(·) and f ′(·) are ultimately monotone so that f(·)2 and f ′(·)2

are ultimately monotone. By Assumption 2, f ′′(·) is integrable. It then follows

that ∃Bu > 0 such that on the set [Bu,∞), |f ′′(x)| is nonincreasing and on the set

(−∞,−Bu], |f ′′(x)| is nondecreasing. That is to say for all x1 and x2 such that

Bu ≤ x1 < x2, |f ′′(x1)| ≥ |f ′′(x2)| and for all x1 and x2 such that x1 < x2 ≤ −Bu,

|f ′′(x1)| ≤ |f ′′(x2)|. It follows that the function f ′′(·)2 exhibits similar behavior.

In the same way, it can be shown that the functions f(·), |f ′(·)|, f(·)2, and f ′(·)2

behave similarly.

Note that this behavior together with the continuity of Assumption 3 implies

that f(·), f(·)2, f ′(·), f ′(·)2, and f ′′(·), f ′′(·)2 are bounded. Also note that the

above behavior along with the integrability in Assumption 2 implies that f(·),
f ′(·) and f ′′(·) are square integrable.
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Consider the first result for j = 1 and k = 2. In this case

∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x− t

z√
m

)| dt dz ds

=

∫∫∫ 1

0

I(z ≥ 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x− t

z√
m

)| dt dz ds (2.27)

+

∫∫∫ 1

0

I(z < 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x− t

z√
m

)| dt dz ds (2.28)

= A(x) + B(x),

where A(x) and B(x) are given by (2.27) and (2.28), respectively. Since t ∈ (0, 1)

and m → ∞ as c → ∞, ∃C such that for all c > C, t/
√

m < 1/2. Therefore, if

z ≥ 0 and x > Bu + (1/2)z, then

|f ′′(x− t
z√
m

)| ≤ |f ′′(x− 1

2
z)|.

If z ≥ 0 and x < −Bu, then

|f ′′(x− t
z√
m

)| ≤ |f ′′(x)|.

Similarly, if z < 0 and x > Bu, then

|f ′′(x− t
z√
m

)| ≤ |f ′′(x)|.

If z < 0 and x < −Bu + (1/2)z, then

|f ′′(x− t
z√
m

)| ≤ |f ′′(x− 1

2
z)|.

It was established above that f ′′ is bounded. Let Bf ′′ be this bound. Then for all

c > C and for all x ∈ R,

A(x) ≤
∫∫∫ 1

0

I(x < −Bu)I(z ≥ 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x)| dt dz ds

+ Bf ′′

∫∫∫ 1

0

I(−Bu ≤ x ≤ Bu +
1

2
z)I(z ≥ 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
dt dz ds

+

∫∫∫ 1

0

I(Bu +
1

2
z < x)I(z ≥ 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x− 1

2
z)| dt dz ds,

(2.29)
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and

B(x)≤
∫∫∫ 1

0

I(x < −Bu +
1

2
z)I(z < 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x− 1

2
z)| dt dz ds

+ Bf ′′

∫∫∫ 1

0

I(−Bu +
1

2
z ≤ x ≤ Bu)I(z < 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
dt dz ds

+

∫∫∫ 1

0

I(Bu < x)I(z < 0)I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
|f ′′(x)| dt dz ds. (2.30)

Let Â(x) be the upper bound of A(x) given in (2.29). Let B̂(x) be the upper bound

of B(x) given in (2.30). For all x ∈ R, let f̃12(x) = Â(x) + B̂(x). Note that f ′′(·)
is integrable. It follows that f̃12(·) is integrable which proves this case for the first

result. The other cases are similar.

¤

In the following lemma, sufficient conditions are given for a limit used in Lem-

mas 12 and 13.

Lemma 9 Assume A1-A5 and A6(2). Also assume that m →∞ as c →∞. Then

for all x ∈ R
lim
c→∞

R(0)
m (x) =

1

2

∫
s2α(2)(x, s) ds,

where R
(0)
m (x) is defined in (2.21).

Proof: Let x ∈ R. From (2.21),

R(0)
m (x) =

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2)(x− t

z√
m

, s) dt dz ds.

Bounding the integrand on the left hand side as in the proof of Lemma 5 allows
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us to apply Lebesgue’s dominated convergence theorem:

lim
c→∞

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2)(x− t

z√
m

, s) dt dz ds

=

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
) lim

c→∞
α(2)(x− t

z√
m

, s) dt dz ds

=

∫∫∫ 1

0

(1− t)z2 1

s
φ(

z

s
)α(2)(x, s) dt dz ds

=
1

2

∫
s2α(2)(x, s) ds.

¤

Recall the decomposition of mise(f̂(·; m,n, h)) in (2.10) and the further decom-

position of the bias component in (2.25). In the following lemmas, the normalized

limits of the components of mise(f̂(·; m,n, h)) are computed. In the first of these

lemmas, the variance term is considered.

Lemma 10 Assume A1-A5 and A6(3). Also assume

1. f (k)(·) is integrable for k = 1, 2, 3;

2. K is a bounded probability distribution function with finite first moment;

3. m →∞, n →∞, h → 0 and nh →∞ as c →∞.

Then

lim
c→∞

nh

∫
var(f̂(x; m,n, h)) dx =

∫
K(u)2 du

Proof: As in (2.19),

var(f̂(x; m,n, h)) =
1

nh
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
− 1

n

(
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

.

Therefore

lim
c→∞

nh

∫
var(f̂(x; m,n, h)) dx = lim

c→∞

∫
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
dx

− lim
c→∞

h

∫ (
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

dx. (2.31)



47

Observe that

E

(
1

h
K

(
x− X̄m(Zi)

h

))
=

∫
1

h
K

(
x− y

h

)
fm(y) dy

=

∫
K(u)fm(x− uh) du.

Therefore, the above expectation is bounded, say by B, for all c since by Lemma

5, fm(·) is bounded for all c and K is a probability density. Also, the integral

∫
E

(
1

h
K

(
x− X̄m(Zi)

h

))
dx =

∫∫
K(u)fm(x− uh) du dx

=

∫
K(u)

∫
fm(x− uh) dx du

=

∫
fm(x) dx

∫
K(u) du

= 1

since fm and K are probability densities. Therefore, for all c,

∫ (
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

dx ≤
∫

B E

(
1

h
K

(
x− X̄m(Zi)

h

))
dx = B.

Since h → 0 as c →∞,

lim
c→∞

h

∫ (
E

(
1

h
K

(
x− X̄m(Zi)

h

)))2

dx = 0. (2.32)

As for

lim
c→∞

∫
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
dx,

similar to the above,

∫
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
dx =

∫∫
K2(u)fm(x− uh) du dx.

By Lemma 5, fm is differentiable and f ′m is bounded so that Taylor’s theorem with

integral remainder gives

∫∫
K2(u)fm(x− uh) du dx =

∫
fm(x) dx

∫
K2(u) du

− h

∫∫∫ 1

0

uK2(u)f ′m(x− vuh) dv du dx
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Note that

∣∣∣∣
∫∫∫ 1

0

uK2(u)f ′m(x− vuh) dv du dx

∣∣∣∣ ≤
∫∫∫ 1

0

|u|K2(u)|f ′m(x− vuh)| dv du dx

=

∫∫ 1

0

|u|K2(u)

∫
|f ′m(x− vuh)| dx dv du

=

∫
|f ′m(x)| dx

∫
|u|K2(u) du.

By Assumption 2,
∫ |u|K2(u) du is finite. It follows from Lemma 5 that

∫ |f ′m(x)| dx

is bounded for all c. Therefore,

lim
c→∞

h

∫∫∫ 1

0

uK2(u)f ′m(x− vuh) dv du dx = 0, (2.33)

since h → 0 as c →∞. Now consider

lim
c→∞

∫
fm(x) dx

∫
K2(u) du = lim

c→∞

(∫
f(x) dx +

1

m

∫
R(0)

m (x) dx

) ∫
K2(u) du.

By Assumption 2,
∫

K2(u) du is finite. By Lemma 5, it was shown that
∫ |R(0)

m (x)| dx

is bounded for all c. Since m →∞ as c →∞,

lim
c→∞

∫
fm(x) dx

∫
K2(u) du =

∫
f(x) dx

∫
K2(u) du

=

∫
K2(u) du. (2.34)

Therefore by (2.33) and (2.34),

lim
c→∞

∫
E

(
1

h
K2

(
x− X̄m(Zi)

h

))
dx =

∫
K2(u) du. (2.35)

Substituting (2.32) and (2.35) into (2.31) gives the desired result.

¤

Now consider
∫

bias2(f̂(x; m,n, h)) dx, which is the first term of the mise ex-

pression in (2.10). In the following three lemmas, the normalized limits of the

components of this term given by (2.24), (2.25), and (2.26) are computed.
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Lemma 11 Assume A1-A5 and A6(4). Also assume

1. f (k)(·) is integrable for k = 1, 2, 3, 4;

2. K is a probability distribution function symmetric about zero with finite

second moment;

3. m →∞ and h → 0 as c →∞.

Then

lim
c→∞

1

h4

∫
(E

(
f̂(x; m,n, h)

)− fm(x))2 dx =

∫ (
1

2

(∫
u2K(u) du

)
f ′′(x)

)2

dx.

Proof: From Lemma 5, fm is twice differentiable and f ′′m is bounded so that

by Taylor’s theorem with integral remainder, for all x ∈ R,

E
(
f̂(x; m,n, h)

)
=

∫
1

h
K

(
x− y

h

)
fm(y) dy

=

∫
K(u)fm(x− uh) du

= fm(x)

∫
K(u) du− hf ′m(x)

∫
uK(u) du

+ h2

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du.

By Assumption 2,

E
(
f̂(x; m,n, h)

)− fm(x) = h2

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du.

Therefore

lim
c→∞

1

h4

∫
(E

(
f̂(x; m, n, h)

)− fm(x))2 dx

= lim
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx.
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By Fatou’s lemma

lim inf
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≥
∫

lim inf
c→∞

(∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx. (2.36)

It follows from Lemma 5 that |f ′′m(·)| is bounded for all c. Then by Lebesgue’s

dominated convergence theorem

lim
c→∞

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

=

∫∫ 1

0

lim
c→∞

u2K(u)(1− v)f ′′m(x− vuh) dv du

=

∫∫ 1

0

u2K(u)(1− v) lim
c→∞

f ′′m(x− vuh) dv du. (2.37)

By Lemma 5,

f ′′m(x− vuh) = f ′′(x− vuh) +
1

m
R(2)

m (x− vuh).

By Assumption A6(4), f ′′ is continuous. By Lemma 5, |R(2)
m (·)| is bounded for all

c. By Assumption 8, h → 0 and 1/m → 0 as c →∞. So

lim
c→∞

f ′′m(x− vuh) = f ′′(x).

By substituting into (2.37),

lim
c→∞

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du =
1

2

(∫
u2K(u) du

)
f ′′(x).

It follows that

lim
c→∞

(∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

=

(
1

2

(∫
u2K(u) du

)
f ′′(x)

)2

.

By substituting into (2.36),

lim inf
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≥
∫ (

1

2

(∫
u2K(u) du

)
f ′′(x)

)2

dx.
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By Assumptions A6(4) and 1, f ′′ is square integrable.

If

lim sup
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≤
∫ (

1

2

(∫
u2K(u) du

)
f ′′(x)

)2

dx,

then the result follows. By the Cauchy-Schwarz inequality,

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≤
∫ (∫∫ 1

0

u2K(u)(1− v) dv du

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh)2 dv du

)
dx

=
1

2

∫
u2K(u) du

∫∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh)2 dv du dx

=
1

2

∫
u2K(u) du

∫∫ 1

0

u2K(u)(1− v)

∫
f ′′m(x− vuh)2 dx dv du

=
1

2

∫
f ′′m(x)2 dx

∫
u2K(u) du

∫∫ 1

0

u2K(u)(1− v) dv du

=
1

4

∫
f ′′m(x)2 dx

(∫
u2K(u) du

)2

.

Therefore

lim sup
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≤ 1

4

(
lim sup

c→∞

∫
f ′′m(x)2 dx

)(∫
u2K(u) du

)2

. (2.38)

By Lemma 5,

f ′′m(x)2 = (f ′′(x) +
1

m
R(2)

m (x))2

= f ′′(x)2 +
2

m
f ′′(x)R(2)

m (x) +
1

m2
(R(2)

m (x))2.

By Assumption 1, f ′′(·) is integrable. By Lemma 5, |R(2)
m (·)| is bounded for all c

and
∫

(R
(2)
m (x))2 dx is bounded for all c. By Assumption 3, 1/m → 0 as c → ∞.
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Then

lim
c→∞

∫
f ′′m(x)2 dx =

∫
f ′′(x)2 dx,

which implies that

lim sup
c→∞

∫
f ′′m(x)2 dx =

∫
f ′′(x)2 dx.

By substitution into (2.38),

lim sup
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)2

dx

≤
∫ (

1

2

(∫
u2K(u) du

)
f ′′(x)

)2

dx.

¤

Lemma 12 Assume A1-A5 and A6(4). Also assume

1. f ′′(·) is ultimately monotone;

2. f (k)(·) is integrable for k = 1, 2, 3, 4;

3. K is a probability distribution function symmetric about zero with finite

second moment;

4. m →∞ and h → 0 as c →∞.

Then

lim
c→∞

m

h2

∫
2(E

(
f̂(x; m,n, h)

)− fm(x))(fm(x)− f(x)) dx

=

∫
1

2

(∫
u2K(u) du

)
f ′′(x)

∫
s2α(2)(x, s) ds dx.

Proof: By Lemma 4,

fm(x)− f(x) =
1

m
R(0)

m (x).
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As in the proof of Lemma 11,

E
(
f̂(x; m,n, h)

)− fm(x) = h2

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du.

Then

m

h2

∫
2(E

(
f̂(x; m,n, h)

)− fm(x))(fm(x)− f(x)) dx

= 2

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)
R(0)

m (x) dx.

It will be shown that ∃f̃(·) such that f̃(·) is integrable and for all x ∈ R and c > C

where C is some nonnegative number,

|
(∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)
R(0)

m (x)| ≤ f̃(x), (2.39)

then by Lebesgue’s dominated convergence theorem

lim
c→∞

m

h2

∫
2(E

(
f̂(x; m,n, h)

)− fm(x))(fm(x)− f(x)) dx

= 2 lim
c→∞

∫ (∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)
R(0)

m (x) dx

= 2

∫
lim
c→∞

(∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)
R(0)

m (x) dx.

From Lemma 9, limc→∞ R
(0)
m (x) = (1/2)

∫
s2α(2)(x, s) ds. By Lemma 5, ∃BfR > 0

such that |f ′′m(·)| ≤ BfR for all c. Then by Lebesgue’s dominated convergence

theorem,

lim
c→∞

∫∫ 1

0

u2K(u)(1−v)f ′′m(x−vuh) dv du =

∫∫ 1

0

lim
c→∞

u2K(u)(1−v)f ′′m(x−vuh) dv du.

As in the proof of Lemma 11, limc→∞ f ′′m(x− vuh) = f ′′(x) so that

lim
c→∞

∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du =
1

2

(∫
u2K(u) du

)
f ′′(x).

It follows that

lim
c→∞

m

h2

∫
2(E

(
f̂(x; m,n, h)

)− fm(x))(fm(x)− f(x)) dx

=

∫
1

2

(∫
u2K(u) du

)
f ′′(x)

∫
s2α(2)(x, s) ds dx.
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As for the validity of (2.39), observe that

|
(∫∫ 1

0

u2K(u)(1− v)f ′′m(x− vuh) dv du

)
R(0)

m (x)|

≤ BfR

(∫∫ 1

0

u2K(u)(1− v) dv du

)
|R(0)

m (x)|

=
1

2
BfR

(∫
u2K(u) du

)
|R(0)

m (x)|.

As in the proof of the last part of Lemma 5,

|R(0)
m (x)| ≤

∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

(∣∣f ′′(x− t
z√
m

)
∣∣ +

· · ·+
∣∣f(x− t

z√
m

)
∣∣) dt dz ds.

The validity of (2.39) then follows from Lemma 8.

¤

Lemma 13 Assume A1-A5 and A6(2). Also assume

1. f ′′(·) is ultimately monotone;

2. f ′(·), f ′′(·) are integrable;

3. m →∞ as c →∞;

Then

lim
c→∞

m2

∫
(fm(x)− f(x))2 dx =

∫ (
1

2

∫
s2α(2)(x, s) ds

)2

dx.

Proof: Observe that

m2

∫
(fm(x)− f(x))2 dx =

∫
(R(0)

m (x))2 dx

where R
(0)
m (·) is defined in Lemma 5. It will be shown that ∃f̃(·) such that f̃(·) is

integrable and for all x ∈ R and c > C where C is some nonnegative number,

(R(0)
m (x))2 ≤ f̃(x), (2.40)
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then by Lebesgue’s dominated convergence theorem

lim
c→∞

m2

∫
(fm(x)− f(x))2 dx = lim

c→∞

∫
(R(0)

m (x))2 dx

=

∫
lim
c→∞

(R(0)
m (x))2 dx

=

∫ (
1

2

∫
s2α(2)(x, s) ds

)2

dx.

As for the validity of (2.40), from the proof of the last part of Lemma 5 observe

that

(R(0)
m )2 ≤ ( ∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

(∣∣f ′′(x− t
z√
m

)
∣∣ +

· · ·+
∣∣f(x− t

z√
m

)
∣∣) dt dz ds

)2

≤ d
( ∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

∣∣f ′′(x− t
z√
m

)
∣∣ dt dz ds

)2

· · ·+ d
( ∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

∣∣f(x− t
z√
m

)
∣∣ dt dz ds

)2
,

where d is some positive constant. Consider the first term on the right hand side

of the inequality. By the Cauchy-Schwarz inequality,

d
( ∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

∣∣f ′′(x− t
z√
m

)
∣∣ dt dz ds

)2

≤ dB2
g

∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
dt dz ds

×
∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
f ′′(x− t

z√
m

)2 dt dz ds

= dB2
g

∫
I(0 < s ≤ BS)s2 ds

×
∫∫∫ 1

0

I(0 < s ≤ BS)z2 1

s
φ

(z

s

)
f ′′(x− t

z√
m

)2 dt dz ds.

The integral
∫

I(0 < s ≤ BS)s2 ds is finite. Then by Lemma 8, ∃ C1 ≥ 0 and an

integrable function g̃1 such that for all c > C1,

d
( ∫∫∫ 1

0

z2 1

s
φ(

z

s
)I(0 < s < BS)Bg

∣∣f ′′(x− t
z√
m

)
∣∣ dt dz ds

)2 ≤ g̃1(x) ∀x ∈ R.
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The other terms are similar and it follows that (2.40) holds.

¤

2.3 A Local Kernel Density Estimate

In this section, we introduce a local kernel estimate for the density of a conditional

expectation. We first motivate and give some background on the local estimator

in the standard density estimation setting. We then present a local estimator for

our setting and give some results on the convergence of the estimator’s mse.

Quite often a density will exhibit very different levels of curvature over mutually

exclusive convex sets in its domain. Consider the normal mixture

(1/2)N(−1/2, 4−2) + (1/2)N(1/2, 1).

The density is

f(x) =
1

2

(
4√
2π

exp

(−16(x + 1/2)2

2

)
+

1√
2π

exp

(−(x− 1/2)2

2

))
.

The density is plotted in Figure 2.1. For the interval containing the mode corre-

sponding to the normal component with low variance, the curvature is quite high.

On the other hand, for the interval out in the right tail of the normal component

with low variance, the curvature is very low. Suppose we have data generated

from this normal mixture and we apply the naive kernel density estimator (1.2)

discussed in Section 1.2. To distinguish this estimator from the local estimator, let

us call this estimator the global kernel density estimator. Because of the differences

in curvature, whatever bandwidth we choose we will likely either

1. oversmooth the interval with high curvature;

2. undersmooth the interval with low curvature; or
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Figure 2.1: The density of the normal mixture (1/2)N(−1/2, 4−2)+(1/2)N(1/2, 1).

3. both oversmooth the interval with high curvature and undersmooth the in-

terval with low curvature.

In this case we would like to choose different bandwidths for different locations

in which we estimate the density. This is the idea of the local kernel density

estimator denoted ĝL. Recall from (1.3) that the estimator has the form

ĝL(x; h(x)) =
1

n

n∑
i=1

1

h(x)
K

(
x− Yi

h(x)

)
.

For the local kernel density estimator, bandwidth is a function of the point x where

the target density g is being estimated, whereas for the global estimator given in

(1.2), the bandwidth is constant. Viewed pointwise, the local estimator in (1.3) is

just a standard kernel density estimator. But from a global perspective, the local

kernel density estimator can be thought of as a continuum of individual global

kernel density estimators with different bandwidths (Jones [1990]). Note that
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there is no guarantee that the local kernel density estimator for a finite sample

will integrate to one so that the estimator itself may not be a proper probability

density.

The intuition above that the bandwidth should be inversely proportional to

curvature is reinforced theoretically. It turns out that the asymptotically optimal

bandwidth h(x) is proportional to [g(x)/(g′′(x))2]1/5 (e.g., Jones [1990]). But note

that even with the asymptotically optimal bandwidth the rate of mse and mise are

no better than for the global kernel density estimator in (1.2). There is, however,

an improvement (i.e., a decrease) in the multiplier of the rate (Jones [1990]).

A local kernel density estimator for f(x), the density of E(X|Z) evaluated at

x, is

f̂L(x; m,n, h(x)) =
1

n

n∑
i=1

1

h(x)
K

(
x− X̄m(Zi)

h(x)

)
, (2.41)

where, again,

X̄m(Zi) =
1

m

m∑
j=1

Xj(Zi) for i = 1, . . . , n.

Compare the local estimator (2.41) with the global estimator (2.1) introduced in

Section 2.1. Considering that pointwise, the local kernel density estimator is the

same as the global density estimator, the following mse results for f̂L are immediate.

Theorem 4 Assume A1-A5 and A6(0). Also assume

1. K is a bounded probability density;

2. m →∞, h(x) → 0, and nh(x) →∞, as c →∞ for all x ∈ R.

Then for all x ∈ R,

lim
c→∞

mse(f̂L(x; m,n, h(x))) = 0.

Theorem 5 Assume A1-A5 and A6(4). Also assume
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1. K is a bounded probability distribution function symmetric about zero with

finite second moment;

2. m →∞, n →∞, h(x) → 0, and nh(x) →∞ as c →∞ for all x ∈ R.

Then for any x ∈ R

mse(f̂L(x,m, n, h(x))) =

(
h(x)2 1

2
f ′′(x)

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

+
1

nh(x)
f(x)

∫
K2(u) du

+ o

((
h(x)2 +

1

m

)2

+
1

nh(x)

)
. (2.42)

Theorem 5 implies that, similar to the standard kernel density estimation setting,

the optimal rate of mse convergence is the same for local and global estimators.

2.4 A Bias-Corrected Estimate

In this section, we introduce a bias-corrected estimate of the density of the condi-

tional expectation. We motivate the estimator with a discussion of the jackknife

bias-corrected estimator. For an introduction to the jackknife bias-corrected es-

timate see Efron and Tibshirani [1993]. Finally, we present some results on the

asymptotic bias and variance of the bias-corrected estimate and show that the

optimal rate of mse convergence is faster than for the naive, global estimator.

The jackknife estimator can be thought of as an extrapolation from one estimate

back to another estimate that has nearly zero bias (e.g., Stefanski and Cook [1995]).

To understand this interpretation of the jackknife estimator, we turn to an example.

A similar example was presented in Stefanski and Cook [1995]. Suppose we want

to estimate θ = g(µ) where g is nonlinear. We are given i.i.d. data {X1, . . . , Xm}
drawn from a N(µ, σ2) distribution. We take our estimate, denoted θ̂m, to be
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g(X̄m) where X̄m is the sample mean of the data. A Taylor expansion shows that

for an estimate based on any sample size m,

E(θ̂m) ≈ θ +
1

m
β. (2.43)

We actually know that β = σ2g′′(µ)/2, but that is not needed for our discussion.

The point is that the bias, E(θ̂m)− θ is approximately linear in the inverse sample

size m. Then if we know β and E(θ̂m) for some m, by extrapolating on the line

given in (2.43) back to 1/m = 0, we have a nearly unbiased estimate of θ. The

remaining bias is from the lower order terms in the Taylor expansion of E(θ̂m).

If we have an estimate of E(θ̂m), all we need is another estimate E(θ̂m̃) for

m̃ 6= m to estimate β. For the standard jackknife estimator, E(θ̂m) is estimated

with θ̂m and E(θ̂m−1) is estimated with θ̂(·) =
∑m

k=1 θ̂(k)/m where for k = 1, . . . , m,

θ̂(k), the leave-out-one estimator, is the estimator based on all the data less Xk.

The jackknife bias-corrected estimator θ̇ is then

θ̇ = θ̂m − (m− 1)(θ̂(·) − θ̂m)

= mθ̂m − (m− 1)θ̂(·).

For our global estimator (2.1), we know that from Theorem 2,

E(f̂(x; m,n, h)) ≈ f(x) + h2β1 +
1

m
β2, (2.44)

where

β1 =
1

2
f ′′(x) dx

∫
u2K(u) du

and

β2 =
1

2

∫
s2α(2)(x, s) ds.

Here the bias is approximately linear in the square of the bandwidth (h2) and the

inverse of the internal sample size (1/m). Given an estimate of E(f̂(x; m,n, h)) for
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some m and h, we would like to extrapolate back to 1/m = 0 and h2 = 0 on the

plane specified in (2.44).

Similar to the typical jackknife estimator, we take the global estimate

f̂(x; m,n, h) as an approximation of E(f̂(x; m,n, h)). To determine β1 and β2 and

thus extrapolate back to 1/m = 0 and h2 = 0, we need to estimate E(f̂(x; m,n, h))

at two other pairs of (m,h). Alternatively, we can save ourselves a bit of work by

choosing only one other pair (m̃, h̃) such that (1/m̃, h̃2) lies on the line determined

by (0, 0) and (1/m, h2).

We could estimate E(f̂(x; m̃, n, h̃)) as the average of the leave-out-one estima-

tors as is done for the typical jackknife estimator. This will require m computations

of the density estimator. As a computationally friendly alternative, consider in-

stead taking m̃ = m/2 and h̃ =
√

2h and take the estimate f̂(x; m̃, n, h̃) as an

approximation of E(f̂(x; m̃, n, h̃)). Note that (1/m̃, h̃2) lies on the line determined

by (0, 0) and (1/m, h2).

Using the data points f̂(x; m,n, h) and f̂(x; m/2, n,
√

2h) and extrapolating

back to 1/m = 0 and h2 = 0 gives the bias-corrected estimator

ḟ(x; m,n, h) = 2f̂(x; m,n, h)− f̂(x; m/2, n,
√

2h). (2.45)

We emphasize that just like the leave-out-one jackknife estimator, the data can be

reused to estimate f̂(x; m/2, n,
√

2h). That is to say, the estimator f̂(x;m/2,n,
√

2h)

can be computed with the same data set with which f̂(x; m,n, h) is computed less

half of the internal samples. However in some cases, it would be possible to gener-

ate a new data set to estimate f̂(x; m/2, n,
√

2h). For the remainder of this section,

we consider the asymptotic bias and variance of the bias-corrected estimator given

in (2.45). The results cover both the case where the data is reused in computing

f̂(x; m/2, n,
√

2h) and the case where a new data set is generated.
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Recall from (2.11),

bias(f̂(x; m,n, h)) = (E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x))

Then the bias of the estimate ḟ(x; m,n, h) can be expressed as

bias(ḟ(x; m,n, h)) = E(ḟ(x; m,n, h))− f(x)

= 2
[
E(f̂(x; m,n, h))− f(x)

]
−

[
Ef̂(x; m/2, n0,

√
2h)− f(x)

]

= 2
[
(E(f̂(x; m,n, h))− fm(x)) + (fm(x)− f(x))

]

−
[
(E(f̂(x; m/2, n0,

√
2h))− fm/2(x)) + (fm/2(x)− f(x))

]
.(2.46)

From Lemma 7,

E(f̂(x; m,n, h))− fm(x) = h2 1

2
f (2)(x)

∫
u2K(u) du

+
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du + h4 1

24
f (4)(x)

∫
u4K(u) du

+ o

(
h2

m
+ h4

)

and

E(f̂(x; m/2, n0,
√

2h)) = 2h2 1

2
f (2)(x)

∫
u2K(u) du

+ 4
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du + 4h4 1

24
f (4)(x)

∫
u4K(u) du

+ o

(
h2

m
+ h4

)
.

From Lemma 6,

fm(x)− f(x) =
1

m

1

2

∫
s2α(2)(x, s) ds +

1

m2

1

8

∫
s4α(4)(x, s) ds + o(

1

m2
)

and

fm/2(x)− f(x) = 2
1

m

1

2

∫
s2α(2)(x, s) ds + 4

1

m2

1

8

∫
s4α(4)(x, s) ds + o(

1

m2
).

Substituting into (2.46) proves the following theorem.
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Theorem 6 Assume A1-A5 and A6(6). Also assume

1. K is a bounded probability distribution function symmetric about zero with

finite fourth moment;

2. m →∞ and h → 0 as c →∞.

Then

bias(ḟ(x; m, n, h)) = −h4 1

12
f (4)(x)

∫
u4K(u) du

−h2

m

1

2

∫
s2α(4)(x, s) ds

∫
u2K(u) du

− 1

m2

1

4

∫
s4α(4)(x, s) ds

+o

((
h2 +

1

m

)2
)

.

As for the variance of the ḟ(x; m,n, h) note that from the proof of Theorem 2,

var(f̂(x; m,n, h)) =
1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)

and

var(f̂(x; m/2, n,
√

2h)) =
1√
2nh

f(x)

∫
K2(u) du + o

(
1

nh

)
.

Also,

|cov(f̂(x; m,n, h), f̂(x; m/2, n,
√

2h))| ≤
√

var(f̂(x; m,n, h))var(f̂(x; m/2, n,
√

2h))

≤ 1

21/4

1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)
.
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Then

var(ḟ(x; m,n, h)) = var(2f̂(x; m,n, h)− f̂(x; m/2, n,
√

2h)

= 4var(f̂(x; m,n, h)) + var(f̂(x; m/2, n,
√

2h))

−4cov(f̂(x; m,n, h), f̂(x; m/2, n,
√

2h))

≤ 4
1

nh
f(x)

∫
K2(u) du +

1√
2nh

f(x)

∫
K2(u) du

+4
1

21/4

1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)

=

(
4 +

1

21/2
+

4

21/4

)
1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)
.

This shows that var(ḟ(x; m,n, h)) is O( 1
nh

). Similarly,

var(ḟ(x; m,n, h)) ≥
(

4 +
1

21/2
− 4

21/4

)
1

nh
f(x)

∫
K2(u) du + o

(
1

nh

)
.

Since

4 +
1

21/2
− 4

21/4
≈ 1.34,

we conclude that the asymptotic variance of ḟ(x; m,n, h) is greater than the

asymptotic variance of the global estimator f̂(x; m, n, h). Therefore, it is likely

the actual variance of the bias-corrected estimate is greater than the variance for

the global estimate. This is a common theme for bias-corrected estimates (Efron

and Tibshirani [1993]).

The above asymptotic bias and variance results for ḟ(x; m,n, h) imply that if

m, n, and h are chosen such that m is of the order c2/11, n is of the order c9/11,

and h is of the order c−1/11 the optimal rate of convergence of mse is obtained and

that optimal rate is c−8/11. Recall the optimal rate of mse for the global estimator

f̂(x; m,n, h) was c−4/7. Thus, the bias-correction leads to improved convergence.

But as we noted above, the variance is greater for the bias-corrected estimate and

this can adversely affect performance, especially for modest sample sizes.
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The bias-corrected estimate (2.45) is based on the global estimator f̂(x; m,n, h).

We can formulate a local version ḟL of the bias-corrected estimator as follows:

ḟL(x; m,n, h(x)) = 2f̂L(x; m,n, h(x))− f̂L(x; m/2, n,
√

2h(x)), (2.47)

where f̂L(x; m, n, h(x)) is the local estimator defined in (2.41).

We immediately have the following result for the bias of the local estimator:

Theorem 7 Assume A1-A5 and A6(6). Also assume

1. K is a bounded probability distribution function symmetric about zero with

finite fourth moment;

2. m →∞ and h(x) → 0 as c →∞ for all x ∈ R.

Then for any x ∈ R,

bias(ḟL(x; m,n, h(x))) = −h(x)4 1

12
f (4)(x)

∫
u4K(u) du

−h(x)2

m

1

2

∫
s2α(4)(x, s) ds

∫
u2K(u) du

− 1

m2

1

4

∫
s4α(4)(x, s) ds

+o

((
h(x)2 +

1

m

)2
)

.

The following inequality involving variance is also immediate:

(
4 +

1

21/2
− 4

21/4

)
1

nh(x)
f(x)

∫
K2(u) du + o

(
1

nh(x)

)

≤ var(ḟL(x; m,n, h(x)))

≤
(

4 +
1

21/2
+

4

21/4

)
1

nh(x)
f(x)

∫
K2(u) du + o

(
1

nh(x)

)
. (2.48)



Chapter 3

Implementation and Simulation
In this chapter, we address the implementation of our estimators for the density of

the conditional expectation discussed in Chapter 2 and study their performance.

Section 3.1 addresses the implementation which requires specifying a number of

inputs. For some of these inputs, we develop a data-based selection method based

on the ideas of empirical-bias bandwidth selection (EBBS) used in local polynomial

regression (Ruppert [1997]). In Section 3.2, we then compare the performance of

the estimators for some simulated test cases.

3.1 Implementation

Implementation requires the specification of a number of inputs. For the standard

kernel density estimator presented in (1.2), one must choose the kernel K and the

bandwidth h. For the estimators of the density of the conditional expectation in-

cluding the global kernel density estimator (2.1), the local kernel density estimator

(2.41), and the bias-corrected estimator (2.45), one must choose K, h, as well as

the number of external samples n and the number of internal samples m.

We choose K to be the Epanechnikov kernel which is

K(x) =
3

4
(1− x2)I(|x| < 1).

Epanechnikov (Epanechnikov [1967]) showed this kernel was optimal in terms of

minimizing the mise for the standard kernel density estimator (1.2). For more

discussion on this topic see Wand and Jones [1995].

The rest of this section deals with the choice of the parameters m, n, and h.

66
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In Section 3.1.1 we consider the selection of these parameters for the global kernel

density estimator (2.1). We present a data-based method to select these parameters

based on EBBS developed by Ruppert [1997]. We present the algorithm and briefly

discuss why we chose this method. In Section 3.1.2 we apply a similar method to

selecting the parameters for the local kernel density estimator (2.41). For this

estimator we must specify a function for the bandwidth h so the algorithm is

more complicated than the one given for the global estimator. Finally, in Section

3.1.3, the data-based parameter selection method is applied to the bias-corrected

estimator (2.45).

3.1.1 Global Kernel Density Estimate

In Chapter 2 we saw how to choose the bandwidth h, the number of internal sam-

ples m, and the number of external samples n for the global estimator f̂(x; m,n, h)

to obtain optimal convergence (see (2.13)). However the expressions for m, n, and

h given in (2.13) involve unknowns such as f ′′(x), the second derivative of the

target density, and
∫

s2α(2)(x, s) ds where α(2) is defined in (2.4) and (2.5) as the

second derivative with respect to the first argument of the function

α(y, s) = g(s|y)f(y).

To implement the estimator f̂(x; m,n, h) in an optimal way, one could attempt

to estimate these unknown quantities and plug these estimates into the expressions

given in (2.13). This type of estimator is known as a plug-in estimator (Wand and

Jones [1995]). In fact it is quite doable to estimate the unknowns f and f ′′ needed

for the plug-in estimator. Other needed estimates, including an estimate of the

second derivative of α, appear very difficult to obtain.



68

To choose the parameters m, n, and h needed to implement the estimator

f̂(x; m,n, h) we turn from optimizing the asymptotic mise to optimizing an ap-

proximation of mise. From (2.10), mise can be decomposed as

mise(f̂(·; m,n, h)) =

∫
bias2(f̂(x; m,n, h)) dx +

∫
var(f̂(x; m,n, h)) dx.

It was shown in the proof of Theorem 3 that

∫
var(f̂(x; m,n, h)) dx =

1

nh

∫
K2(u) du + o(

1

nh
).

An approximation for the variance component in mise is the asymptotic approxi-

mation,

1

nh

∫
K2(u) du,

which is readily available. Also in the proof of Theorem 3, it was shown that

∫
bias2(f̂(x; m,n, h)) dx

=

∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

+o

((
h2 +

1

m

)2
)

.

As explained above, the asymptotic approximation

∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

is not immediately useful given the unknowns in the approximation. To approx-

imate the bias component in mise we will instead build and estimate a model of

bias for each x. Squaring the bias and numerically integrating will then provide

an empirical model of integrated squared bias. Adding the integrated variance ap-

proximation to this gives an empirical model of mise which can then be optimized

with respect to m, n, and h.
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The idea of building and empirically estimating a model of bias to be used

in the selection of an estimator’s parameters was introduced in Ruppert [1997].

In this paper, the method, called empirical-bias bandwith selection (EBBS), was

applied to bandwidth selection in local polynomial regression. Schulman [1998]

established convergence results for the bandwidth selector in the context of local

polynomial regression. Staudenmayer [2000] applied EBBS to local polynomial

regression in which the covariates are measured with error.

EBBS uses a model of bias suggested by the asymptotic expression of the

expected value of the estimator. In our case, by Lemmas 6 and 7,

E
(
f̂(x; m,n, h)

)
= f(x) + h2 1

2
f ′′(x)

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds

+o(h2 +
1

m
).

The asymptotic expression

E
(
f̂(x; m,n, h)

)
= f(x) + h2 1

2
f ′′(x)

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds, (3.1)

suggests the following model:

E
(
f̂(x; m,n, h)

)
= β0(x) + β1(x)h2 + β2(x)

1

m
. (3.2)

Here β0(x) approximately corresponds to f(x), the target density evaluated at x.

The bias of f̂(x; m,n, h) is then approximately given by

β1(x)h2 + β2(x)
1

m
. (3.3)

The EBBS model of bias used in local polynomial regression is a polynomial in h

(Ruppert [1997], Staudenmayer [2000]). In our case the model of bias is polynomial

in h as well as 1/m. Lemmas 6 and 7 allow for more terms used in the asymptotic

expression of E
(
f̂(x; m,n, h)

)
given in (3.1) which would give more terms in model
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(3.2). Such a model would be a better approximation of E
(
f̂(x; m,n, h)

)
but would

require the estimation of additional parameters. In this thesis, we use the model

(3.2).

Though approximate, notice that the model of bias does capture the fact that

as h → 0 and 1/m → 0, bias tends to zero. Suppose that we can estimate the

model (3.2). This not only gives us an empirical model of bias that can be used

in selecting the needed parameters m, n, and h but also gives another estimator

which will be of some use. Extrapolating the estimated model to h = 1/m = 0

gives an approximately unbiased estimate of f(x). This approximately unbiased

estimate of f(x) is of course β̂0, the estimate of β0. Based on the discussion of

jackknife bias-correction, one can argue β̂0 is essentially a jackknife estimate. For

more on this see Staudenmayer [2000].

The estimation of the model (3.2) at x0 for a given computer budget c is outlined

in the following algorithm.

1. Generate a sample of the data using half of the computer budget. To do this

fix n0 and m0 such that n0m0 = c/2.

2. Establish a grid of pairs of bandwidths h and internal samples m given by the

Cartesian product (h1, . . . , hI1)× (m1, . . . , mI2). The largest internal sample,

mI2 , is equal to m0 so that only half the computer budget is used. Ruppert

[1997] suggests evenly spacing the bandwidths on a log scale. We follow this

suggestion for the bandwidths and the number of internal samples.

3. For each pair in the grid of bandwidths and internal samples compute the

kernel density estimator. This gives the data:

[(hi, mj), f̂(x0; mj, n, hi)] i = 1, . . . , I1, j = 1, . . . , I2.
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4. Take f̂(x0; mj, n, hi) as an approximation of E
(
f̂(x0; mj, n, hi)

)
for each i

and j. Estimate (3.2) with the data computed in step 3. We use global least

squares regression. Note that in the context of local polynomial regression,

Ruppert [1997], Schulman [1998], and Staudenmayer [2000] use local least

squares to estimate the model. Local least squares may provide a better

estimate but it requires the specification of additional tuning parameters to

be discussed below. We are content with global least squares as it gives good

performance for the test cases considered in Section 3.2.

The estimation procedure above is repeated on an equally spaced grid of x

values over the range of the observations Xj(Zi), j = 1, . . . , m0, i = 1, . . . , n0.

Following Ruppert’s suggestion (Ruppert [1997]), we smooth the estimates β̂1(x)

and β̂2(x) over x. The result is an approximation of bias

β̂1(x)h2 + β̂2(x)
1

m
.

at each x in the grid. Squaring the bias at each x on the grid and numerically

integrating gives us an approximation of the bias component in mise as a function

of h and m. Adding to this the variance component approximation

1

nh

∫
K2(u) du,

gives an approximation of mise as a function of m, n, and h.

To compute the optimal m, n, and h for the computer budget c, we minimize

the approximation of mise with respect to m, n, and h given the constraints

1. mn = c;

2. n0 ≤ n ≤ 2n0 and m0 ≤ m ≤ 2m0.
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The first constraint is simply the computer budget constraint. The second con-

straint arises because we have already used half of the computer budget to gener-

ating n0 external samples and m0 internal samples.

Note that it is implicitly assumed that our approximation for mise is appropri-

ate for the computer budget c. The approximation for bias was estimated under

the constraint that the computer budget not exceed c/2. As Ruppert [1997] points

out, the EBBS bias approximation captures the bias for the given finite sample.

Asymptotics are used only to suggest a model for the bias. This implies that the

bias coefficients β1 and β2 in (3.3) should be different for different sample sizes

corresponding to different computer budgets. We will assume that the change

in these coefficients is small enough such that the estimates β̂1 and β̂2 computed

for the budget c/2 are reasonably good estimates for β1 and β2 given a computer

budget of c.

In the above algorithm there are a number of tuning parameters that must be

selected including n0, m0, h1, hI1 , m1, I1, and I2. Ideally, we would like to establish

values for these tuning parameters that work for most instances of the problem.

This could be done with an experiment involving Monte Carlo simulation as in

Ruppert [1997], Schulman [1998], and Staudenmayer [2000]. However, for this

thesis we simply offer some guidelines and report the values that worked well in

the test cases presented below.

For choosing n0, the initial allocation of external samples given half of the

computer budget, we note that it is asymptotically optimal to set n0 = b(c/2)5/7

for some positive constant b. We found a constant of b = 1/3 worked well for

the cases in which Z is univariate. For Z multivariate, it was better to take more

external samples (b=2). We then took m0, the initial allocation of internal samples
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given half the computer budget, to be (c/2)/n0.

We must also choose the lower and upper bounds for the bandwidth grid, h1

and hI1 , respectively. We note that if hI1 is chosen too large, (3.3) is not a good

model for the larger bandwidths h. But if h1 is chosen too small the variance

approximation will not be very good for the smaller bandwidths h. We found that

h1 = 0.1 and hI1 = 0.5 worked well. Similar considerations need to be made in

choosing m1, the lower bound for the internal samples grid. If m1 is too small,

(3.3) is not a good model for the smaller numbers of internal samples. We found

that 0.05m0 worked well. Finally, for the number of bandwidths I1 and the number

of internal samples I2, we found that I1 = I2 = 5 was adequate.

3.1.2 Local Kernel Density Estimate

In this section, we again apply the ideas of EBBS to the selection of inputs for our

local kernel density estimator (2.41), which has the form

f̂L(x; m,n, h(x)) =
1

n

n∑
i=1

1

h(x)
K

(
x− X̄m(Zi)

h(x)

)
.

The inputs that we must choose are again m, n, and h but in this case h is a

function. As a result the data-based algorithm for choosing the inputs is a bit

more complicated.

In Theorem 5, we established an expression for the local estimate’s asymptotic

mse. Unfortunately, at this time we don’t have an equivalent result for the mise.

But let us assume that we are able to integrate mse(f̂L(x,m, n, h(x))) so that we

obtain the following asymptotic mise

∫ (
(h(x)2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

+
1

n

∫
f(x)

h(x)
dx

∫
K2(u) du.
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The goal here is to select m, n, and h(·) to minimize mise. As was discussed for

the global kernel density estimator, we could try the plug-in estimator: optimize

asymptotic mise with respect to m, n, and h(·) and then estimate the unknowns

in the resulting expressions for m, n, and h(·). This has the same difficulty in that

some of the unknowns will be very difficult to estimate. And actually in this case

it seems impossible to analytically compute the optimal expressions.

We then turn to building an approximation of mise as was done in Section 3.1.1.

We again approximate the variance component with its asymptotic expression

1

n

∫
f(x)

h(x)
dx

∫
K2(u) du.

To approximate the bias component in mise, as was done in Section 3.1.1 we first

build a model for the bias of the estimator at a particular x. The asymptotic

expression for expectation of f̂L(x,m, n, h) is used as a guide. This expression is

identical to the asymptotic expression for the expectation of f̂(x,m, n, h) except

that the h is replaced with h(x). The model for the expectation of f̂L(x, m, n, h)

is

E
(
f̂L(x; m,n, h)

)
= β0(x) + β1(x)h(x)2 + β2(x)

1

m
. (3.4)

Once again, β0(x) approximately corresponds to f(x), the target density evaluated

at x. An estimate β̂0(x) of β0(x) is an approximately unbiased estimator of f(x).

The bias of f̂L(x; m,n, h) is then approximately given by

β1(x)h(x)2 + β2(x)
1

m
. (3.5)

To estimate the model, we can use the same algorithm presented in Section 3.1.1.

We again repeat the estimation for x on an equally spaced grid over the range of

observations Xj(Zi), j = 1, . . . , m0, i = 1, . . . , n0.
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Assume for the moment that we have estimates β̂1(x) and β̂2(x) for all x. Then

our approximation of the bias component of mise is

∫ (
β̂1(x)h(x)2 + β̂2(x)

1

m

)2

dx,

and our approximation of mise is

∫ (
β̂1(x)h(x)2 + β̂2(x)

1

m

)2

dx +
1

n

∫
f(x)

h(x)
dx

∫
K2(u) du. (3.6)

Once again, we want to optimize (3.6) with respect to m, n, and h(·) given the

constraints

1. mn = c;

2. n0 ≤ n ≤ 2n0 and m0 ≤ m ≤ 2m0.

This is a very difficult constrained optimization problem. We found that applying

numerical algorithms to this constrained optimization problem gives poor results

for the test cases discussed in Section 3.2.

We simplified the optimization in two ways. First we ignore the second con-

straint that n0 ≤ n ≤ 2n0 and m0 ≤ m ≤ 2m0. This means that in the end, our

chosen m and n may fall outside of these constraints in which case we choose the

m and n that are closest to the optimal but still obey the constraints. Second,

we assumed that h(x) = η(x)2m−1/2 where η(·) is some nonzero function. Such a

choice results, after optimizing over n and m, in a rate of convergence for mise of

c−4/7 for any choice of η. This is the optimal rate for the global kernel density es-

timator and we suspect it is the optimal rate for the local kernel density estimator

since local kernel estimates don’t improve the optimal rate in the standard density

estimation setting.
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If h(x) = η(x)2m−1/2 and we ignore the second constraint, then for any η(·), we

can analytically compute the optimal m and n. We plug the optimal m and n back

into the approximation for mise. All that remains is to optimize the approximation

with respect to η(·). This is not possible to do analytically so we do a numerical

search. We restrict η(·) to be a continuous piecewise linear function in which the

slope changes are allowed at a set of knots ξ1, ξ2, . . . , ξKn . Then η(x) can be written

η(x) =
Kn+2∑
i=1

γibi(x),

where b1(x) = 1, b2(x) = x, b3(x) = (x− ξ1)+, . . . , bKn+2(x) = (x− ξKn)+ in which

t+ denotes the positive part and (γ1, . . . , γKn+2) are the slope coefficients (Hastie

et al. [2001]). With η(·) restricted to this form, the optimization problem that

remains is simply to choose the slope coefficients to minimize the approximation

of mise. This is done numerically in Matlab using the fmincon function. Note

that computing the approximation of mise for any given η(·) requires numerical

integration involving β̂1(x), β̂2(x), and f(x) for x on the grid. The function f(x)

is unknown but we can use the approximately unbiased estimate β̂0(x) in its place.

The function fmincon requires an initial value for the slope coefficient vector. We

use Latin hypercube sampling to search for the initial value.

We found that often for some x the chosen h(x) is too small, leaving the density

excessively rough in areas. This may be a result of estimation error. To deal with

this issue, we introduce bounds on h. The bounds of h evaluated at a particular

x are determined by spans. A span is defined as follows. For a real number y, the

function dye returns the smallest integer that is greater than or equal to y. Let

ρ be a positive number less than or equal to one and suppose there are n data

points (X̄m(Z1), . . . , X̄m(Zn)). The span at x is the Euclidean distance from x to

the dρneth nearest data point. This definition will do for our purposes but for a
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more general definition see Staudenmayer [2000]. We will take the lower bound

of h(x) to be a span for some ρ1 and the upper bound to be a span for some ρ2,

where ρ1 < ρ2.

The bounds correspond to the bandwidth function used in the nearest neigh-

bor density estimator (Loftsgaarden and Quesenberry [1965]). Suppose the target

density is g. Wand and Jones [1995] point out that this bandwidth evaluated at

a particular x is essentially proportional to g(x)−1. They go on to note that this

bandwidth is not an ideal surrogate for the optimal choice, which was reported

above to be [g(x)/(g′′(x))2]1/5. Even so, we found that the bounds at a partic-

ular x, which are essentially proportional to f(x)−1 and not ideal, work well at

smoothing out the overly rough regions.

The tuning parameters discussed in Section 3.1.1 must be specified for this

algorithm as well. For the test cases presented below the same values specified

in Section 3.1.1 work for this algorithm. There are some additional tuning pa-

rameters including the number of knots Kn, the knots themselves (ξ1, ξ2, . . . , ξKn),

ρ1 and ρ2 for the bounds on the bandwidth, and bounds on the slope coefficients

(γ1, . . . , γKn+2). For Kn ≥ 5, the results were very similar so we stuck with Kn = 5.

We spaced the knots evenly over the range of the data and found that taking

ρ1 = 0.005, ρ2 = 0.2 and bounding the slope coefficients between -1 and 1 worked

well.

3.1.3 Bias-Corrected Density Estimate

Now we turn to the implementation of the bias-corrected estimator presented in

Section 2.4,

ḟ(x; m,n, h) = 2f̂(x; m,n, h)− f̂(x; m/2, n,
√

2h).
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We also have the local version of this estimator which is

ḟL(x; m,n, h(x)) = 2f̂L(x; m,n, h(x))− f̂L(x; m/2, n,
√

2h(x)).

We use the same data to compute the estimators on the RHS for both ḟ(x; m,n, h)

and ḟL(x; m,n, h(x)). For the sake of generality, let us focus the discussion of

implementation on the local estimator.

We again would like to use an expression for asymptotic mise to guide the

modeling of mise. Recalling the decomposition of mise, we thus need asymptotic

expressions for integrated, squared bias and integrated variance. Theorem 3.1.3

gives an asymptotic expression for bias. Let us assume that we can integrate

squared bias so that we have the asymptotic expression of integrated, squared bias

∫ (
− h(x)4 1

12
f (4)(x)

∫
u4K(u) du− h(x)2

m

1

2

∫
s2α(4)(x, s) ds

∫
u2K(u) du

− 1

m2

1

4

∫
s4α(4)(x, s) ds

)2

dx.

Let us also assume that the upper and lower bounds on variance given in (3.1.3)

integrate. Moreover, since we are reusing the data, assume that the covariance of

f̂L(x; m,n, h(x)) and f̂L(x; m/2, n,
√

2h(x)) is approximately equal to its upper

bound

1

21/4

1

nh(x)
f(x)

∫
K2(u) du + o

(
1

nh(x)

)
,

so that we can approximate the variance component in mise with the integrated

asymptotic expression from the lower bound of var(ḟL(x; m,n, h(x)). This approx-

imation is ∫ (
4 +

1

21/2
− 4

21/4

)
1

nh(x)
f(x)

∫
K2(u) du dx. (3.7)

Returning to the bias, Theorem 3.1.3 suggests that we model the expectation
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of ḟL(x; m, n, h(x)) as

E
(
ḟL(x; m,n, h)

)
= β0(x) + β1(x)h(x)4 + β2(x)

h(x)2

m
+ β3(x)

1

m2
.

The bias of ḟL(x; m,n, h(x)) is then approximately given by

β1(x)h(x)4 + β2(x)
h(x)2

m
+ β3(x)

1

m2
. (3.8)

We thus have an approximation for the variance component of mise (3.7) and

a model for the bias (3.8). If implementing the local version ḟL(x; m,n, h(x)), pro-

ceed as in Section 3.1.2. If implementing the global version ḟ(x; m,n, h), proceed

as in Section 3.1.1. The tuning parameter values from the previous sections work

well here.

3.2 Simulation Results

In this section we examine the performance of the implementations discussed in

the previous section on three test cases. To assess performance we consider repre-

sentative plots and the behavior of estimated mise.

In the first test case, Z = (Z1, Z2) =d N(µ, Σ) where

µ =




0

0


 and Σ =




1 0

0 1


 .

Conditional on Z,

X(Z) =d N

(
Z1 + Z2,

(
1− 1

1 + 2−1/2|Z1 − Z2|
)2

)

Then the random variable E(X|Z) = Z1 + Z2 is normally distributed with mean

0 and variance 2. This is a straightforward example in which Z is multivariate

and all the assumptions for Theorem 3 which gives an asymptotic expansion of
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mise for the global estimator are satisfied. We consider this example mainly to

numerically verify that the rate of mise convergence for the global estimator is

c−4/7 as suggested by Theorem 3.

In the second and third test cases, we consider more interesting target densi-

ties. In the second test case, Z is a bimodal normal mixture, (1/2)N(−1, 3−2) +

(1/2)N(1, 3−2). Conditional on Z, the random variable X(Z) =d N(Z, (1 + Z2)2).

Then the random variable E(X|Z) = Z and it is thus a bimodal normal mixture,

(1/2)N(−1, 3−2) + (1/2)N(1, 3−2). The density f of E(X|Z) is

f(x) =
1

2

(
3√
2π

exp

(−9(x + 1)2

2

)
+

3√
2π

exp

(−9(x− 1)2

2

))
.

This density is plotted in Figure 3.1. Note that conditional on Z, var(X|Z) =

(1 + Z2)2 so that the variability in the observations X̄m(Z) increases as Z moves

further from 0. For this test case, we will compare the performance for each of the

estimators introduced in Chapter 2.

Note that in the second test case, Z is univariate. Since the var(X|Z) is

unbounded, this example does not satisfy the assumptions for the result in Steckley

and Henderson [2003] nor does it satisfy the assumptions of any of the results in

this thesis. This case then also serves as a test of the robustness of the estimators

presented in Chapter 2. The same is true for the third case.

For the third test case, Z is a normal mixture (1/2)N(−1/2, 4−2)+(1/2)N(1/2, 1)

and conditional on Z, the random variable X(Z) =d N(Z, (1 + Z2)2). Again, the

random variable E(X|Z) = Z so its distribution is the bimodal normal mixture,

(1/2)N(−1/2, 4−2) + (1/2)N(1/2, 1). The density f is

f(x) =
1

2

(
4√
2π

exp

(−16(x + 1/2)2

2

)
+

1√
2π

exp

(−(x− 1/2)2

2

))
.

This is the density discussed in Section 2.3. See Figure 2.1 for a plot of this
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Figure 3.1: The density of the normal mixture (1/2)N(−1, 3−2) + (1/2)N(1, 3−2).

density. As discussed in Section 2.3, this target density exhibits very different

levels of curvature. We might then expect the local kernel density estimator to

outperform the global kernel density estimator for this test case and we focus on

this comparison in Section 3.2.3.

3.2.1 Test Case 1

In Figure 3.2, the naive global density estimator is plotted for two different com-

puter budgets along with the target density for the first test case. The figure shows

that, as expected, the performance of the estimator improves as the computer bud-

get increases.

We now turn to mise convergence. For clarity, we no longer suppress the

dependence of the various estimators and parameters on the computer budget c.
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Figure 3.2: The global kernel density estimator for two different computer budgets

along with the target density.

To estimate mise(c), mise at a given computer budget c, we first replicate the

density estimator 50 times:

{f̂(·; m(c), n(c), h(c))k : k = 1, . . . , 50}.

We define integrated squared error (ise) as follows:

ise(c) =

∫
[f̂(x; m(c), n(c), h(c))− f(x)]2 dx.

For each k=1,. . . , 50, we use numerical integration to compute

isek(c) =

∫
[f̂(x; m(c), n(c), h(c))k − f(x)]2 dx.

Our estimate for mise(c) is then

ˆmise(c) =
1

50

50∑

k=1

isek(c).
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Figure 3.3: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the global kernel

density estimator.

In Figure 3.3, we plot log(mise(c)) vs. log(c) at c = 218, 220, 222, 224 and the

least squares regression line for the global estimator. The linearity of the plot

suggests that over the particular range of computer budgets c, the estimator’s

mise(c) has the form

mise(c) = V cγ

for some constants V and γ. Suppose that δ̂0 and δ̂1 are the estimated intercept

and slope of the regression line plotted in the figures. Then δ̂1 estimates γ and

exp(δ̂0/δ̂1) estimates V . Given that the optimal mise convergence rate is c−4/7 we

expect that, asymptotically, γ = −4/7 ≈ −0.57. The estimated intercept and slope

in Figure 3.3 are -7.51 and -0.62, respectively. So it appears that the estimator

performs as expected. Of course, we can never be sure that c is large enough over

the range we have considered so that the comparison is valid.
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Figure 3.4: The global kernel density estimator for two different computer budgets

along with the target density.

3.2.2 Test Case 2

Now we consider test case 2 in which the target density is bimodal. In Figure 3.4,

the naive global density estimator is plotted for two different computer budgets

along with the target density for the second test case. Figure 3.5 is a similar plot

for the local kernel density estimator. It seems from the plots that the performance

of these two estimators is very similar for this test case. It is also clear from the

figures that for each estimator, performance improves as the computer budget

increases. Finally we note that for both estimators and for both computer budgets

the estimators are generally closer to the actual density for values of x closer to

zero.

This final observation is likely a result of the double smoothing discussed in

Section 2.1. For this test case the variability of the observations X̄m(Z) increase
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Figure 3.5: The local kernel density estimator for two different computer budgets

along with the target density.

as Z moves further from 0. Since E(X|Z) = Z, the observations X̄m(Z) tend

to become more variable as they increase in absolute value. So the measurement

error in the observations is greater for observations further from 0. With increased

measurement error comes increased smoothing of the observations. Hence the

observations further from 0 are oversmoothed.

To better compare the local kernel density estimator and the global naive kernel

density estimator, we attempt to study the mise convergence. For each of the

estimators we estimate mise(c) over a range c as was done for the first test case.

In Figure 3.6 and Figure 3.7, we plot log(mise(c)) vs. log(c) at c = 218, 220, 222,

224 and the least squares regression line for the global estimator and the local

estimator, respectively.

We again see linearity in the plots. For the global estimator in Figure 3.6,

the estimated intercept and slope are 4.14 and -0.66, respectively. For the local
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Figure 3.6: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the global kernel

density estimator.

estimator in Figure 3.7 the estimated intercept and slope are 3.98 and -0.65, re-

spectively. So it appears that the estimators perform equally well. Also comparing

the estimated convergence rate with the optimal rate c−4/7 suggested by the re-

sults in Chapter 2 and Steckley and Henderson [2003], it seems that the estimators

perform a bit better than expected.

For this test case, the estimators built on the EBBS idea of empirically estimat-

ing a model of bias, perform quite well. It is interesting to look at the estimated

bias model itself. Recall the model of bias from (3.3)

β1(x)h2 + β2(x)
1

m
.

This model was suggested by the asymptotic expression for the expectation (3.1)

E
(
f̂(x; m,n, h)

)
= f(x) + h2 1

2
f ′′(x)

∫
u2K(u) du +

1

m

1

2

∫
s2α(2)(x, s) ds.
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Figure 3.7: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the local kernel

density estimator.

Consider β1(x). This term asymptotically corresponds to the coefficient

(1/2)f ′′(x)
∫

u2K(u)du in (3.1) but it was noted earlier that β1(x) captures the effect

of h2 on the bias for the given finite computer budget c (or rather c/2, as discussed

in Section 3.1.1). It is not an estimate of (1/2)f ′′(x)
∫

u2K(u)du. However for c very

large, we might expect β1(x) to look somewhat like (1/2)f ′′(x)
∫

u2K(u)du. In Fig-

ure 3.8, we plot (1/2)f ′′(x)
∫

u2K(u)du and β̂1(·) which was estimated in computing

the global kernel density estimator for c = 224. It is interesting to see that the

β̂1(·) does in fact follow the shape of (1/2)f ′′(x)
∫

u2K(u)du.

In Figure 3.9, the bias-corrected local density estimator is plotted for two dif-

ferent computer budgets along with the target density. Comparing this plot with

those for the global and local kernel density estimators in Figures 3.4 and 3.5,

respectively, indicates that, especially at the smaller computer budget, the bias-

corrected estimator tends to be more variable. Given the discussion in Section 2.4,
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Figure 3.8: The empirical coefficient of h2, β̂1(·), and the asymptotic coefficient of

h2 which is (1/2)f ′′(x)
∫

u2K(u) du.

this is expected. Comparing the figures also indicates that for the larger computer

budget, the bias-corrected estimator outperforms the other two estimators.

To further test this last observation, we estimate mise(c) at c = 218, 220, 222,

224 for the bias-corrected estimator as was done for the global and local estima-

tors above. Figure 3.10 is a plot of log(mise(c)) vs. log(c) and the least squares

regression line. Again, the linearity of the plot indicates

mise(c) = V cγ

for some constants V and γ over the specified range of c. The estimated intercept

and slope of the regression line in the plot are 4.74 and -0.77, respectively. Recall

that the slope estimates γ, which we expect, asymptotically to be −8/11 ≈ −0.73

based on the mse result in Section 2.4. The estimated mise convergence here is

nearly exactly what we would expect asymptotically. Also note that the perfor-
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Figure 3.9: The local bias-corrected density estimator for two different computer

budgets along with the target density.

mance of the bias-corrected estimator in terms of its convergence rate is superior

to the global and local kernel density estimators. But we point out that this is

for very large values of c. The representative plots in Figure 3.9 indicate that for

modest values of c the bias-corrected estimator is highly variable and may not be

a good choice.

3.2.3 Test Case 3

In test case 3 the target density exhibits contrasting levels of curvature. We focus

on comparing the performance of the naive global kernel density estimator to the

local kernel density estimator. In Figure 3.11 and Figure 3.12, the respective

estimators are plotted for two different computer budgets along with the target

density. At the larger computer budget, the estimators are very similar. At the
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Figure 3.10: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the local bias-

corrected kernel density estimator.

lower computer budget, the local estimator appears to be more variable.

Based on Figures 3.11 and 3.12 alone, it is difficult to distinguish the perfor-

mance of the two estimators. In Figure 3.13 and Figure 3.14 we plot log(mise(c))

vs. log(c) at c = 218, 220, 222, 224 and the least squares regression line for the

global estimator and the local estimator, respectively.

We again see linearity in the plots. For the global estimator in Figure 3.13,

the estimated intercept and slope are 2.31 and -0.57, respectively. For the local

estimator in Figure 3.14 the estimated intercept and slope are 1.84 and -0.55. The

slopes indicate that the rate of convergence for both estimators is very close to the

expected rate which is again c−4/7. We do however see a smaller intercept for the

local estimator. This indicates the constant V is smaller for the local estimator

which falls in line with the result in the standard density estimation setting in

which the local estimator’s optimal mise has a smaller constant multiplier of c−4/7
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Figure 3.11: The global kernel density estimator for two different computer budgets

along with the target density.
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Figure 3.12: The local kernel density estimator for two different computer budgets

along with the target density.
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Figure 3.13: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the global kernel

density estimator.

than the global estimator’s constant multiplier (Jones [1990]).

Figure 3.15 plots the bandwidth for the local estimator and the target density.

We see that the EBBS implementation performs as we might hope. The bandwidth

is smallest for the interval on which the curvature of the density is the greatest.
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Figure 3.14: Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the local kernel

density estimator.
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Figure 3.15: The bandwidth for the local kernel density estimator along with the

target density.



Chapter 4

Service System Performance in the

Presence of an Uncertain Arrival Rate
In this chapter we explore performance for a service system in which the arrival

process cannot be determined with certainty. We focus on performance related to

service level. This is the fraction of customers that wait in lines for less than a

prescribed amount of time before receiving service and is a commonly used metric.

We consider two possible interpretations of uncertainty, the RVAR case and the

UAR case. These cases were discussed in Section 1.3. Each of these cases, we claim,

requires different measures to gauge performance. We identify what performance

measures should be computed and discuss how they can be computed for the

RVAR and UAR cases. We also consider the implications of ignoring uncertainty

associated with the arrival process.

The appropriate long-run performance measures differ in the RVAR and UAR

cases in terms of how one should weight performance conditional on a given realized

arrival rate function. In the RVAR case there are more customers expected on days

when the arrival rate Λ is large, so more customers experience the performance

associated with a large arrival rate. In the UAR case weighting by the arrival rate

may be inappropriate. These long-run performance measures can be viewed as

“customer-focussed” since they indicate what a customer can expect in terms of

performance.

We also look at “manager-focused” performance measures. These are short-run

performance measures, i.e., “what might happen tomorrow.” This kind of infor-

mation is valuable because it can help to explain variability in daily performance.

94
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They are “manager-focused” because they indicate what a manager could see on

any particular day. But of course, long-run and short-run performance measures

are relevant to both managers and customers.

Given that we can choose appropriate performance measures, we then look at

how to compute them. A common approach is to use closed-form expressions based

on steady-state results for simple queueing models. When such approximations

are inaccurate or infeasible, simulation provides an alternative way to compute

performance. We discuss both steady-state approximations and simulation-based

estimates.

The remainder of this chapter is organized as follows. In Section 4.1 we consider

the RVAR case and the performance measure giving the long-run fraction of cus-

tomers that wait less than a prescribed amount of time in queue before receiving

service. We give an expression for this quantity, and then consider approximations

given by steady-state expectations. We also show that performance will typically

be overestimated if a randomly-varying arrival rate is ignored. We then turn to

short-run performance, which is the distribution of the fraction of calls answered

in the given time limit for a single instance of a period. We give a steady-state ap-

proximation based on a central limit theorem. The section concludes by discussing

how one can use simulation to estimate both short-run and long-run performance

measures efficiently. In Section 4.2 we turn to the UAR case and again suggest

appropriate performance measures for the short-run and long-run. We again con-

sider approximations based on steady-state expectations. The section concludes

with a discussion of simulation procedures to estimate the performance measures.

In Section 4.3 we describe a set of experiments designed to examine performance

for both cases. Specifically, we wanted to determine which factors impact the per-



96

formance measures and assess the quality of the approximations as compared to

the simulation-based estimates.

4.1 Randomly Varying Arrival Rates

In order to make the RVAR model more concrete, we begin this section with an

example of an RVAR model adapted from a model given by Whitt [1999]. In this

model, the arrival process on a given day is Poisson with arrival rate function

B(λ(s) : s ≥ 0), where (λ(s) : s ≥ 0) is a deterministic “profile” describing the

relative intensities of arrivals, and B is a random “busyness” parameter indicating

how busy the day is. To simplify the analysis we assume that the day can be

divided into periods so that λ(·) is constant within each period. The analysis that

we present in this section generalizes beyond this particular model, but we return

to this model for the RVAR experiments in Section 4.3.1.

The key long-run performance measure is the long-run fraction of customers

that receive satisfactory service in a given period. A customer receives satisfactory

service if her delay in queue is at most τ seconds. Common choices for τ are 20

seconds (a moderate delay) and 0 seconds (no delay).

For much of what follows we focus on a single period (e.g., 10am - 10.15am) in

the day, arbitrarily representing this time period as time 0 through time t. With

an abuse of notation, let Λi denote the real-valued random arrival rate within this

period on day i. We assume that once the random arrival rate Λi is realized for

the period on day i, it is constant throughout the period (i.e., from time 0 to time

t).

Let Si denote the number of satisfactory calls (calls that are answered within

the time limit τ) in the period on day i out of a total of Ni calls that are received.
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Notice that here we consider any call that abandons to be unsatisfactory. Some

planners prefer to ignore calls that abandon within very short time frames. There

is a difference, but it is not important for our discussion.

Over n days, the fraction of satisfactory calls is

∑n
i=1 Si∑n
i=1 Ni

.

Assume that days are i.i.d., the staffing level is fixed throughout, and EN1 < ∞.

(Assuming days are i.i.d. ignores the inter-day correlations seen in Brown et al.

[2005] and Steckley et al. [2005]. More general dependence structures can be

captured in essentially the same framework.) The last assumption holds if EΛ1 <

∞. Dividing both the numerator and denominator by n and taking the limit as

n →∞, the strong law then implies that the long-run fraction of satisfactory calls

is

ES1

EN1

. (4.1)

This ratio gives performance as a function of staffing level. But how do we compute

it?

First note that

EN1 = EE[N1|Λ1]

= E[Λ1t]

= tEΛ1, (4.2)

so that EN1 is easily computed. Computing ES1 is more difficult. We again

condition on Λ1 to obtain ES1 = Es(Λ), where s(λ) is the conditional expected

number of satisfactory calls in the period, conditional on Λ1 = λ. Our initial goal

is an expression for s(λ).
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Fix the arrival rate to be deterministic and equal to λ (for now). Let X(·; λ) =

(X(s; λ) : s ≥ 0) be a Markov process used to model the call center when there is

a fixed arrival rate λ. In specialized cases one can take X to be the process giving

the number of customers in the system, but it may be more complicated. Suppose

that a customer arriving at time s will receive satisfactory service if and only if

X(s; λ) ∈ B for some distinguished set of states B.

Example 1 A common model of a call center is an M/M/c + M queue, i.e., the

Erlang-A model. There are c servers, service times are exponentially distributed,

and the arrival process is Poisson. Customers are willing to wait an exponentially-

distributed amount of time (the “patience time”) in the queue, and abandon if they

do not reach a server by that time. Here we take X(s; λ) to be the number of

customers in the system at time s. Then X is a continuous-time Markov chain

(CTMC). Suppose that a service is considered satisfactory if and only if the cus-

tomer immediately reaches a server. Then we can take B = {0, 1, 2, ...., c − 1},
i.e., a service is satisfactory if and only if the number of customers in the system

is c− 1 or less when the customer arrives.

Example 2 Consider the same model as in the previous example, but now define

a service to be satisfactory if and only if the customer reaches a server in at most

τ > 0 seconds so long as she doesn’t abandon. The state space of the CTMC defined

in the previous example is no longer rich enough to determine, upon a customer

arrival, whether that customer will receive satisfactory service or not. We turn to

a different Markov process in such a case. Without loss of generality, suppose that

as soon as a customer arrives, the patience and service times for that customer are

sampled and therefore known. Since customers are served in FIFO order we can

determine, for every customer that has arrived by time s, whether that customer
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will abandon or not, and if not which agent the customer will be served by. Let

Vi(s; λ) denote the virtual work load, i.e., the “work in process” for agent i at

time s, i = 1, . . . , c. The quantity Vi(s; λ) gives the time required for agent i to

complete the service of all customers in the system at time s that are, or will be,

served by agent i. Let X(s; λ) be the vector (Vi(s; λ) : 1 ≤ i ≤ c). The process

X(·; λ) = (X(s; λ) : s ≥ 0) is a Markov process, albeit a rather complicated one,

and we can take B = {v : minc
i=1 vi ≤ τ}, so that a service is satisfactory if and

only if at least one server will be available to answer a call within τ seconds of a

customer’s arrival.

Let Pϕ(·) denote the probability measure when the Markov process has initial

distribution ϕ. Let ν and π be, respectively, the distribution of the Markov pro-

cess at time 0 and the stationary distribution (assumed to exist and be unique).

Proposition 8 serves as a foundation for the use of steady-state approximations for

performance measures in both the deterministic and random arrival rate contexts.

Proposition 8 Under the conditions above,

s(λ) = λ

∫ t

0

Pν(X(s; λ) ∈ B) ds.

If ν = π, so that the Markov process is in steady-state at time 0, then

s(λ) = λtf(λ),

where f(λ) = Pπ(X(0; λ) ∈ B) is the steady-state probability that the system is in

state B. We can interpret f(λ) as the long-run fraction of customers that receive

satisfactory service.

Proof: For notational simplicity we suppress the dependence on λ. For s ≥ 0,

let U(s) = I(X(s) ∈ B), where I(·) is the indicator function that is 1 if its argument
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is true and 0 otherwise. Note that X can be defined such that U is left continuous

and has right hand limits. Let L = (L(s) : s ≥ 0) be the arrival process. Then L

is a Poisson process with rate λ. For arbitrary v ≥ 0, (L(v + u) − L(v) : u ≥ 0)

is independent of (U(s) : 0 ≤ s ≤ v) and (L(s) : 0 ≤ s ≤ v). Then s(λ) =

λEν

∫ t

0
U(s) ds by the PASTA result (e.g., [Wolff, 1989, Section 5.16]). By Fubini’s

theorem, for arbitrary v ≥ 0, Eν

∫ v

0
U(s) ds =

∫ v

0
EνU(s) ds. Therefore

Eν

∫ v

0

U(s) ds =

∫ v

0

Pν(X(s) ∈ B) ds. (4.3)

Taking v = t, it follows that s(λ) = λ
∫ t

0
Pν(X(s) ∈ B) ds.

For the second result the system is in steady state at time 0 so that ν = π.

But Pπ(X(s) ∈ B) = Pπ(X(0) ∈ B) for all s ≥ 0. Defining f(λ) = Pπ(X(0) ∈ B),

it follows from (4.3) that

Eπ

∫ v

0

U(s) ds = vf(λ), (4.4)

and so s(λ) = λtf(λ).

To see that f(λ) can be interpreted as the long-run fraction of customers that

receive satisfactory service, define the stochastic process A = (A(s) : s ≥ 0),

where A(s) =
∫ s

0
U(u) dL(u). Then the fraction of customers that have received

satisfactory service up to time v is given by A(v)/L(v). It is assumed that as

v → ∞, A(v)/L(v) converges to some constant p, where p is the long-run frac-

tion of customers that receive satisfactory service. We show that f(λ) = p.

From the PASTA result (e.g., [Wolff, 1989, Section 5.16]), since A(v)/L(v) con-

verges to p,
∫ v

0
U(s) ds/v also converges to p as v → ∞. But p = Eνp =

Eν limv→∞(1/v)
∫ v

0
U(s) ds. By the bounded convergence theorem,

Eν lim
v→∞

1

v

∫ v

0

U(s) ds = lim
v→∞

1

v
Eν

∫ v

0

U(s) ds.

By (4.4), limv→∞(1/v)Eν

∫ v

0
U(s) ds = f(λ). Therefore f(λ) = p. ¤
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4.1.1 Steady-State Approximations

Suppose that we adopt the steady-state approximation s(λ) ≈ λtf(λ). Here λt is

the expected number of customer arrivals in the period and f(λ) is the long-run

fraction of customers that receive satisfactory service. From (4.1) and (4.2) we see

that

ES1

EN1

=
Es(Λ1)

tEΛ1

≈ E[Λ1f(Λ1)]

EΛ1

. (4.5)

The fact that one should weight f(Λ) by the arrival rate in (4.5) is well known.

It is implicit (and at times explicit) in the work of Harrison and Zeevi [2005]

and Whitt [2004] for example. Chen and Henderson [2001] did not perform this

weighting in their analysis. So their results do not directly apply to the RVAR

case, in contrast to what is claimed there. (But their results may apply in the

UAR case considered in Section 4.2.)

What are the consequences of ignoring a randomly-varying arrival rate when

predicting performance in a call center? In that case we would first estimate a

deterministic arrival rate. The most commonly used estimates converge to EΛ1 as

the data size increases. We then estimate performance as f(EΛ1).

Together with (4.5), Proposition 9 below establishes that if f is decreasing and

concave over the range of Λ1, then we will overestimate performance if a random

arrival rate is ignored. The function f is, in great generality, decreasing in λ. For

many models it is also concave, at least in the region of interest; see Chen and

Henderson [2001].

Proposition 9 Suppose that f is decreasing and concave on the range of Λ1. Then

E[Λ1f(Λ1)]

EΛ1

≤ f(EΛ1).
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Proof: We have that

E[Λ1f(Λ1)] ≤ (EΛ1)(Ef(Λ1)) (4.6)

≤ (EΛ1)f(EΛ1) (4.7)

establishing the result. The inequality (4.6) follows since f is decreasing (see, e.g.,

Whitt [1976]), and (4.7) uses Jensen’s inequality. ¤

For certain models and distributions of Λ1, we may be able to compute (4.5)

exactly. In general though, this will not be possible. In such a case we can use

some numerical integration technique. The problem is quite straightforward since

f is typically easily computed and the integral E[Λ1f(Λ1)] is one-dimensional.

We now turn from long-run performance to short-run performance. We want

to determine the distribution of S1/N1, the fraction of satisfactory calls in a single

period [0, t] of a single day. (We define 0/0 = 1.) Our approach is to condition on

Λ, the arrival rate for the period.

Suppose that conditional on Λ, the period is long enough that the fraction of

calls answered on time is close to its steady-state mean f(Λ). This transforma-

tion of the random variable Λ is our first approximation. It ignores the “process

variability” that arises even for a fixed arrival rate.

We can refine this approximation to take into account process variability. The

key to the refinement is a central limit theorem (CLT) for S1/N1 assuming a fixed

λ. We first show how to establish the CLT under special conditions, obtaining an

expression for the variance σ2(·) in the process, and then argue that it should hold

in much greater generality (albeit with a difficult-to-compute variance).

Let the arrival rate λ be fixed. Suppose that our goal is to answer calls imme-

diately. Suppose further that the number-in-system process X = (X(s) : s ≥ 0)

can be modeled as an irreducible continuous-time Markov chain on the finite state
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space {0, 1, . . . , d}, where d > c. (It is not essential that the state space be finite,

but it allows us to avoid verifying technical conditions.) Let M(s) be the number

of transitions by time s, and let Y = (Yn : n ≥ 0) be the embedded discrete-time

Markov chain. Then we can write

S1

N1

≈ UM(t)

VM(t)

, (4.8)

where

Un =
1

n

n∑
i=1

I(Yi = Yi−1 + 1, Yi−1 ≤ c− 1) and

Vn =
1

n

n∑
i=1

I(Yi = Yi−1 + 1).

Here Un gives the fraction of the first n transitions that correspond to an arriving

customer finding a server available. Similarly, Vn gives the fraction of the first n

transitions that correspond to an arrival joining the system. Notice that Vn does

not count blocked customers. This is why the relation in (4.8) is not an equality.

When d is large enough that few customers are turned away, the approximation

should be very good.

Theorem 10 Under the assumptions given above,

√
λs

(
UM(s)

VM(s)

− u

v

)
⇒ N(0, σ2(λ))

as s →∞, where u, v and σ2(λ) are specified in the proof below.

Proof: The proof has 3 steps. The key step is to establish the joint CLT

√
n







Un

Vn


−




u

v





 ⇒ N(0, Σ) (4.9)
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as n → ∞, where N(0, Σ) denotes a Gaussian random vector with mean 0 and

covariance matrix Σ, and u, v and Σ are specified below. The final 2 steps consist

of applying a random time change and then the delta method.

To establish (4.9) we apply a Markov chain CLT (see, e.g., [Meyn and Tweedie,

1993, Theorem 17.4.4]). That result applies only to univariate processes, but

the result easily extends to multivariate processes through an application of the

Cramér-Wold device (see, e.g., [Billingsley, 1968, Theorem 7.7]). Consider the (ir-

reducible, finite-state-space) Markov chain Ỹ = (Ỹi : i ≥ 0), where Ỹi = (Yi, Yi+1).

We can write

Un − u =
1

n

n−1∑
i=0

h̃1(Ỹi) and

Vn − v =
1

n

n−1∑
i=0

h̃2(Ỹi),

where

h̃1(x, y) = I(y = x + 1, x ≤ c− 1)− u and

h̃2(x, y) = I(y = x + 1)− v.

Let π̃ be the stationary distribution of Ỹ . We choose u and v to be steady-state

means, so that π̃h̃i =
∑

(x,y) π̃(x, y)h̃i(x, y) = 0 for i = 1, 2. Let P̃ be the transition

matrix of Ỹ , and let g̃1 and g̃2 solve Poisson’s equation

P̃ g̃i(x, y) = g̃i(x, y)− h̃i(x, y),

for i = 1, 2 and all (x, y). We then obtain (4.9), where

Σij = Eπ̃[(g̃i(Ỹ1)− P̃ g̃i(Ỹ0))(g̃j(Ỹ1)− P̃ g̃j(Ỹ0))]

= Eπ̃[g̃i(Ỹ0)h̃j(Ỹ0) + h̃i(Ỹ0)g̃j(Ỹ0)− h̃i(Ỹ0)h̃j(Ỹ0)],

where the second equality follows as in Meyn and Tweedie [1993], Equation 17.47.
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In fact, we obtain a stronger result, namely a functional CLT. This obser-

vation, together with the random-time-change result [Billingsley, 1968, Theorem

17.1] allows us to conclude that

√
M(s)







UM(s)

VM(s)


−




u

v





 ⇒ N(0, Σ)

as s → ∞. Now, M(s)/s → γ as s → ∞ a.s., where γ is the long-run rate

of transitions in the continuous-time Markov chain X. The converging-together

lemma [Billingsley, 1968, Problem 1, p. 28] then implies that

√
γs







UM(s)

VM(s)


−




u

v





 ⇒ N(0, Σ)

as s →∞.

The final step applies the delta method (e.g., [Billingsley, 1968, Problem 2,

p. 34], using the function φ(x, y) = x/y, to conclude that

√
γs

(
UM(s)

VM(s)

− u

v

)
⇒ N(0, η2),

where

η2 = ∇φ(u, v)T Σ∇φ(u, v)

=
Σ11 − 2(u/v)Σ12 + (u/v)2Σ22

v2
.

Setting σ2(λ) = λη2/γ yields the result. ¤

Equation (4.8) and Theorem 10 establish that conditional on Λ, the fraction

S1/N1 is approximately normally distributed with mean u/v ≈ f(Λ) and variance

σ2(Λ)/Λt. So we can approximate the distribution of S1/N1 by the normal mixture

N(f(Λ), σ2(Λ)/Λt).
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Remark 2 The variance of this normal mixture is

varf(Λ) + E
σ2(Λ)

Λt
,

which can be viewed as a decomposition of the variance into contributions from

arrival rate uncertainty and process uncertainty respectively.

To compute the distribution of this normal mixture we need to be able to

compute the constant σ2(λ), which in turn depends on γ and η2 (which also depend

on λ). The following formulae are useful in this regard. They exploit the strong

relationships between the 2-step Markov chain Ỹ and the single-step Markov chain

Y , and between the continuous-time Markov chain X and its embedded chain Y .

Let β(i) denote the rate at which the CTMC X leaves state i, and let πX and πY

denote the steady-state distributions associated with X and Y respectively. Since

πX(y) =
πY (y)/β(y)∑
z πY (z)/β(z)

,

it follows that

γ =
d∑

y=0

πX(y)β(y) =

(
d∑

z=0

πY (z)/β(z)

)−1

.

Note that πX or πY are easily computed, and therefore so is γ.

We also need to compute u and v. These are given by

u =
c−1∑
i=0

πY (i)PY (i, i + 1) and

v =
d−1∑
i=0

πY (i)PY (i, i + 1),

where PY is the transition matrix of Y .

Finally, recall that for 1 ≤ i, j ≤ 2

Σij = Eπ̃[g̃i(Ỹ0)h̃j(Ỹ0) + h̃i(Ỹ0)g̃j(Ỹ0)− h̃i(Ỹ0)h̃j(Ỹ0)]

=
∑
x,y

πY (x)PY (x, y)[g̃i(x, y)h̃j(x, y) + h̃i(x, y)g̃j(x, y)− h̃i(x, y)h̃j(x, y)].
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It remains to specify how to compute g̃i(x, y). Define

hi(x) = Exh̃i(x, Y1) =
d∑

y=0

h̃i(x, y)PY (x, y)

to be the “smoothed” version of h̃i, for i = 1, 2 and x = 0, . . . , d. There are

multiple solutions to the equations defining g̃i, all of which differ by an additive

constant. In what follows we use one such solution for g̃i, which is

g̃i(x, y) =
∞∑

k=0

E(x,y)h̃i(Yk, Yk+1)

= h̃i(x, y) +
∞∑

k=1

E(x,y)h̃i(Yk, Yk+1)

= h̃i(x, y) +
∞∑

k=1

E(x,y)hi(Yk)

= h̃i(x, y) + gi(y),

where

gi(y) =
∞∑

k=0

Eyhi(Yk)

solves (PY − I)gi(y) = −hi(y) for all y, and has the property that πY gi = 0. It

is therefore possible to compute gi from these latter relations, and then substitute

back to obtain g̃i.

We believe that a central limit theorem result holds in greater generality. Given

a fixed arrival rate λ, now assume only that the call center can be modeled with

a Markov process X = (X(s) : s ≥ 0) and that a customer arriving at time s

will receive satisfactory service if and only if X(s) ∈ B for some distinguished set

of states. For Theorem 10, we required that X be the number-in-system process

and B = {0, 1, . . . , c} which corresponds to the case in which a call is satisfactory

if and only if it is handled immediately. In assuming only that X is a Markov

process, we now allow for the case in which a call is satisfactory if and only if it is
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answered within τ > 0 seconds so long as the call doesn’t abandon. See Example

2 for more on this case.

For fixed arrival rate λ and assuming X = (X(s) : s ≥ 0) is a Markov process,

we argue heuristically (non-rigorously) as follows. Let Ti denote the time of the

ith customer arrival. Define Zi = X(Ti) to be the state of the Markov process at

the time of the ith customer arrival. The ith customer receives satisfactory service

if and only if Zi ∈ B. So assuming a fixed arrival rate λ, S1/N1 has the same

distribution as

1

N(t)

N(t)∑
i=1

I(Zi ∈ B),

where N(s) is a Poisson random variable with mean λs giving the number of

arrivals in [0, s].

The strong Markov property for X(·) ensures that (Zi : i ≥ 1) is a Markov

chain. We can then apply a central limit theorem (e.g., Meyn and Tweedie [1993,

Chapter 17]) to assert that under appropriate conditions

√
n

[
1

n

n∑
i=1

I(Zi ∈ B)− f(λ)

]
⇒ σ(λ)N(0, 1),

as n →∞, where σ2(λ) is a variance constant. Again under appropriate conditions

a random-time-change theorem ensures that

N1/2(s)


 1

N(s)

N(s)∑
i=1

I(Zi ∈ B)− f(λ)


 ⇒ σ(λ)N(0, 1)

as s →∞. A converging-together argument then ensures that

(λs)1/2


 1

N(s)

N(s)∑
i=1

I(Zi ∈ B)− f(λ)


 ⇒ σ(λ)N(0, 1). (4.10)

The limit result (4.10) then ensures that, so long as t is “large enough”, conditional

on Λ = λ,

S1

N1

=d
1

N(t)

N(t)∑
i=1

I(Zi ∈ B) ≈d N

(
f(λ),

σ2(λ)

λt

)
,
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where ≈d denotes approximate equality in distribution. Unconditioning, we then

assert that

S1

N1

≈d N

(
f(Λ),

σ2(Λ)

Λt

)
, (4.11)

so that the realized fraction of acceptable calls is approximately a mixture of

normal random variables.

This argument follows a similar path to the one in the proof of Theorem 10.

First, we established a central limit theorem for the fraction of the first n customers

that receive satisfactory service, then we applied a random time change and finally

we used the converging-together lemma. However this more general result is limited

in that we do not always know the variance constant σ2(·) and in some cases we

do not know the long-run fraction of satisfactory calls f(·) either.

4.1.2 Simulation-Based Estimates

The approximations for long-run and short-run performance described above may

be inappropriate, either because the steady-state approximations for time-dependent

quantities may be inaccurate for a non-negligible set of arrival rates, or because

the true system is not well modeled by simple models for which steady-state re-

sults are readily computed. It is natural to then turn to simulation to compute

performance measures.

In terms of long-run performance, we have already noted that the problem

reduces to computing ES1, the expected number of satisfactory calls in a particular

period. This is straightforward using simulation. One can simply generate the

arrival rate process, Λ say, and then conditional on the realized value, simulate the

call center for the day, giving a realization of S1. Repeating this process in i.i.d.

fashion gives S1, . . . , Sn say, which can be averaged to give an estimate of ES1.
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But we can develop more efficient (in the sense of lower variance) estimators of

ES1 by taking advantage of structure.

For definiteness, suppose we adopt the model that the arrival rate is given

by B(λ(s) : s ≥ 0), where λ(·) is constant in each period, and B is a random

“busyness” factor. If we know EB then we can use B − EB as a control variate,

i.e., we use

1

n

n∑
i=1

(Si − β(Bi − EB))

to estimate ES1, where ((Si, Bi) : i = 1, . . . , n) are i.i.d. and distributed as (S1, B),

and β is a constant that is chosen to maximize the variance reduction; see, e.g.,

Law and Kelton [2000]. However, we will typically know much more than just the

mean of B. If we know its distribution then, as discussed in Glasserman [2004],

p. 220, stratifying on B should yield larger variance reduction than using B−EB

as a control variate. See Glasserman [2004], Section 4.3, for details on how to

implement stratification.

For short-run performance we wish to compute the distribution of S1/N1. This

random variable does not have a (Lebesgue) density since it is supported on the

rationals. Its probability mass function is also uninformative. Therefore, we would

probably estimate a moderately coarse histogram (say, with bins of width ∆x =

0.01). The height of the bin [x, x + ∆x] is proportional to F (x + ∆x) − F (x),

where F is the distribution function of S1/N1. Hence, estimating this histogram

is equivalent to estimating the distribution function at the fixed set of points

∆x, 2∆x, . . . , 1. This estimation is straightforward based on i.i.d. observations of

(S1, N1), and one can apply standard results (e.g., Ross [1996], pp. 360–363) to

compute tolerance bounds for F . As with estimating ES1, one can stratify on

the busyness parameter B to reduce variance in the estimation of the quantities
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F (x) = P (S1 − xN1 ≤ 0).

4.2 Uncertain Arrival Rates

Suppose that the arrival rate function does not vary from day to day and is given

by the fixed function (λ(s) : s ≥ 0) say, but we do not know this function with

certainty. This situation can arise, for example, when a call center is opening for

the first time, when a new product is added to an existing portfolio of products,

or when a new marketing promotion comes into effect. It corresponds to what

we usually interpret as “forecast uncertainty,” and commonly arises in dynamic

business environments.

Just as in the RVAR case, in the long run we are interested in ES1/EN1, the

long-run fraction of satisfactory calls in a given period, and in the short run we are

interested in the distribution of S1/N1, the fraction of satisfactory calls in a single

period in a single day. In the long-run we will eventually learn the true arrival rate

through observation, but decisions need to be made before that eventuates, which

helps to explain our interest in this case.

We focus on a single period [0, t] of the day and assume that the true arrival

rate takes on the constant value λ∗ in this period. Let Λ denote a random variable

representing our knowledge of the value λ∗. In the RVAR case we obtained a

new sample from the distribution of Λ every day. In contrast, in the UAR case,

although we cannot directly observe it, Λ takes on the true value λ∗ on the first

day and then remains constant.

Arguing as in the previous section, conditional on Λ = λ the long-run fraction

of satisfactory calls is

E[S1|Λ = λ]

E[N1|Λ = λ]
=

s(λ)

λt
, (4.12)
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where we have used the notation s(λ) for the conditional expectation of S1 given

Λ = λ. The unconditional long-run performance is therefore s(Λ)/(Λt), which is

random because it depends on the unknown Λ. We might then select the staffing

level so that, with high probability, this fraction is larger than some specified level.

But how do we compute s(Λ)?

4.2.1 Steady-State Approximations

In this section we employ the steady-state approximation s(λ) = λtf(λ). In that

case we see from (4.12) that long-run performance is simply f(Λ). The expected

long-run performance is then Ef(Λ), which differs from the RVAR case in that it

does not weight the function f by Λ, as noted in the introduction. The random

variable f(Λ) can be analyzed reasonably easily once f and the distribution of Λ

are known, as noted earlier.

Turning to short-run performance, the argument leading to Theorem 10 is

directly relevant, and so we can approximate the distribution of S1/N1 as

N(f(Λ), σ2(Λ)/(Λt)).

This distribution is an amalgam of parameter uncertainty in that the true arrival

rate is unknown, and process uncertainty that is exhibited through the normal

distribution for any given Λ.

4.2.2 Simulation-Based Estimates

If steady-state approximations are deemed inappropriate then we may turn to

simulation. Recall from (4.12) that long-run performance is given by the random
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quantity s(Λ)/(Λt). We can write this as

E

[
S1

Λt

∣∣∣∣ Λ

]
. (4.13)

The distribution function of the conditional expectation (4.13) is relevant for com-

puting the probability that long-run performance is satisfactory. The density is

of interest in understanding how the uncertainty modeled by Λ translates into

uncertainty about performance. Methods for estimating the distribution function

of a conditional expectation can be found in Lee [1998]. Methods for estimating

the density of a conditional expectation can be found in Chapters 2 and 3. These

simulation methods involve a combination of “macro replications” that sample ob-

servations of Λ, and “micro-replications” that estimate the conditional expectation

for a sampled value of Λ.

One may prefer to simply determine summary statistics of (4.13) such as the

mean. In this case, the discussion given in Section 4.1.2 about the use of stratified

sampling is directly relevant.

Recall that the short-run performance measures in the UAR case coincide ex-

actly with those for the RVAR case, and so the methods sketched in Section 4.1.2

are directly relevant.

4.3 Experimental Insights

We conducted experiments to examine performance given a randomly varying ar-

rival rate. In Section 4.3.1 we focus on the RVAR case, using data from four

call centers studied in Steckley et al. [2005] to guide our experiments. Specif-

ically, we wanted to determine which factors impact the performance measures

discussed in Section 4.1, assess the quality of the approximations as compared to
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the simulation-based estimates of performance, and learn more about the behavior

of systems with a random arrival rate. The factors we chose to examine included

(a) the level of variability in the (Poisson) arrival rate; (b) the duration of the

(exponential) service times; and (c) the (exponential) rate at which customers

abandon the system.

In Section 4.3.2 we assess the quality of the UAR measures discussed in Section

4.2 paying special attention to the long-run, simulation-based density estimate

which is an application of the work from Chapters 2 and 3.

4.3.1 RVAR Experiments

In this section we consider the RVAR performance measures. The design of the

experiment is discussed in Section 4.3.1 and the results are presented in Section

4.3.1. We continue to focus our analysis on a single period.

Experimental Design

For our experiments, we model the call center as an M/M/c + M queue (i.e., the

Erlang-A model) with a random arrival rate Λ. We adopt the model adapted from

Whitt [1999] discussed earlier in which the arrival rate in the ith instance of the

period is given by Biλ, where the Bis are i.i.d. We model Bi as uniform with

mean 1 so that Λ is uniform with mean λ. We chose the uniform distribution

because it is simple and it effectively illustrates the essential ideas. One could

easily substitute a more realistic distribution. The choice of the endpoints of the

uniform distribution are discussed below.

For these experiments, we have set the length of the period at one hour. A call

is defined to have received satisfactory service if it is answered immediately, i.e.,
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τ = 0.

Using both the analytic approximations discussed above and the corresponding

simulation models, we estimate the performance measures discussed in Section

4.1.1 and Section 4.1.2 for a number of scenarios. The simulations were modeled

and run using software developed by Eric Buist and Pierre L’Ecuyer (Buist and

L’Ecuyer [2005]), which was chosen for its ease of modeling call center operations

and capturing the desired performance statistics, as well as its very fast simulation

run times.

The scenarios are summarized in Table 4.1. We vary the expected number of

calls per hour (λ). We also vary the variability in the arrival rate in terms of a

quantity we call the variance factor. The variance factor is defined as the ratio

of the variance of the number of calls per hour under the random arrival rate Λ

and the variance of the number of calls per hour given a deterministic arrival rate

λ. The level of the variance factor then determines the endpoints of the uniform

distribution for Λ and thus determines the variability of Λ. Finally, we allow the

mean service time and mean abandonment time to vary.

The range of variance factors (as well as arrival rates and average handle times)

included in these experiments is based on the actual historical data from four

diverse call centers that we have studied; additional details and examples from

this dataset are presented in Steckley et al. [2005].

In Table 4.1, a variance factor of one corresponds to the case in which the arrival

rate is deterministic and equal to λ. An abandonment rate of 0 corresponds to the

case in which there is no abandonment, in which case the call center is modeled as

an M/M/c queue.

For each scenario, we selected the number of servers c to be the minimum value
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Table 4.1: Experimental Design

Factor Levels
Mean number of calls per hour (λ) 250

1000
4000

Variance factor 1
3
6

Service rate per hour (µ) 12
6

Abandonment rate per hour(θ) 0
6
12

so that the long-run fraction of calls that are served immediately for a system with

a deterministic arrival rate λ is at least 90%.

For the simulations, we used an extensive warm-up period. The parameter

settings (arrival rate, service time distribution, abandonment time distribution)

for the warm-up period were identical to those used in the simulation of the actual

period for which data was captured. Therefore, our data reflects steady-state

performance.

Results

Both the simulation-based estimates and steady-state approximations for long-

run performance (long-run fraction of satisfactory calls) are reported in Table 4.2.

The simulation results are accurate to approximately 2 decimal places, and so

are reported only to that accuracy. Due to space considerations we present only

selected scenarios. This selection illustrates the essential characteristics and trends

seen in the results as a whole.

The approximations and simulation-based estimates are very similar. We ex-
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Table 4.2: Simulation-based estimates and approximations (in parentheses) of long-

run performance

Variance factor
λ µ θ 1 3 6

0.91 0.87 0.82
250 12 0

(0.91) (0.87) (0.81)
0.90 0.87 0.82

1000 12 0
(0.90) (0.87) (0.82)
0.91 0.88 0.83

4000 12 0
(0.90) (0.87) (0.82)
0.91 0.85 0.76

1000 6 0
(0.91) (0.84) (0.76)
0.89 0.87 0.84

1000 12 6
(0.90) (0.87) (0.84)
0.90 0.88 0.86

1000 12 12
(0.91) (0.89) (0.86)

pect such agreement since the simulated period should exhibit steady-state behav-

ior after the extensive warm-up we used. In fact, assuming that the simulated

periods are in steady-state, we have equality in (4.5). Then as the number of

simulated periods tends to infinity, the simulation-based estimate tends to the

steady-state approximation.

When the variance factor is one so that there is no variability in the arrival rate,

the long-run fraction of satisfactory calls is very close to 0.9. This is because the

number of servers c is specifically chosen so that the long-run fraction of satisfactory

calls will be at least 0.9 in this case. When the variance factor is strictly greater

than one, so that there is variability in the arrival rate, the long-run fraction of

satisfactory calls is less than 0.9 as suggested by Proposition 9. We also see that

the more variable the arrival rate, the worse the performance. We see that the

degradation can be significant. It is on the order of 5% - 10% for some of the
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cases.

The results also indicate that abandonment reduces the negative impacts of

variability in the arrival rate. To understand this, note that in a no-abandonment

model, customers with long waiting times remain in the system, creating a “chain

reaction” of waiting for future customers. In contrast, with abandonment, these

customers leave the system quickly, thereby avoiding the chain reaction encoun-

tered in a no-abandonment model. This reasoning suggests that the same trend

would be observed if we had instead defined a call to have received satisfactory ser-

vice if the call does not abandon and is answered within τ > 0 seconds. Although

we believe this trend holds in general, in some cases in which τ is very large and

the rate of abandonment θ is also very large, the abandoning calls may actually

drive down the long-run fraction of satisfactory calls.

For short-run performance, we turn to the distribution of S1/N1, the fraction

of satisfactory calls in a single instance of the period. We have two possible ap-

proximations for this distribution. The first is given by the distribution of f(Λ).

The second is given by the distribution of N(f(Λ), σ2(Λ)/Λt). Figure 4.1 plots the

simulation-based estimate of the distribution (histogram) along with the density

of the two approximations for a particular case. The final bar of the histogram

corresponds to the observed S1/N1 ratios that were exactly one. The density of

N(f(Λ), σ2(Λ)/Λt) has been truncated at one and the probability of the truncated

region has been plotted as a “histogram” bar just to the right of one. The estimate

of the density of f(Λ) is a kernel estimate.

The simulation-based histogram shows that the distribution of S1/N1 has a

spike around one and a skewed left tail for the given staffing level. We saw the same

general shape for all the scenarios in which there is variability in the arrival rate.



119

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

x

de
ns

ity

simulation−based estimate
f(Λ)

N(f(Λ),σ2(Λ)/tΛ)

Figure 4.1: Distribution estimates when λ = 1000, µ = 12, c = 97, θ = 0, and the

variance factor = 3.

The shape indicates that it is quite likely that performance for a single instance

of the period will be excellent, with the fraction of satisfactory calls greater than

0.9. But with a significant probability, the fraction of satisfactory calls will be less

than 0.9 and can be as bad as 0.5 with nontrivial probability.

The approximations in Figure 4.1 track the simulation-based results fairly well.

The normal mixture approximation is a much better estimate in the left tail.

To better understand the general shape of the distribution when there is vari-

ability in the arrival rate, consider Figure 4.2 which plots the mean f(·) and vari-

ance σ2(·)/(·)t of the normal mixture over the support of the arrival rate distribu-

tion for the case plotted in Figure 4.1. When the arrival rate is small, the mean is

very close to one and the variance is very small. This corresponds to the situation

in which the call center is comfortably overstaffed and nearly all calls receive satis-

factory service. For such λ, N(f(λ), σ2(λ)/λt) has a very concentrated density in
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Figure 4.2: Plot of f(·) and σ2(·)/t(·) for the scenario of Figure 4.1.

the neighborhood of one. The larger arrival rates result in lower means and higher

variances. This corresponds to a situation in which the call center is understaffed

and performance becomes more variable. In such cases, N(f(λ), σ2(λ)/λt) takes

on small values and is more dispersed.

In Figure 4.3, we present a plot of the various estimates for the case in which

all parameters are the same, except the variance factor which has increased to 6.

There is now an even greater skew in the left tail, which means that there is higher

probability of disastrous performance for a single instance of a period. In fact,

as variability in the arrival rate becomes extremely large (variance factor ≥ 50),

the distribution of S1/N1 becomes bimodal with one mode at 1 and the other at

0. Intuitively, the arrival rate distribution is so spread out that it rarely takes on

values that our staffing level is designed to handle, instead taking values that are

either very large, or very small relative to the staffing level. Therefore, performance
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Figure 4.3: Plots of the distribution estimates when λ = 1000, µ = 12, c = 97,

θ = 0, and the variance factor = 6.

is either very poor, or very good, with little chance of moderate performance.

Further examination of Figures 4.1 and 4.3 suggests that the approximations

improve as variability in the arrival rate increases. Indeed, we saw this trend in

the other scenarios in our experimental design. To understand this trend, first

note that the normal approximation for S1/N1 is provably good when the periods

are long, but deteriorates as the periods become shorter. For shorter periods, N1

can be small with high probability. As a consequence, the actual distribution of

S1/N1 will exhibit a right skew. Note that the right skew will be less for small λ

since S1/N1 then clusters around one. But for any deterministic λ, there will be a

discrepancy in the symmetric normal approximation and the right-skewed actual

distribution. When the arrival rate Λ is random we smooth the normal approxi-

mation over the possible values of Λ to get our approximation N(f(Λ), σ2(Λ)/Λt).

The approximation is essentially a kernel density estimate with local bandwidth
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Figure 4.4: Plot of N(f(Λ), σ2(Λ)/Λt) when θ = 0 and θ = 12, with λ = 1000,

µ = 12, c = 97, and the variance factor = 6.

σ2(·)/t(·). Figure 4.2 shows that for large λ, where the discrepancy between the

normal approximation and actual distribution is significant, σ2(λ)/t(λ) is rela-

tively large and we smooth more heavily. For smaller λ when the discrepancy is

less significant, we do less smoothing. As a result, the approximation gets visually

tighter.

To examine the effect of abandonment on short-run performance, we plot the

density of N(f(Λ), σ2(Λ)/Λt) for a particular scenario with, and without, aban-

donment in Figure 4.4. The densities are very similar around one but the density

corresponding to abandonment is less skewed to the left. Similar characteristics are

seen in the simulation-based histogram and the distribution of f(Λ). The intuition

here is the same as for the effect of abandonment on long-run performance.
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4.3.2 UAR Experiments

For the UAR experiments, we again model the call center as an M/M/c + M

queue (i.e., the Erlang-A model). Recall that in the UAR case, the arrival rate

λ for the given period is assumed to be deterministic but unknown. We continue

to assume that the arrival rate is constant throughout the period. Here we model

our uncertainty in the arrival rate with Λ. In particular, let Λ = Bλ, where B is

uniformly distributed with mean one, and where the endpoints of the distribution

are determined by a variance factor, as was done in Section 4.3.1. Then Λ is uniform

with mean λ, i.e., our uncertainty in the arrival rate is uniformly distributed about

the true arrival rate λ. The level of uncertainty is measured by the variance

factor. Similar to the RVAR experiments, a more realistic distribution could have

been chosen for Λ but we chose the uniform distribution because it is simple and

effectively illustrates the essential ideas.

We have set the length of the period to one hour. Similar to Section 4.3.1, a

call is defined to have received satisfactory service if it is answered immediately,

and we selected the number of servers to be the minimum value so that the long-

run fraction of calls that are served immediately for a system with a deterministic

arrival rate λ is at least 90%. To avoid confusing the number of servers with the

computer budget, we let c̃ denote the number of servers and c denote the computer

budget in this section.

Recall that the short-run measures for the RVAR case and the UAR case have

the same form, although we note that the interpretations are slightly different.

To get a sense of how short-run UAR measures behave, consult the plots of the

short-run RVAR measures in Section 4.3.1. In this section we focus on the long-run
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measures presented in Section 4.2, which estimate the distribution of

E

[
S1

Λt

∣∣∣∣ Λ

]
.

For the simulation-based estimate, we estimate the density of this random variable

using the global estimator and implementation introduced in Chapters 2 and 3.

In order to assess the quality of this estimator we did the following. For each

simulation of the call center with a given arrival rate, service rate and abandonment

rate, the initial conditions (number-in-system) were sampled from the steady-state

distribution with the same parameter settings. Therefore, the simulated data

reflects steady-state behavior. As a result, the steady-state approximation which

is the density of f(Λ) is the target density of the simulation-based estimates.

In Figure 4.5 we plot the simulation-based estimate at two different computer

budgets along with the steady-state density. Here, λ = 1000, µ = 12, c̃ = 97,

θ = 0, and the variance factor = 3.

It appears that the simulation-based estimates are converging to the steady-

state density as expected. But even after a computer budget of c = 219 (which

results in an EBBS optimal allocation of n = 2473 external samples), there is

still appreciable error. This problem is particularly difficult for kernel density

estimation given the boundary at 1 (for more on the boundary issue, see Wand

and Jones [1995]).

The general shapes of the long-run UAR density estimates presented in Figure

4.5 are similar to the short-run RVAR density estimates in Figure 4.1. In fact, we

see that the figures share the same parameter settings and both plot the density

of f(Λ). But we stress that the interpretations are different. For the UAR case,

the interpretation is as follows. Given the uncertainty in the arrival rate modeled

by Λ, with high probability the long-run fraction of calls answered immediately
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Figure 4.5: Distribution estimates when λ = 1000, µ = 12, c̃ = 97, θ = 0, and the

variance factor = 3.

will be greater than 0.9. But with nontrivial probability, the long-fraction of calls

answered immediately could be worse than 0.7.

The general agreement in shape of the densities in Figures 4.1 and 4.5 can be

traced to the fact that the random variables whose densities are being estimated

are very similar. For the UAR long-run case, the random variable, E[(S1/Λt)|Λ],

is essentially the random variable S1/N1 for the RVAR short-run case with the

process variability integrated out. The difference arises because

E

[
S1

Λt

∣∣∣∣ Λ

]
6=d E

[
S1

N1

∣∣∣∣ Λ

]
.

But the random variables are similar enough that the impact of the variance factor

and abandonment on the long-run UAR measures are well described by Figures

4.3 and 4.4, respectively.
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