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ILL-CONDITIONED CONVEX PROCESSES AND CONIC
LINEAR SYSTEMS

A. S. LEWIS

We prove the smallest possible norm of a linear perturbation making a closed convex process
nonsurjective is the inverse of the norm of the inverse process. This generalizes the fundamental
property of the condition number of a linear map. We then apply this result to strengthen a
theorem of Renegar measuring the size of perturbation necessary to make a conic linear system
inconsistent.

1. Introduction. The condition number of an invertible linear operator 4:X — X
(where X is a Banach space) is the quantity ||4]|||4~"||, where |-|| denotes the operator
norm:

4]l = sup{|l4x]: |lx[l=1}.

The condition number is large exactly when A4 is relatively close to a singular operator:
specifically,

(1.1) inf{||G|l: 4+ G singular} =|l4~"||"".

This identity measures how close to inconsistent a linear equation of the form
Ax=>b

is (for a given element b of X). In the finite-dimensional case, ||[4~!{|™" is just the
smallest singular value of 4.

Recently Renegar (1995b) studied a similar question for “conic linear systems” of the
form

(1.2) Ax<b, x>0,

where now A lies in L(X,Y), the space of continuous linear maps from X to another
Banach space Y (with b in Y) and the inequalities < and > correspond to closed convex
cones in ¥ and X respectively. He derived an analogous measure of the distance to
inconsistency for such systems, and related this measure to the complexity of interior point
methods for solving corresponding (generalized) linear programs. This type of analysis has
since proved very productive in interior point theory: see Renegar (1995a), Freund and
Vera (1998), Renegar (1996), Vera (1996, 1998), Pefia (1998), and Nunez and Freund
(1998).

An elegant tool for studying linear systems like (1.2) is the idea, due to Rockafellar
(1970), of a closed convex process ®:X — Y. This is a set-valued map whose graph

Gr(®)={(x,y) €X x ¥: y€ ®(x)}
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is a closed convex cone. The inverse ®~!:Y — X is the closed convex process defined
by

xed(y) & yedx).

Given a second closed convex process ¥:X — Y, the sum ®+W¥:X — Y is the closed con-
vex process defined by (P 4 ¥)(x) = P(x)+ ¥(x) for all x in X. Denoting the closed unit
balls in X and Y by By and By respectively, we follow Robinson (1972) in generalizing
the operator norm to processes by defining a function ® — ||®| € [0, +-o0]:

(1.3) |®|| =inf{0<r€R: By Cr® '(By)}.
This paper concisely proves the following generalization of identity (1.1):
inf{||G|: G€ L(X,Y), ® + G not surjective} = [|®~!||"".

This leads quickly to the central characterization in Renegar (1995b) of the distance to
inconsistency of system (1.2). The new approach is concise, and dispenses with Renegar’s
reflexivity assumption. Our proof relies on the norm duality of convex processes developed
in Borwein (1983), a homogenization approach pursued in Borwein (1986) and Renegar
(1995b), and a rank-one perturbation technique used in Pefia (1998).

2. Distance to nonsurjectivity. Throughout this paper, X and Y are Banach spaces
and ®: X — Y is a closed convex process.

There is an attractive duality between the “norm” defined by equation (1.3) and the
“norm” n(-) defined by

n(®)=inf{0<recR: &(By) C rBy}

(see Borwein 1983). It relies on the notion of the adjoint ®*:Y* — X*, a closed convex
process from the dual space to Y to the dual space to X, defined by

UED*(v) & (v,y)>{(u,x) whenever y€ ®(x)

(see Rockafellar 1970). The key norm duality result (Theorem 10.1 in Borwein 1983) on
which our argument relies is

@1) 18] =n(2*).

We say D is surjective if (X )=1Y, and ® is bounded if n(P) is finite. These ideas are
elegantly related by the open-mapping/closed-graph theorem (see Robinson 1976, Ursescu
1975 and Borwein 1986):

(2.2) ® surjective < 0€int®(By) < &*~! bounded.

Part of our central result consists of the claim that ||®~!||=! is a lower bound for the
norm of a linear perturbation making @ nonsurjective. This result is in fact a special
case of Theorem 5 in Robinson (1976): for completeness we give a concise proof based
on norm duality. We begin with an easy result showing a stability property of bounded
processes.

LemMa 2.3 (STABILITY OF BOUNDEDNESS). If the map GeL(X,Y) satisfies |G| <
(M(®~1))"! then the process (& + G)~! is bounded.

Proor. If (® + G)~! is not bounded then there is a sequence (y,) in int By and corre-
sponding points x, € (® + G)~'(y,) satisfying ||x,|| — co. Since

x € @71y, — Gx,) (@)1 + |G| ||x- By,
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we deduce
el < (@) + |G| Ix, 1D,

and letting » — 0o we see n(®~ |G|l > 1. O

We next combine this stability property with the open-mapping/closed-graph theorem
to deduce a lower bound on the distance to nonsurjectivity for a closed convex process,
specializing Theorem 5 in Robinson (1976).

LEMMA 2.4 (STABILITY OF SURJECTIVENESS). If the map GeL(X,Y) satisfies |G| <
|@Y||~! then the process ®+ G is surjective. In particular, if the process ® is surjective
then so is ® + G for all small G in L(X,Y).

Proor. We know, by norm duality (2.1), that

Gl <™~ =@ *)~".
But direct calculation (see (3.4.5) in Borwein 1983) shows that
(2.5) o *(y)=—3*"!(—y), forall yinY,
and since |G|l =||G*|| we deduce

IG* I <(m(@*~")™".

Hence by the previous lemma the process (®* + G*)™! is bounded. Direct calculation
shows @* + G* =(® + G)* (c.f. Theorem 7.4 in Borwein 1983), so ® + G is surjective
by the open-mapping/closed-graph Theorem (2.2). The same reasoning shows [|®~!| is
finite if ® is surjective, and the final comment follows. [J

We denote the polar of a set CC Y by
C°={veY*: (v,y)<1forall yin C}.
Our next step depends on the underlying identity in the proof of norm duality, namely
(2.6) (B(Bx))* =—0"(Bx+)

(see Proposition 1.1 in Borwein 1986). We use this to show how surjective processes can
be perturbed to nonsurjectivity by adding rank-one linear maps.

Lemma 2.7 (RANK-ONE PERTURBATION). For any point y not in int ®(By) there is a rank-
one map G in L(X,Y) satisfying |G| < ||y|| with ® + G not surjective.

Proor. If @ is not surjective there is nothing to prove, so assume ® is surjective,
and hence O € int $(By) by the open-mapping/closed-graph Theorem (2.2). By the Hahn-
Banach theorem there is an element v of (®(Bx))° satisfying (v, y) > 1.

The polarity identity (2.6) shows there is an element p of By N®*(—v). Now define
a rank-one map G: X — Y by

Gx = E:";i y (xeXx).

It is easy to check ||G|| < | »||. Finally, notice for any points x in X and z in ®(x) we
have

(v,z 4+ Gx) = (v,z) + {(u,x) <0,

since u lies in ®*(—v). Thus ® + G is not surjective. [
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We can now prove our main result.

THuEOREM 2.8 (DISTANCE TO NONSURJECTIVITY). For any Banach spaces X and 7Y, if
$:X —Y is a closed convex process then

inf{||G||: GEL(X,Y), ® + G not surjective} =||®~!|"".
Note. We interpret the right-hand side as 0 or +oo if ||®~!|| is +o0o or O respectively.

Proor. Call the left-hand side a. If ||@~!||=0 then ®(By)=Y so a=+oco. On the
other hand, |®~!||= + oo implies 0¢ int ®(By), in which case & is not surjective (by
the open-mapping/closed-graph Theorem (2.2)) so a=0. This covers the two extreme
cases, so we can assume 0 <a < + oo.

Lemma 2.4 (stability of surjectiveness) proves ||®~!||~! <, so suppose || ®~!||>a~!,
and choose a number B in (||®~!{|~!,«). By definition we know By ¢ f~!®(By), so there
is a point y outside ®(By) satisfying ||y|| <f. By Lemma 2.7 (rank-one perturbation)
there is a map G in L(X,Y) satisfying [|G|| <p with ® + G not surjective, giving the
contradiction < . [

Notes. (1). The same results hold when G is a closed convex process with nonempty
images G(x) (for all points x in X). The only change necessary is to replace ||G|| by
n(G) in Lemma 2.3 (stability of boundedness). Hence we see

|®~'|"! = inf{||G|| | G has nonempty images, ® + G not surjective}

it

inf{||G|| | G linear, ® + G not surjective}

I

inf{||G||| G rank-one, ® + G not surjective}.

(2). When Y is finite-dimensional the infimum in this result is attained (when finite)
by a rank-one linear map G. To see this, take the point y in Lemma 2.7 (rank-one
perturbation) to be a point on the boundary of ®(By) of minimal norm.

3. Distance to inconsistency. Given closed convex cones Ky CX and Ky C Y, we
write x <z for points x and z in X to mean z — x € Ky, with an analogous definition in
the space Y. In this section we investigate how much we need to perturb a map 4 in
L(X,Y) and a point » in ¥ to render the system

(3.1) Ax <b, 0<xeX

inconsistent.
Consider the product space X x R with the norm

GOl =lxll + i1l (xeX, t€R).
Any map in L(X x R, Y) has the form
(x,t) — Ax — tb (xeX teR)

for some map 4 in L(X,Y) and point b in Y, and it is easy to check that this map has
norm

4l v iiglf - (= max{[i4],[I5]}) :
in other words, L(X x R,Y) is isomorphic to the product space L{(X,Y)x Y (with this

norm).
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Define the inconsistent set
I={(4,b) € L(X,Y) x Y: system (3.1) inconsistent}.
Our aim is to calculate the distance to inconsistency
dist;(4, b) = inf{||4 — A|| V |6 — b||: (4,b) € I}.

We can associate the system (3.1) with a certain closed convex process $4 5 : X xR —
Y defined by

Ax —tb+ Ky if x € Ky and t>0,
QA,b(x9 t) =
otherwise,

and there is an associated set

Iy={(4,b) e L(X,Y)x Y: &, not surjective}.
LemMA 3.2 (INCONSISTENCY AND NONSURJECTIVITY). [p=cl/.

Proor. If the pair (4,b) € L(X,Y) x Y lies outside Iy then by definition the process
P4, is surjective. Hence the process @, is also surjective for all pairs (4,b) close to

(4, b) by Lemma 2.4 (stability of surjectiveness). For any such (4,b) there is a point x
in Ky and real ¢ > 0 satisfying

be dx — th + Ky,
so we have
AQ+0"'x<b, 0<(l+Hxex

and hence (4,b) ¢ I. This shows dist;(4, b) > 0.
Conversely, if (4, b) lies in Iy then ®4, is not surjective, so there is a point y in Y
outside ®,4 (X x R). Consequently the system

Ax<b+ey, O0<xeX

is inconsistent for all real ¢ > 0, so dist;(4, b)=0. This completes the proof. [

An important “distance to inconsistency” result (Theorem 1.3 in Renegar 1995b) as-
sumes the space X is reflexive and relates the system (3.1) to the system

Ax < th+z, fIxll + e < 1,
33)
0<xe€X 0<teR,

for a given point z in X. We now recapture this result, without the reflexivity assumption.
THEOREM 3.4 (DISTANCE TO INCONSISTENCY). Perturbed systems
(3.5) Ax<b, 0<xeX
have the property
inf{||4 — 4|| V ||b — b||: system (3.5) inconsistent}
= inf{|z||: system (3.3) inconsistent}.
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Proor. By Lemma 3.2 (inconsistency and nonsurjectivity), the left-hand side is just
dist; (4, b)=disty,(4, ). By Theorem 2.8 (distance to nonsurjectivity) this is just || & }7 =1L
and a simple calculation from the definition shows this is exactly the right-hand side. [

Notice how one side of this identity considers perturbations to both the constraint map
A and the right-hand side vector b, while the other side of the identity leaves A4 fixed.
The case =0 and Ky = {0} is particularly simple.
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