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1. INTRODUCTION

The main purpose of this paper is to observe the equivalence between the following two
results. The first result is the finite-dimensional case of a new mean value theorem due to
Clarke and Ledyaev. We use 4 to denote the Clarke derivative [1].

THEOREM 1 [2, corollary 4.1]. Let X and Y be nonempty, convex, compact sets in R”, and let
Z be the convex hull of X UY. Let f be a real function, Lipschitz on a neighbourhood of Z.
Then there exists a point z in Z and an element { of 4f(z) with

{({,y—x)>minf— maxf forallyeY and =xeX.
Y X

THEOREM 2. Let C be a nonempty, convex, compact set in R™. Let the functions ¢, ¢ :
R™ — RU{+ 2} be closed, proper and convex, with domains contained in C. Let 6 be a real
function, Lipschitz on a neighborhood of C. If

d=0=—-yonC,
then there exists a point ¢ in C and an element £ of #0(c) with
P*(E)+ Yy (-€)<0. (1

We begin with a brief discussion highlighting the case where @ is continuously differen-
tiable. Theorem 1 is a powerful generalization of the classical mean value theorem, the latter
following easily when X and Y are singletons. Theorem 2 is a nonlinear variant of the
fundamental Fenchel duality result. To see this, recall that if

inf[&(x) + & (x)] =0,
then, under a regularity condition, Fenchel duality says that there exists a vector u in R™ such
that

&*(u) + p*(—u) <0. )

Theorem 2 gives the additional information that this vector u can be chosen in the range of
6'|c. Some regularity condition (such as the compactness of C) is clearly needed in general: if
we allow C =R, the result can fail (see the example after theorem 7).
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Theorem 2 shows that there is an ‘affine separator’ of ¢ and — ¢ (in other words, an affine
function lying between the functions ¢ and — /) which is parallel to the linear approximant to
6 at some point ¢ in C. To see this, observe that u is the gradient of an affine separator
exactly when, for some constant r

—¢(x)<{u,x)+r<¢(x), forall x,

or in other words

sup{—<{u, x) — ¢(x)} <r < inf{—{u,x) + ¢(x)}.

Thus the set of gradients of affine separators is exactly
U={ueR"¢*(u)+ y*(—u) <0}. 3)

To prove theorem 2 it actually suffices to consider functions ¢ and ¢ which are continuous
on C. This is a consequence of the following simple idea. For a constant k > 0 we define the
Lipschitz regularization. ¢, : R™ — [—x, +x] by

def .
$(x)'= inf (& (y) +Kllx —yl}.
The following easy result is standard.

PROPOSITION 3. Suppose that the function ¢ : R” — RU{+} is proper and convex, with
bounded domain. Then for any k > 0, the Lipschitz regularization ¢, is an everywhere finite
convex function with Lipschitz constant k, satisfying ¢, < ¢. Suppose furthermore that the set
C contains dom¢, and that the function 8 : C —» R has Lipschitz constant & and satisfies
6 < ¢ on C. Then in fact 6 < ¢, on C.

Proof. The function ¢, is convex since it is an inf-convolution [3, theorem 5.4}, and clearly

& (x) = inf{d(y) +kllx = yll} < d(x),
v

for all x in R™. Since ¢ is proper, ¢,(x) < + . On the other hand, since there exists a vector
z in R™ with ¢(y) = (z,y) — B for all y in R™, 3, corollary 12.1.2], it follows that for all x in
Rm

&, (x)>inf{{z,y) — B+kllx —yl |y €cl(dome)} > —co.

Now suppose that two points « and v satisfy ¢,(v) < ¢,(u) — kllu — vll. Then for some w in
R™ we have

d(w) +kllv —wll < ¢ (u) —kllu —ovll < ¢w) + kllu —wll — kllu — vl
contradicting the triangle inequality. Finally, if ¢,(x) < 8(x) for some x in C then there exists
a point y in dom¢ with

8(x)> () +kllx =yl = 6(y) +kllx —yl,
contradicting the Lipschitz property of 6.

Thus with the assumptions of theorem 2, using this result we can find continuous convex
functions ¢, and ¢, with

b=, 202> - —ponC.



A nonlinear duality result 345

Applying theorem 2 to these new functions gives a point ¢ in C and an element ¢ of 46(c)
with

0> (¢ ) (&) + (W) (=€) = ¢* (&) + y* (= £),

so the result follows for the original functions.

The proof of theorem 1 in [2] is not all straightforward, involving control-theoretic ideas
and a fixed point argument. Theorem 2, unfortunately, does not seem any easier in general.
However, in the case m = 1 with @ continuously differentiable there is an easy argument. For
the purposes of this proof, ¢ will denote the usual convex subdifferential. Given the above
comments, we can assume that the functions ¢ and ¢ are continuous on the compact interval
C, and hence ¢* and ¢* are everywhere finite and continuous.

Classical Fenchel duality shows that the set U given by (3) is a nonempty closed interval. If
there is no ¢ in C with (1) holding then without loss of generality, by the intermediate value
theorem, we may as well assume that

()’(z)>6d§f max U < +x, for all z in C.

Define the continuous convex function 7 : R —= R by 7r(u)d=ef ¢* () + y*(—u). Since &=
max {u € R™|mw(u) < 0} it follows that 7(8) = 0 and that the right derivative 7, (§) > 0. Hence
for some z in dw(8), we have z > 0.

By the subgradient sum formula there exist z, in d¢*(8) and z, in dy*(—8) with
z, —z,=z20. However, then z, and z, lie in C with

8(z, —z,) = ¢(z,) + $*(8) + ¥(z,) + Y*(-3)
=¢(z) + ¥(z,) = 6(z)) — 0(z,),

which contradicts the classical mean value theorem if z, >z,. On the other hand, if z;, =z,
then we obtain ¢(z;) = 8(z,) = —(z,) from the above. Since ¢ > 8> — ¢, it is standard that
6'(z,) € a¢(z,) and —8'(z,) € y(z,). However, now

d)*(g’(zl)) + 4/*(_9'(:])) = _¢(Zl) - ll!(Zl) =0,

contradicting the definition of 8, since 8'(z,) > 8.

2. THE EQUIVALENCE OF THEOREM 1 AND THEOREM 2

Proof of theorem 2 from theorem 1. As remarked in the previous section, we can assume that

. . def e
the functions ¢ and ¢ are continuous on the set C. Let 8 = sup-¢. Then B is finite and we
can define a convex, compact, nonempty set

YE ((y,s) eR™ ' |d(y) <s < B}

def
Similarly, let « = sup. ¢, so

xE G ner |~ y(x)>r> —al,

is a convex, compact, nonempty set.
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Now let f(w,1) o 8(w)+t for w near C and ¢ in R. Then

il;ff=inf{—6(w) +tlplw) <t < B,weC}

=inf{—08(w) + ¢(W)lw € C} = 0,
and

supf=sup{—0(w)+1l-¢y(w)>t> —a,weC}
X

=sup{—0(w) — ¢ (w)iwe C} <0.

Hence inf, f—supy f>0.
By theorem 1 there exist (c,¢) in C X R and £ in d6(c) such that

(=&, (y,s) = (x,r)) =20,
for all x,y € C with ¢(y) <s < B, y(x) < —r < . Thus

[(=&y)+d(WN+[CE ) +4(0)]=20, Vx,yeC,
and hence —¢* (&) — ¢*(—¢£) =20, as required. H

def
Proof of theorem 1 from theorem 2. Let X, Y, Z and f be as in theorem 1. Let ¢i
supy f+ 8y, where 8, is the indicator function of X. So ¢ > f on Z, ¢ is convex, closed and

f
proper. Likewise, l//di —inf, f+ 8, is a convex, closed and proper function, with f> —¢ on
Z.
By theorem 2, there exists z in Z and ¢ in @f(z) with
() + ¢* (=) <0. (3a)

Now we have

d* () =sup{({,x) — ¢(x)} = (sup ({,x)) — supf,

xeX X
and similarly,
Yy (—¢)= (sup { —§»Y>) + inff.
YEY Y
Substituting these into (3a) yields
inf f—sup f< —sup (=¢,y)—sup ({,x)= inf (L, y—x).
Y X yeY x€X x€X,yeY

Theorem 1 follows. B

3. AN EXTENSION

The requirement in our nonlinear Fenchel result, theorem 2, that the functions ¢ and
have domains contained in a compact set appears rather artificial. In this section we consider
a version of the result which relies instead on growth conditions on ¢ and . The idea is
simple: under reasonable conditions, to find an affine separator for ¢ and ¢ it should suffice
to separate ¢ and ¢ restricted to a large compact set.
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We begin by recalling some easy facts about the Lipschitz regularization of a convex
function p: R™ — RU{—, + =} defined by

2, )= inf {p(v) + kllu — vll}.

We denote the closed unit ball in R™ by B, and §,,; denotes the indicator function of the
closed ball with radius .

LEMMA 4. (p,)* =p* + §,5.

Proof. We have
(p) (W)

sup {{w,u) —p, (1)}

it

sup {(w,u) —p(v) — kllu —vll}

u,v

sup ({w,v+z) —plv) —klzI}

v

=p*(w) + 8, 5(w),

as required. W

LEMMA 5. If the function p is finite with Lipschitz constant k¥ near the point u then
pi(u) =plu).

def
Proof. The convex function r(v) —E—p(v) + kllu — vl| satisfies r(v) = p(u) for v close to u,
and r(u) = p(u). Hence r is minimized at u. W

LEMMA 6. Suppose that the convex function p is everywhere finite on R™, and has bounded
level sets. Let a be a real number. Then for all k sufficiently large, p,(u) < « implies that
pi(u) = pu).

Proof. For B in R, define the level set L « {ul p(u) < B}, and let «' ' max {a, p(0)}. By
[3, theorem 10.4], p is Lipschitz on the bounded level set L, . ,, say with Lipschitz constant
k,. Now fix any k >k, and note that p,=p on L_ ., by lemma 5. We will show that if
P(w) < a, then p (u) =p(u).

Suppose this fails for some u. Then clearly u does not lie in L., and so p(u)>a’ + 1.
On the other hand, p(0) < a’, so 0 does lie in L., and hence p,(0) = p(0). Furthermore,
since p is continuous we can choose A in (0,1) with a’ <p(Au) < a’ + 1. Since Au lies in
L, ,, we deduce that p,(Au) = p(Au), whence

a' <pauw) =p,(Aau) <1 = p(0) + Ap () < (1-A)a'+Ara<a’,

which is a contradiction. R

We can now give a proof of a variant of theorem 2 involving growth conditions on ¢ and .
A convex function ¢ is said to be cofinite if it is closed and proper, with recession function
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(f0*Xy) = + for all nonzero y, where
FOOMNE lim A fx + Ay,
A= 4+ X

for an arbitrary choice of x in the domain of f. Cofinite convex functions can be characterized
as conjugates of everywhere finite convex functions [3, corollary 13.3.1]. They are those proper,
closed convex functions which grow faster than linearly. In the following variant of theorem 2
we relax the restriction that the underlying set C be bounded (in particular, we allow
C =R™), at the expense of introducing a constraint qualification and growth conditions.

THEOREM 7. Let C be a nonempty, closed, convex set in R™. Let the functions ¢, ¢ :
R™ — RU{+} be convex and cofinite, with domains contained in C, and satisfying

int (dom ¢) N int (dom ) # 0. Y]
Let 6 be a real function, locally Lipschitz on a neighbourhood of C. If
d=260>—yonC,
then there exists a point ¢ in C and an element ¢ of 46(c) with
*(E)+¢y*(-¢)<0.

Proof. By translation we can assume that 0 lies in int(dom ¢) and int(dom ¢ ), using (4).
Hence ¢* and ¢* have bounded level sets, and are everywhere finite by cofiniteness. If we
apply theorem 2 with C replaced by C N kB, for k=1,2,..., then for each k we obtain a
point ¢ in C N kB and an element ¢* of 36(c*) with

(b+8,) (£ + (Y+ 8, (=K <0. (5)

Now by lemma 4, for all large k we have (¢ + 6, )" = (¢*), and (¢ + 8, 5)* = (¢*),, and
furthermore (5) implies that

(%) (E5) < = (P + 85) (= £5) < (Y + 8, )0) = Y (0).
Hence for all & sufficiently large

(p+ 8,5) (£F) = (™) (£5) = p* (&),

def
by lemma 6 with p = ¢* and a &« ¢(0). Similarly,

(g + ‘Sks)*(_§k) = ll’*(—fk),
for all & sufficiently large, and the result follows by (5). =

The following example shows that we cannot drop the assumption of cofiniteness in the
above result.

def
Example. Define convex functions ¢ and ¢ : R—> RU{+>} by ¢(x) = x+ 8y (x) and
def
Yx)= 2+x%/2+ 8g_(x), and define a continuously differentiable function ¢ : R — R by

def def
0(x) = x— exp( —x). Then, taking C = R, all the assumptions of the theorem are satisfied
except that ¢ is not cofinite. Since ¢*(y) = +ounless y <1,and 0'(c) =1+ exp(—~c) > 1 for
all ¢, it follows that
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¢* (8 (c))+y*(-0'(c)) = +oo,

for all c.

One of the curious features of theorem 2 is that the usual constraint qualification for
Fenchel duality is not required: the existence of the Lipschitz separator 6 replaces it. By
contrast, our proof of theorem 7 requires the constraint qualification (4). It is unclear to us if
this assumption is really required for the result. The following theorem is a partial result in
this direction: we can drop the constraint qualification if we assume that the separator 6 is
globally Lipschitz. Comparing theorem 2 and the following result, boundedness of C in the
former has been replaced by cofiniteness of ¢ and ¢ in the latter.

THEOREM 8. Let C be a nonempty, closed, convex set in R™. Let the functions ¢, ¢ :
R™ — RU{+ <} be convex and cofinite with domains contained in C. Let @ be a real function,
Lipschitz (globally) on a neighbourhood of C. If

¢=0=>—-yonC,
then there exists a point ¢ in C and an element ¢ of 96(c) with
P* (&) +y*(—£) <.

Proof. Choose any points x, in dom ¢ and x, in dom ¢. Let k& be the Lipschitz constant
for 6, and choose any r > [|x, — x,]|. Define a function

def .
by(x)'= inf{g(y) +kllx =y,
v—xll<r
and note that ¢, < ¢. For any point x close enough to x,, we have that |lx, — x| <r, and it
follows that

do(x) < plx,) +kllx —xyll < +2¢,
so x, lies in the interior of dom ¢,. Now for any point y in C we have that
d(y) +kllx —yll= 0(y) +kllx —yll = 6(x),

SO ¢y = 6.

Notice that if we define a function g()c)d;i kllx|l + 8,5(x), then clearly g* is everywhere
finite, and since ¢ is cofinite we also know that ¢* is everywhere finite. Since ¢, is the
infimal convolution of ¢ and g, it is a closed, convex function with ¢5 = ¢* +g* [3, theorem
16.4], so in fact ¢, is also cofinite.

Similarly, if ¢, is the infimal convolution of ¢ and g, then it is a closed, convex, cofinite
function such that —¢ < — i, < 8 on C. As x, + rB C dom ¢y, the intersection of int(dom ¢,)
and int(domy,) is nonempty. Thus we can apply theorem 7 (with ¢ and ¢ respectively
replaced by ¢, and ,) to deduce the existence of a point ¢ in C and an element ¢ of 96(c)
with

P*(EV+ Y (—E) < Ppf (E)+ Yy (=€) <0,

as required. W
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COROLLARY 9. Suppose that the function ¢ : R”™ — R is continuously differentiable and that
for some constants & > 0, K> 0 and 1 <p < 4+, the growth condition

180l <k +Klxll/p
holds for all x. Then there exists a point X satisfying
6" (Oll, < K(kg/K)"*
(where 1/p+1/q=1).

def
Proof. Let ¢(0)= k+KxllZ/pE w(x), so that ¢*(y) = —k + KIIK~1yll?/q = y*(y). By
theorem 7 there exists a point X with [|6'(D)||I <kgK?"!. m

For example, if the real function 6 is continuously differentiable with [8(x)| <1 + llxll* for
all x, then there exists a point x with [|6'(x)l| < 2.
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