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Suppose that x is a characteristic function and a , a , . . . , a are weight func-1 2 n
tions on a finite measure space. Recent work of Gamboa and Gassiat observed

5 5conditions guaranteeing that x y x is small whenever 0 F x F 1 a.e. and the1
Ž . Ž .moment errors H x y x a are small i s 1, 2, . . . , n . Using concise and elementaryi

techniques we obtain similar results, under very mild assumptions. We also provide
precise error bounds. Q 1996 Academic Press, Inc.

1. INTRODUCTION

The Markov moment problem studies the relationship between a density
x on a finite measure space S with 0 F x F 1 a.e. and its moments Ha xi

Ž w x.with respect to given integrable weight functions a , a , . . . , a see 12 .1 2 n
In physical applications we seek to estimate x on the basis of this moment

Žinformation, sometimes using a maximum entropy technique see for
w x.example 6, 8 . A mathematical survey of such techniques may be found in

w x3 .
Heuristically it has been observed that for some densities x, any esti-

mate 0 F x F 1 a.e. with moments Ha x close to the given moments Ha xi i
Ž .must necessarily be close to x in L norm . This phenomenon is called1

Ž w x w x.‘‘superresolution’’ see 11 and 7 . An interesting explanation was pre-
w x w xsented in 9 and 10 , based on some sophisticated probabilistic maximum

w xentropy techniques introduced in 5 . The aim of this note is to give a
concise, elementary, measure-theoretic approach to this problem. In this
straightforward framework we derive results analogous to some of those in
w x w x9 and 10 under very simple assumptions and with an explicit error
bound.

w x � Ž . < 4Let 0, 1 s x g L S 0 F x F 1 a.e. , and define a continuous linear` `

Ž . n Ž .map A: L S ª R by Ax s Hax where a has components a , a , . . . , a .` 1 2 n
5 5Since superresolution requires that x y x is small whenever 0 F x F 11
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Ž .a.e. and H x y x a is small, an obvious prerequisite is that x s x is the
w xunique solution in 0, 1 of Hax s Hax. For this to be the case, except in`

Ž . � 4trivial, finite-dimensional cases where the null space N A s 0 , it follows
w x Ž w x .that Ax cannot be in the relative interior of A 0, 1 , ri A 0, 1 , since an` `

Ž w x . Ž w x . Žeasy standard argument shows that A int 0, 1 s ri A 0, 1 see for` `

w x.example Proposition 2.10 in 1 . Hence there exists a supporting hyper-
n Tw x Ž .plane for A 0, 1 at Ax: for some nonzero l in R , H x y x l a F 0`

whenever 0 F x F 1 a.e. Thus providing that lTa is nonzero a.e. we have
T� < Ž .Tthat x s x , the characteristic function of the set S s s g S l a sS l aTl a

4) 0 .
The above argument shows that we may often restrict our study of

nsuperresolution to cases where x s x for some nonzero l in R . This isS Tl a

our assumption for the main result, Theorem 2.2, which gives conditions
guaranteeing that, for 0 F x F 1 a.e.,

1r2

5 5x y x s O x y x a .Ž .1 Hž /
The following example shows that the order of growth is best possible.

w xEXAMPLE. Let S s 0, 1 with Lebesgue measure, x s x , and xw0, 1r2x «
1 TŽ . Ž .s x for 0 F « F . Then with a s s 1, s we obtainw0, 1r2y« xjw1r2, 1r2q« x 2

2 TŽ . Ž . 5 5H x y x a s 0, y« and x y x s 2« .1« «

We have seen that the superresolution phenomenon is confined to cases
where the underlying density x is the characteristic function of a set of the
form S T . It is therefore natural to ask how one recognizes such sets. Inl a
one case, familiar from approximation theory, this is extremely easy.

Continuous functions a , a , . . . , a on a real interval I are said to1 2 n
satisfy the Haar condition if lTa has at most n y 1 zeroes for any nonzero

n Ž w x. Ž . iy1l in R see for example 4 . The standard example is a s s s , fori
w xi s 1, 2, . . . , n. Suppose that S s m, n is contained in the interior of I

Ž . Tendowed with Lebesgue measure . Then any set S clearly has the forml a
Ž .up to measure zero

w x w x w x w xs , s j s , s j ??? or s , s j s , s j ??? ,0 1 2 3 1 2 3 4

where m s s - s - ??? - s - s s n and k - n.0 1 k kq1
In fact, the converse is also true: any set of this form can be written S Tl a

for some l in R n. To see this, we simply choose l so that lTa has zeroes
Žs , s , . . . , s in the interior of S and any remaining zeroes outside S and1 2 k

.if necessary replace l by yl . Clearly a similar technique applies to the
w x Ž . Ž .Tcase where S s yp , p and a s s 1, cos s, sin s, cos 2 s, sin 2 s, . . . .
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2. THE MAIN RESULT

Ž .We suppose that S, r is a fixed finite measure space. Our quantifica-
tion of the superresolution phenomenon revolves around the following

Ž .idea. We define, for any nonnegative function f in L S , the constant1

y1 <b s lim sup d r s g S f s F d . 2.1� 4Ž . Ž .f
d x0

� < Ž . 4The constant b is finite exactly when the measure of the set s f s F df
does not grow faster than linearly for small positive d . For example, if the
set S is a compact, nonsingleton, real interval with Lebesgue measure,
then b will be finite for any continuously differentiable function g on S< g <

with only a finite number of zeroes, all simple.
Our aim in this section is to prove the following result.

Ž .THEOREM 2.2. Suppose that the functions a , a , . . . , a lie in L S , and1 2 n 1
n Tthat x s x for some l in R with l a / 0 a.e. Then for any sequence ofS Tl a w x 5 5measurable functions x : S ª 0, 1 , if Hax ª Hax it follows that x y x 1r r r

ª 0.
Ž .TSuppose further that the constant b defined by 2.1 is finite. Then for< l a <

5 5 nany norm ? on R the following error estimate holds:

1r2

5 5x y x F K r x y x a , 2.3Ž . Ž .Ž .1 Hr r

where the function K satisfies

1r2
5 5TK r ; 2b l # as r ª `Ž . Ž .< l a <

Ž 5 5 .and ? # is the dual norm .

The proof will depend on a sequence of lemmas. For any function f in
Ž . Ž xL S we define a function L : R ª y`, q` by1 f

L « s inf fy 0 F y F 1 a.e., y G « . 2.4Ž . Ž .H Hf ½ 5
q � 4For u in R we write u s max u, 0 .

LEMMA 2.5. The function L is con¨ex, nondecreasing, and continuousf
Ž Ž . x Ž .on its domain, y`, r S . The infimum in 2.4 is attained for any « in

Ž Ž . xy`, r S . For any « in R,

q
L « G sup g« y g y f 0 F g g R . 2.6Ž . Ž . Ž .Hf ½ 5
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Proof. The function L is just the value function of the convex pro-f
Ž .gram on the right-hand side of 2.4 . Convexity is easy and standard to

check, while attainment and lower semicontinuity are consequences of the
� < 4 Ž .weak-star compactness of y g L 0 F y F 1 a.e. . The inequality 2.6 is`

Ž .simply the weak duality inequality for problem 2.4 , and is easily checked
directly.

In fact, a standard Fenchel duality result applied to the right-hand side
Ž . Ž . Žof 2.6 shows that 2.6 holds with equality for all « in R see for example

w x. Ž . Ž .13 . Furthermore, the supremum in 2.6 is attained, at least for « - r S ,
w xby the results in 2 . We shall not need these stronger duality results.

The next result is the key tool in our general convergence analysis.

Ž .LEMMA 2.7. Suppose that f ) 0 a.e. Then L « ) 0 for all « ) 0, andf
Ž .if L « ª 0 for some sequence « ) 0 then « ª 0.f r r r

Ž .Proof. The first statement is a consequence of the attainment in 2.4 .
w Ž .xNow since « g 0, r S for all large r, if « ¢ 0 then some subsequencer r

Ž . Ž .X X« has limit « ) 0, whence by continuity L « ª L « ) 0. This is ar f r f
contradiction.

This result can sometimes be quantified.

LEMMA 2.8. If f ) 0 a.e. then

qy2lim sup d d y f F b r2.Ž .H f
d x0

Proof. By Fubini’s theorem,

q
d y f s x dt drŽ .H H H �0 - f Ž s.F d , 0 F t F dyf Ž s.4

sgS tgR

d
<s r s g S f s F d y t dt� 4Ž .H

ts0

d
<s r s g S f s F r dr .� 4Ž .H

0

For any « ) 0,

y1 <r r s g S f s F r F b q « , for all small r ) 0,� 4Ž . f

so for small d ) 0,

dqy2 y2d d y f F d b q « r dr s b q « r2.Ž . Ž . Ž .H H f f
0

The result follows.
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Ž .LEMMA 2.9. Suppose that the function f lies in L S with f ) 0 a.e., and1
Ž .b defined by 2.1 finite. Thenf

y1y2lim inf « L « G 2b .Ž . Ž .f f
« x0

Ž .Proof. For any k ) 0, setting g s k« in 2.6 shows that

qy2 y2 2lim inf « L « G lim inf « k« y k« y fŽ . Ž .Hf ½ 5
« x0 « x0

q2 y2s k y k lim sup d d y fŽ .H
d x0

G k y b k 2r2,f

y1by the previous lemma. Setting k s b gives the result.f

Ž . � < Ž . 4For any function g in L S , define S s s g S g s ) 0 .1 g

Ž . w xLEMMA 2.10. For any measurable functions g in L S and x: S ª 0, 1 ,1

5 5x y x g G L x y x .Ž .H 1Ž .S < g < Sg g

< < Ž .Proof. Choose y s x y x in 2.4 . Then 0 F y F 1 a.e. and Hy sSg
5 5x y x . Furthermore,1Sg

< < < 5 <g y s g x y xH H Sg

< 5 < < < < <s g 1 y x q g y xH H
g)0 g-0

s 1 y x g q x ygŽ . Ž .H H
g)0 g-0

s x y x g .Ž .H Sg

The result follows.
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We can now prove the main result.

Proof of Theorem 2.2. By the previous lemma,

T5 5T0 F L x y x F x y x l a ª 0, 2.11Ž .Ž .Ž .1 H< l a < r r

5 5so x y x ª 0 by Lemma 2.4. To see the second part, observe that1r

T5 5 5 5Tl # x y x a G x y x l a G L x y x .Ž . Ž . Ž .H H 1r r < l a < r

Ž .Without loss of generality, for all r, x / x, and hence H x y x a / 0, byr r
Lemma 2.4. Then by Lemma 2.9,

y1y25 5 5 5 Tlim inf x y x l # x y x a G 2b ,Ž . Ž .1 Hr r < l a <
rª`

and the result follows.

Note that the proof of the first part of the theorem in fact only needs
T Tthe assumption that Hl ax ª Hl ax. An equivalent way to state this partr

1Ž .of the result is then the following: for any function g in L S with g / 0
w xa.e., and any sequence of measurable functions x : S ª 0, 1 , if Hgx ª Hgr r q

5 5then it follows that x y x ª 0. This can also be seen by a more1r Sg

direct argument.

EXAMPLE. Suppose in Theorem 2.2 that S is a compact interval of R
Ž . Tnot a singleton with Lebesgue measure, and that l a is continuously

Ž .differentiable on S with zeroes s , s , . . . , s m ) 0 , all simple. A1 2 m
straightforward calculation shows that

m
X y1T

Tb s a l a s ,Ž . Ž .Ý< l a < i i
is1

where a s 2 if s lies in the interior of S and a s 1 otherwise. Hence wei i i
obtain the error estimate

1r2y1r2 m
X y1T5 5 5 5lim sup x y x x y x a F 2 l # a l a s .Ž . Ž .Ž . Ý1 Hr r i iž /rª` is1
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We can compare this inequality with the example at the end of Section
1TŽ .1, by setting l s 1, y2 , so s s and1 2

y1r2 1r2X y1T5 5 5 5x y x x y x a s 2 s 2 l a l a s ,Ž . Ž .Ž .1 H `ž /« « 1 1
1

whence the error bound is tight.
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