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MAXIMUM ENTROPY RECONSTRUCTION USING
DERIVATIVE INFORMATION, PART 1: FISHER
INFORMATION AND CONVEX DUALITY

J. M. BORWEIN, A. S. LEWIS anp D. NOLL

Maximum entropy spectral density estimation is a technique for reconstructing an un-
known density function from some known measurements by maximizing a given measure of
entropy of the estimate. Here we present a variety of new entropy measures which attempt to
control derivative values of the densitics. Our models apply among others to the inference
problem based on the averaged Fisher information measure. The duality theory we develop
resembles models used in convex optimal control problems. We present a variety of
examples, including relaxed moment matching with Fisher information and best interpolation
on a strip.

1. Introduction. We consider the problem setting of spectral density estimation,
where we wish to reconstruct an unknown density function %(z) > 0 from a set of
known measurements

(1.1) [a()F(tydt=b, i=1,..,N.

Here the b, might be known Fourier coefficients or Hausdorff moments of ¥(¢). Such
problems occur in various applications such as time series analysis, problems of image
reconstruction, speech processing, or in crystallography. See Jaynes (1982), Skilling
(1989), Erickson and Smith (1988), or Navaza (1986) for background information. In
analogy with the maximum entropy principle we give preference to a solution x(¢) of
(1.1) which maximizes a given measure of entropy, H(x), or equivalently, minimizes
the corresponding information measure, I(x) = —H(x), usually an integral of the
form

(1.2) I(x) = fT¢(x(t)) dt.

Here ¢: R —» R U {+} is a proper lower semi-continuous convex function. The
entropy /information measures most frequently encountered in practice are the
Boltzmann-Shannon and the Burg entropy/information measures, defined respec-
tively by

xlogx, x=0,
+ oo, x <0,

—logx, x>0,
+ o, x<0.

a3 - | B(x) - {
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MAXIMUM ENTROPY RECONSTRUCTION, PART 1 443

We refer the reader to Borwein and Lewis (1991a), Borwein and Lewis (1992),
Borwein and Lewis (1991b), resp., Decarreau, Hilhorst, Lemaréchal, and Navaza
(1992), Erickson and Smith (1988), Lin and Wong (1990), Skilling (1989) for a
presentation of the corresponding mathematical models.

The purpose of our present investigation is to discuss extended entropy/ informa-
tion models, which include entropies like (1.3), and at the same time allow for
objectives that attempt to control derivative values of the densities x(¢). In particular,
our aim was to include the averaged Fisher information measure, which is related to the
Fisher information known in the realm of statistical decision making. This requires
models of the form

(1.4) Iy(x) = [(x(1),x'(1)) ,

where ¢:R? —» R U {+=} is now proper lower semi-continuous and convex on RZ.
For instance, the averaged Fisher information Ir = I,_is then defined as

uz/x, x>0,
(1.5) dp(x,0) = 0, x=0v=0,
+, elsewhere.

The Fisher information has been introduced in Fisher (1930) in the realm of
maximum likelihood estimation, while its multidimensional version has first been
considered by J. L. Doob (1934). We refer to the Appendix I for a brief outline of the
origin of these information functions and their relation to what we call the averaged
Fisher information. The idea of using the model (1.4), (1.5) for the inference type
problems (1.1) has been proposed in Silver (1992).

The basic mathematical model we are discussing is the following:

(P) minimize  I,(x) = qub(x(t),x’(t))dt
subject to x €¥(T),
fTa,(t)x(t)dt=b,, i=1,...,N,

where &(T) is the space of absolutely continuous functions on a finite interval
T = [t,,¢,], and where a, € Z(T). Notice that from a modelling viewpoint, it scems
not entirely logical that the inclusion of the derivative values of the densities extends
only to the objective, and not to the constraints. However, our approach applies
equally well to more general constraints, some of which are discussed among the
examples in §5. Mainly for the sake of simplicity, we restrict our general outline to
constraints of the form Ax = b.

Similar to the case of the information models (1.3), the key idea in analyzing
problem (P) lies in applying convex programming duality theory. The details are
presented in the principal §§3 and 4. It turns out that the duality we obtain resembles
models occurring in optimal control and variational problems such as discussed for
instance in Rockafellar (1971, 1972, 1981), or Hager and Mitter (1976), and we
therefore make our arguments as general as possible in order to indicate how to
include these situations.
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444 J. M. BORWEIN, A. S. LEWIS AND D. NOLL

The principal aim of our presentation is to obtain explicit dual models for the
spectral density estimation problem (1.1) which in particular allow for an easy
numerical treatment. It should be emphasised that despite the different nature of the
constraint structure and the fact that our objectives (1.4) are autonomous, the
principal difference with more standard optimal control problems lies in the fact that
the integral functions I, typically take on finite values only on very small subsets of
the underlying space &(T). As we shall see, this has the effect that some of the
standard techniques and results from optimal control theory do not apply directly in
our situation.

As will be seen, duality eventually provides the clue to translating problem (P) into
a numerically tractable formulation (see §4). Numerical results for the case of the
Fisher information are presented in Borwein, Lewis, Limber and Noll (1995), and
Borwein, Limber and Noll (1996).

Notation. Throughout the paper we will use the following notations. The interval
T will be fixed as [0,1]. We denote the space of absolutely continuous functions
having derivatives in a?;,(T) by #7,(T), that is, .MP(T) ={x ([T x' €Z(T)}, and
with #(T) = (7). The function ¢(x,v) will always be proper lower semi-continu-
ous and convex, ¢: R? > R U {+}. In order to avoid pathological cases, we assume
that dom(¢) has nonempty interior. In particular, ¢ is then a normal convex
integrand in the sense of Rockafellar (1968). We define the integral functional ()
on the space «(T) by

I(x) = qu.’)(x(t), x'(1))d, xex(T),

where dt refers to Lebesgue measure. Similarly, on separating the variables x and x’,
we obtain the integral functional J4(x, y) defined by

Jo(x,9) = [ S(x(0), y()) dr,  x €L(T), y €2(T).

It follows from the results in Rockafellar (1968, I, §2) that Jd>(" +) is a proper lower
semi-continuous convex integral functional on the space Z(T) X.Z(T). As Jo(x, x")
=I,(x) for the x €/(T), it is now routine to check that I, is proper lower
semi-continuous and convex on the space &/(T).

2. Existence and convergence. In this section we first consider the problem of
existence and uniqueness of solutions and a Lagrangian duality theory for problem
(P), formulated as follows:

(P) minimize  I,(x) = fT¢(x(t),x’(t)) dt

subject to Ax = b, xex(T),

where b = (b)), and where A denotes the operator 4: Z(T) — R", defined as
Ax = (fra()x(t) d))L |, a, € Z(T). Here I,(x) = += outside the set

dom Iy (x) = {x €(T): ¢(x("), x'(")) €L(T)).
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MAXIMUM ENTROPY RECONSTRUCTION, PART 1 445

We assume throughout that problem (P) is feasible, that is, that there exists
x, € dom I, fitting the data Ax, = b. In the standard cases where the a; represent
either algebralc or trigonometric moments, a method for testing feasibility of the data
has been presented in Borwein and Lewis (1991). The value of (P) is defined as
V(P) = inf{I,(x): Ax = b} € RuU{—==}

In the case of the Fisher-information function we have the following result.

THEOREM 2.1.  Consider the problem (P) for the Fisher information I:(-). Suppose 1
is in the linear hull of a,,...,ay, i.e, 1 €lin{a,...,ay}. Then (P) has a unique
optimal solution X € &/,(T).

ProoF. Instead of solving problem (P) directly, we consider the transformation
x =y, x' = 2yy’, which turns (P) into the equivalent and more standard nonconvex
problem

(P) minimize  [ly’l3 = ny'(t)2 dt

subjectto y €9,(T),  Ay*=b.

Observe here that x € dom I, ie., x'2/x €Z(T) if and only if y' € Z(T), or
rather, if y €.,(T), and that the transformation makes sense since x'(¢) =0 for
almost all ¢ in the set {r € T: x(¢) = O} Therefore, an optimal solution y for (P)
gives rise to an optimal solution ¥ = y* for (P).

The existence of a solution for (P) follows from standard techniques of variational
calculus, once it becomes clear that any minimizing sequence {y,,} must be bounded.
To prove this, all we have to check is that the sequence {y,,(0)} is bounded. Assume
on the contrary that |y, (0)] - +%. By assumption we have 1 € lin{a,, ..., ay}, and
we may therefore assume for simplicity that a; = 1 on T. Then we have

()12 O = [(5) s

2 [Y,,(0)] = Iyl = +22,

since ||y ll; < M < + by uniform boundedness, and this contradicts

172 1/2
i< (i) ([

= bl/? -meas(T)"* < +e.

So y,,(0) must be bounded, and this provides the tool for proving the existence of an
optimal solution. Since this is now a standard argument, we leave the details to the
reader.

Returning to the original problem (P), we show that its solution is unique. Let
X, X, be two optimal solutions of (P), then by convexity, 3(x; +x,) is again an
optimal solution of (P). This implies

[t
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446 J. M. BORWEIN, A. S. LEWIS AND D. NOLL

so together with the fact that x'(#) = 0 almost everywhere on the set {t € T:
x(t) = 0}, we get

f (x1x, — xile)z =0
7 X1 %,(X) +x5) ’

and this implies x)x, = x,x,, a.e. Since [,x; = [rx, by assumption, we have x, = x,.
O

REMARK. The present technique for proving the existence of a solution for the
Fisher problem (P) does not apply to more general situations. Equally, the usual
control type existence proofs do not work since they either require an objective
¢(x, v) which is everywhere defined, or at least need some form of directional
Lipschitz behaviour of ¢(x,v) or other types of regularity conditions which are
typically violated for the type of functionals considered here; see Loewen (1993), or
Clarke (1990), Clarke and Loewen (1989) for a state of the art discussion. Section 4
will present a method for proving existence for more general objectives.

Let us now consider the problem of convergence. Suppose the sequence {a;} is
weak star densely spanning in Z(T), or equivalently, that there is at most one
function ¥ € Z(T') satistying [ra,(6)X(t)dt = b, for i = 1,2,... . For fixed N € N
let (Py) denote the problem so far denoted by (P), and suppose each (P,) has a
unique optimal solution x,. The convergence problem asks whether x, converges to
the unknown underlying density ¥ as N — +<=, and if so, in which sense.

THEOREM 2.2.  For the Fisher information It(-), and with a, = 1, suppose every (Py)
is feasible with unique optimal solution x . Suppose (i) the values V(Py,) are bounded.
Then there exists a unique X € dom I;() satisfying [ra, X = b, foralli =1,2,..., and
we have | xy — X|l. = 0 and ||xyy — %'ll, = 0 as N - . Conversely, (ii), if the values
V(Py) tend to +=, there is no function x € dom I.() satisfying [ra,x = b, for all
i=12,....

PrROOF. Working in the transformed problems (P,,) as formulated in the proof of
Theorem 2.1, let y, be the unique nonnegative solution of (P ) satisfying x, = y2.
Clearly 0 < V(Py) < V(P,,,) < . Assume first (i) that V(PN) < M < «, Then the
sequence (yy ) is weakly relatively compact, and therefore has a weakly convergent
subsequence in .%,(T), denoted (yy) again. But y,(0) is bounded by the argument
presented in the proof of Theorem 2.1, so by Arzela-Ascoli, yy has a || - |l.-convergent
subsequence. Say yy — y, in |||, with yy, — y. weakly in #(T). It follows from
norm convergence that fra,yZ = b, for every i, so y2 =:%, and y, e Z(T) gives
X € dom Ip. It follows from the Kadec-Klee property of the norm | - ||; in EZ(T) that
yy — y. weakly in tandem with limsupN_,xIIlelz < llylll, imply yy =y, in |-]5.
This proves xjy = 2yyyy — %' = 2y,y, in |- |l,. Notice here that y, is feasible for
(Py), hence [lyyll2 < lly.llo. Thus the entire sequence converges as claimed.

On the other hand (ii), if V(Py) — +, then no x € dom I; may satisfy all the
moment conditions, for otherwise x would be feasible for all (PN) giving V(Py) <
I.(x) <= @

REMARKS. (1) As we will see later on, much more can be said about the optimal
solution ¥ for the Fisher moment matching problem. For instance, ¥ will turn out to
be an analytic function if the @, are chosen as analytic, and ¥ will be at least of class
C? even when the a, are only assumed continuous.

(2) For the algebralc or trigonometric moments a,, and under an additional
smoothness assumption on the solution ¥ € dom I, one may give rates of conver-
gence for [lxly — X'll; = 0 and |lxy — X|l. — 0. See Noll (1995).
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The averaged Fisher-information (1.5) may be considered as a special case of a
more general class of integrands of the form

xy(v/x) forx >0,
(2.1) ¢(x,0) =0%¢(v) forx=0,
4 for x < 0.

Here ¢: R —» R U {+<} is lower semi-continuous proper convex, its domain includes
the half line [0, + =), and 0" ¢ denotes its recession function (see Rockafellar (1970)).
The class (2.1) was considered in Borwein and Lewis (1992) in a different context, and
it was referred to as the Csiszar-distances. The case of the Fisher-information is
recovered by choosing ¢(z) = t°. In order to obtain results for the integrands (2.1)
which extend Theorems 2.1 and 2.2, we need to impose the following assumptions
on y:

(1) y is strictly convex on its domain;

(2) ¢ coercive, that is ¢(¢)/|t] = +xas [t| » +o.

Notice that condition (2) here simplifies the definition of ¢ in (2.1) above, since we
then have 0%y (v) = += for v # 0,07 (0) = 0. As we will see in §4, Theorem 2.1
may be extended to the Csiszar class by means of the bidual approach.

In the second part of this section, we address the duality of problem (P) when
considered as an infinite-dimensional convex optimization program. This requires
introducing a Lagrangian formulation for (P). Let us consider the following first
Lagrangian

(22)  Ly(x; M) = I,(x) + (A, Ax — b)

= [o(x(0. 2 )i+ Ta{fatxw ),

with x €(T), A € RY, taking on values in R U {+2}. The duality arising from
L,(x; A) will be discussed presently. There is, however, a second possibility for a
Lagrangian duality, which arises from separating the variables x and x'. The
corresponding second Lagrangian is

(2.3) Ly(x,y;w,A) =Jy(x,y) + {w,x" —y) + A, Ax — b)
= [$(x(0),y(0) de + [w()(x'(2) = (1)) dt

+ é A,(/Ta,.(t)x(t) dr — b,),

with x € /(T), y e Z(T),w € Z(T)* =%(T), A € RY. The corresponding duality
will be discussed in §3.

Let us start by considering the first Lagrangian L,(x; A). Since the associated
duality resembles more standard techniques, we shall be very brief here, pointing out
only the major difference of our type of programs (P) with optimal control type
situations.
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448 J. M. BORWEIN, A. S. LEWIS AND D. NOLL

Notice first that the primal program (P) admits the equivalent formulation

(P) minimize  sup L,(x; A) subject to x € ¥(T).

AERN

We define the corresponding dual program as

(PF) maximize  inf L(x;A)  subjectto A € R".
xeAT)

It is clear that inf, sup, L,(x; A) > sup, inf, L,(x, A), (weak duality) that is, V(P) >
V(Pf). We show that under the mild constraint qualification hypothesis given below
we get a strong duality result, which tells us that the values of (P) and (P}) are the
same, and moreover, that (P) admits an optimal solution:

(Co)) b € ri A(dom 1,).

Here ri(M) denotes the interior of M relative to the affine subspace it generates in
RY. Equivalently, (CQ,) means that 4(dom I,) — b is absorbing in the linear
subspace it generates in R".

THEOREM 2.3.  Suppose (CQ,) is satisfied. Then problem (P}) admits an optimal
solution A, satisfying

inf L,(x;1) =V(P).
x€aA(T)

In particular, V(P) = V(P}).

Proor. The proof is standard, see for instance Borwein (1983) or Noll (1991).
Indeed, let S be the linear subspace of R generated by A(dom Iy) — b, and define
a convex function f: § - R U {+=} by

f(8) = inf{l,(x): &x—b =16}, €S5.

It follows that ¢f(0) # < since f is lower semi-continuous and dom f is absorbing as
a consequence of (CQ,). Now — A € f(0) gives the required Lagrange multiplier A.
o

As (CQ;) may not be easy to check directly, let us formulate the following
condition, which is sufficient to imply (CQ,), as some standard arguments will show:

There exists £ € 2'(T) N dom I, such that A% = b and
(£(t), (1)) € int(dom ¢) for every ¢ in some interval (a, 8) C T.

This condition may be weakened considerably in many concrete examples. For
instance in the case of the averaged Fisher information we have the following:
ExamPLE 2.1.  Assume for simplicity that the a, form a pseudo-Haar system, which
Is to say that they are linearly independent on any set of positive measure (cf.
Borwein and Lewis (1991)). Now consider the Fisher information 7., or more
generally any integrand ¢(x, x') of the class (2.1). Then the following is sufficient to
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MAXIMUM ENTROPY RECONSTRUCTION, PART 1 449

imply the constraint qualifications (CQ,):
(CQ;) There exists £(T), £ €#(T),£20, ae, #0, suchthat A% =0>.

Indeed, by Borwein and Lewis (1991), Theorem 2.9, (CQp) implies that there exists
an ¥ €.2(T), ¥ = € > 0 for some € > 0, satisfying A% = b. Now consider a sequence
{x,) of positive C' functions which converges to ¥ in .#; norm. So Ax, = b (n - x).
We may assume that x, > /2> 0 on T. Due to the fact that A is open as an
operator mapping #'(T) onto R”, there exists 7 > 0 such that, given any [n,| <
i=1,...,N,wefind v € @"(T) such that [[v|l. < €/4 and Av = (n)X.,. Choose n so
large that & = b, — (Ax,), satisfies |£] < €/8. Now let || < €/8 be fixed. We find
ve @' such that Av= (&) — (). Then Alx, +v)=b— (&) +Av=>b + (L),
proving the desired b + [—¢/8, ¢/8] € A(dom [;). Indeed, we have x, +v € Cl,
x, +v > ¢/8 hence x,, + v € dom I (and x, + v € dom I, for the integrands 2.1
correspondingly), and we use that ¢, € [—€/8, ¢/8] was chosen arbitrarily. 0O

Let us now consider the following consequences of the constraint qualification in
the case of the Fisher information, which we state explicitly due to its relevance to
the second part (Borwein, Lewis, Limber and Noll (1995)) of this paper.

THEOREM 2.4. Let I (-) be the Fisher information (1.5). Suppose the constraint
qualification (CQ}.) is satisfied and let X be the dual optimal solution for (P{). Suppose
1 e linfay,...,ay}, and b # 0, then:

(1) The unique optimal solution % for (P) is strictly positive on T = [0, 1];

(2) For ¥ e ,(T) to be the unique optimal solution for (P) it is necessary and
sufficient that ¥ be strictly positive, fit the data A% = b, and satisfy the Euler-Lagrange
equation

N
(2.4) — 2% +X?+ Y Aa ¥ =0,

with boundary conditions X'(0) = x'(1) = 0.

ProoF. Let us prove (1). Let ¥ be the unique solution for (P) guaranteed by
Theorem 2.1, and let A be the Lagrange multiplier which exists by Theorem 2.3. First
observe that (X, A) is a saddle point for L,(x; A), that is

(2.5) 0e€d.L(%A) and 0€ gL,(F;A).

(Notice here that 4, is a subderivative, 4, a superderivative.)
The second condition in (2.5) simply means A% = b, while the first condition is
equivalent to

(2.6) 0 < lT(LI()'c + th; A) — Ly(%; 1))
1 S
= —(Ie(% + th) = [(%)) + fTZ Mag h <+

for any & €./(T) such that x + 7h € dom I for small 7 > 0.
Take A = 1, which is certainly admitted in (2.6). Since %'(¢) = 0 for almost all ¢ in
the set {t € T: x(¢) = 0}, we may restrict the integral over the set {t € T: x(¢) > 0}.
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450 I. M. BORWEIN, A. S. LEWIS AND D. NOLL

Then (2.6) gives

=12

—— t AN < +x,
>0 (X + 1)

0<

The integrand is nondecreasing in 7 > 0, so monotone convergence allows us to pass
to the limit 7 — 0% under the integral sign, showing that %'2/%%, and hence
%' /% = (log X)', must be integrable on {¢: ¥(¢+) > 0}. Now observe that by assumption
b # 0, so X = 0 could not be optimal, and hence {¥ > 0} is nonempty. We show that
this implies X > 0 on all of T. Indeed, suppose for instance there exists an interval
(a, B) < {x > 0} is such that ¥(a) = 0 and ¥(B) > 0. Then

/is(log 2)(t)dr=log ¥(B) — log ¥(a + 8) » += (8- 0%),

contradicting the integrability of (log ¥)' on {X > 0}. This proves statement (1).

With the fact X > 0 on T established, we are now back in a standard control type
situation, the integrand ¢(%(¢), x'(¢)) now being locally Lipschitz in the first variable
along the optimal path. The rest of statement (2) therefore follows via standard
arguments in control theory (see e.g. Loewen (1993)). Notice that convexity as usual
gives the sufficiency in statement (2). o

ExampLE 2.2, Consider problem (P) with the Fisher information and N = 1, a, =
1, b, = 1. Then the primal optimal X is X = 1, which has /(%) = 0. So the Lagrange
multiplier A, must be A, = 0. Now under the transform x = y2, equation (2.4) takes
the form:

4y" = Ay, y'(0) =y'(1) = 0.

This problem has the “negative” eigenvalues Ay =0, A, = —4k’z? k=1,2,....
The corresponding eigensolutions are y, = 1 resp. y,(¢t) = ¢, cos k¢, giving x, =
1, x,(£) = ¢ cos® ke, Fitting the data [;x, =1 gives ¢, = v2. But the x; for
k =1,2,... are not the optimal solutions of (P) since x,(3) = 0, and we know that x
has to be strictly positive. This follows from I(x,) > 0 as well as from the fact that
A; # 0 could not be optimal for the dual program.

This shows that a pair (x, A) may be both, a solution of the boundary value problem
and a feasible pair, but fail to be a saddle point for L ,(x; A), since x > 0 is violated.
The reason is of course that without the condition x > 0, even though (x, A) satisfies
the Euler-Lagrange equation and Ax = b, we may not argue that the first condition
in (2.5) is satisfied. o

REMARK. We have seen that the duality associated with the first Lagrangian led
to a Euler-Lagrange equation in the case of the averaged Fisher information measure
Iz(-). It may be seen from Example 5.1 that this need not be the case for other
objectives I¢(~). In fact, since we restrict the domain of the I,(-) to functions x > 0, it
may happen that the class of 4 which we are allowed to use for our variation is not
rich enough in order to apply the Dubois-Reymond Lemma. Typically, the method
presented in this section will then only lead to a variational inequality. As we will see
in the next two sections, the duality theory associated with the second Lagrangian is
generally better suited to deal with this phenomenon.

3. Duality. In this section we consider the duality theory based on the second
Lagrangian L,(x, y; w, A) (see (2.3)) which we introduced by separating the variables
x and x'. The formulation resembles the duality theory for convex control problems,
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as for instance presented in Rockafellar (1968, 1974, 1971), Hager and Mitter (1976),
or Dacunha-Castelle and Gamboa (1990). The main difference to more standard
optimal control type problems lies in the fact that in spectral density estimation the
objectives J, are defined on small sets (compare with Rockafellar (1972)), where
interiority type assumptions are not satisfied. Even more, standard results from
nonsmooth optimal control theory will not always be applicable, as we already
pointed out in the previous section. On the other hand, our models have the nice
feature that the objectives are jointly convex, and this enables us to present a fairly
concrete and explicit duality.

Let us start by observing that the primal problem may be stated in terms of the
Lagrangian (2.3):

(P)

minimize sup L,(x,y;w,A) subjecttox €(T),y €Z(T).
we Z(T), A\eRVN

The corresponding dual program is then

(F3)

maximize inf L,(x,y;w,A) subjecttow €%(T), r € RV,
xeT), ye Z(T)

One immediately has inf, , sup, , L,(x, y;w, A) = sup, ,, inf, , L,(x, y; w, A) (weak
duality). In order to prove strong duality, we need a constraint qualification:

(CQ,) (0, b) is an algebraic interior point of
(D ® 4)(dom J,) in the closed affine subspace
it generates in Z(T) X RV,

Here the operator D: A(T) X Z(T) - Z(T) is defined as D(x,y) =x' —y, and 4:
Z(T) - RY is the usual Ax = (fra,x)X,, and (D ® AXx, y) = (x' —y, Ax).
Before discussing this condition in detail, let us formulate its main consequence.

PROPOSITION 3.1.  Suppose (CQ,) is satisfied. Then there exist w € Z(T) and A € RY
such that

3.1 inf L(x,y;w,A) = inf( P).
G.1) xe /(D) ye (%, 7%, 4) = inf(P)

In particular, the values of (P) and (P5) are the same.

PROOF. We sketch the argument, which is standard and follows, e.g., from results
in Borwein (1983) or Noll (1991). Let S = lin(D ® AXdom J,) — b) c.Z(T) X RY.
Define a convex function f: § - R U {+} by

f(z,0) = inf{J,(x,y): z=x"—y,0=Ax — b}.

Copyright © 2001 All Rights Reserved
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We have to show that f has a subgradient at (0,0) in S. Since the constraint
qualification guarantees that (0,0) is an interior point of dom f, this follows either
directly from Noll (1991), or from Borwein (1983) using the fact that Jy is lower
semi-continuous. _

Let an element of 9f(0,0) be represented by —(w, A) €.2 X R¥, then it is routine
to check that w and A are the desired Lagrange multipliers. o

ExaMpLE 3.1. We show that in the case of the Fisher information Ji, resp. the
Csiszar objectives (2.1), the constraint qualification (CQj), with the {a;} being
pseudo-Haar, implies (CQ,).

Indeed, we have already seen in Example 2.1 that (CQ,) provides £ € #'(T) such
that £ > € > 0 and A% = b. Now given any z € Z(T), 8 € R", we have to show that,
for some p > 0,(pz,b + p#) € (D ® AXdom J,).

First observe that 4: #'(T) — R" is surjective and hence open at £, so for some
8> 0, every n € B(0, 8) may be represented as u = Ax = A(£ + x) — b for some
x € €/(T) having |lx|l. < e/4, say. Let v €#(T), with v’ = z fixed. Choose p > 0 50
small that || pull. < /4 and || p(Av ~ 8)ll. < 8. By the above we find x, € #'(T)
having {lx,ll- < €/4 such that u = p(6 — Av) = A(£ +x,) — b. Let x =% +x, +
pv, then x > €/2> 0. Let y =% +x; € @(T) CH(T). Then x’' —y = pv’' = pz
and Ax — b =A% — b + Ax, + pAv = p#, as desired. Since (x,y) € dom J, this
proves (CQ,). The same argument also shows that (CQ,) implies (CQ,) for any of the
Csiszar distances (2.1). o

So far we know that under the constraint qualification hypothesis (CQ,), problem
(P*) has an optimal solution (%, A) €. Z(T) X R", a Lagrange multiplier, and that
the values of (P) and (P¥) are the same. We shall now pursue two ideas.

We will show (I) that in many cases W is in fact an absolutely continuous function.
This will require several steps, and will eventually be proved in §4, Propositions 4.1
and 4.2. Then (II) we will provide a method to recover the primal optimal solution
(%,7) = (%, ') (if any) from the dual (w, A). This will be established in Theorem 4.3.
Let us start with our program (I). The first step is provided by the following:

PROPOSITION 3.2.  Suppose (CQ,) is satisfied, and let (W, A) be the dual optimal
solution guaranteed by Proposition 3.1. Then w € B2 (T). More generally, let (w, A) €
Z(T) X RY be any pair such that inf{L,(x, y;w, A): x € /(T), y EZ(T) > —=,
Then w € R7°(T).

PROOF. Since W, w are eclements of Z(T), the statement is to be understood in
the sense that some realization of W or w is of bounded variation.

Recall our general assumption that dom ¢ has nonempty interior. Hence there
exists a fixed (£, §) € dom Jy such that, for some e > 0, every (£ + x, §) with
lx]l. < € is contained in the domain of Jy. Since Ly(X +x,9;w,A) >¢c > — by
assumption, we deduce that {w, x’) is bounded on the set of {x €(T): l|x|. < €).
This means that the functional (w, x') is a Radon measure, that is, there exists a
finite Borel measure u having

{w, x") =/Tx(s) du(s), xex(T).

Let w have the distribution function v € BZ(T), then v = —w ae., up to a
constant. This proves the statement. 0

REMARK. A more elementary proof for this result could be obtained using the
kind of argument used in Hager and Mitter (1976). If we wish to prove an analogous
result for nonautonomous objectives (¢, x, x'), their technique seems to be better
suited than the one presented above.
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Let us keep the notation (%, ) for the dual optimal pair. Since w € B 270, 1], we
may now apply the integration by parts formula for functions of bounded variation
(see Dunford and Schwartz (1963)) in order to write

(32) (W, x') = j:W(s)x’(s) ds = x(1)w(1) — x(0)w(0) — folx(s)dW(s).

Here we may and will assume that w is continuous from the right, so that the
meaning of w(0) is clear. But then, by choosing x = 1, we obtain w(1) = w(0) + 1t dw,
which clarifies the meaning of w(1).

As we will see, it turns out that in many cases w is in fact absolutely continuous.
This will then permit us to write the Riemann-Stieltjes integral on the right-hand side
of (3.2) in the form

folx(s) dw(s) = /le(s)W’(s) ds.

DeriNiTION 3.1, For a function w € B87(T), let w=0v + u be the Lebesgue
decomposition of w € B7(T), that is v €/(T),u’ =0 ae., and w(0) = v(0) (cf.
Hewitt and Stromberg (1969), Rudin (1973)). We will occasionally use the notation
v=w,,u=w, Furthermore, let u=u"—u~ for nondecreasing ut,u”, with
u*(0) = u~(0) = 0, which is called the Hahn decomposition of u. O

With these definitions, and after some manipulations, the second Lagrangian (2.3)
takes on the form

(33) Ly(x,y;w,A) =J,(x,y) — 0’ =A% x) = (w, y) + w(l)x(1)
— w(0)x(0) — {du,x) — (A, b).

We need to calculate the conjugate of L,(x, y;w, A), considered as a function of
x €AT), y eZ(T).

THEOREM 3.3. The Young-Fenchel conjugate L (-, - ; w, A) of L,(-, - ; w, A): &/(T) X
F(T) — R U {+x} with respect to the incomplete dual pairing (#(T) X Z(T), &(T)
X Z(T) equals

N
(3.4) Li(r,s;w,A) =Jglr+0' = Y ra,s+w

e
=1

+ IXV: Ab, — Pw(1l) + OQw(0) + Mu* (1) — mu™ (1),

1=1

reZ(T),s €Z(T)
where M = sup{£: 3An ¢(&,m) < +och, m = inf(£: An $(£,7) < +}, and

M i .
(3.5) p= tw(l) <0, _ [M ifw(©0)>0,
m if w(l) >0, m if w(0) < 0.
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The proof of the theorem will be mainly based on the following result whose proof
may be found in the Appendix II:

LEMMA 3.4.  The Young-Fenchel conjugate of J,: /(T) X Z(T) > R U {+%} with
respect to the dual pairing {s/(T) X Z(T), Z(T) X Z.,) equals T g

ProOOF OF THEOREM 3.3. We have to show that

(3.6) sup (ryx) + s, y) — Ly(x,y;w, A)
xe v (T), ye Z(T)

equals the right-hand side of (3.4). Observe that the x €%(T) occurring in the
supremum in (3.6) may be decomposed into two terms. Firstly, if the singular measure
du is concentrated on the Lebesgue null set (), say, consider the part of x €.9/(T)
which vanishes on an open set G of arbitrarily small Lebesgue measure containing
©Q U {0,1}. Then according to Lemma 3.4, the supremum over such x in (3.6) yields
the expression

N N
Jgefr +0v" = Y da,s+w| + Y Ab,

1=1 i=1

leaving the other terms in (3.3) unaffected in the limit meas(G) — 0. Secondly,
consider the part of x €%(T) which vanishes outside the set G above. Then the
corresponding contribution to the term Jd,(x, y) = {r+v" — AA, x) may be made
arbitrarily small by letting meas(G) — 0, while on the other hand the contribution to

sup  (—w(1)x(1) + w(0)x(0) + {du, x))
xev(T)

yields the term —Pw(1) + Ow(0) + Mdu*(T) — mdu(T), where P, Q have the
meaning (3.5). Now du*(T) = u*(1), du™(T) = u~(1) finally gives rise to (3.4). O

REMARK. Notice that we intend 0-(+=) =0 in formula (3.4), so the cases
M = +%,m = —x are not excluded. For instance, M = +% simply implies that
u (1) =0, and so u™= 0, and similarly for the other terms occurring in (3.4). Let us
mention that the typical case for the moment matching problem is M = +w, m = 0.
This means for instance that the positive singular part u* vanishes, while the
negative singular part 4~ might be left over. Usually additional arguments are
needed in order to show that u~ vanishes.

In summary, the results obtained so far allow us to state the dual problem (P}) in
the following form:

A'bl’

i

N
(P¥) maximize —Jd,.(u’ - )\,a,,w) -
=1

L=

14
= Pw(1) + Ow(0) + M(w — v)" (1) — m(w — v)~ (1)
subjectto w € B2°(T),v =w,, v(0) = w(0), A € RV.
4. Special cases. In this section we show that the general dual scheme we
obtained in §3 may be simplified in many cases. Before presenting the most typical

case in spectral density estimation, let us recall the meaning of the Lebesgue and
Hahn decompositions w = v + u and u = u*— u~ given in Definition 3.1.
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PROPOSITION 4.1.  Let (W, A) be the dual optimal solution for (P3) guaranteed by
(CQ,). Suppose

(@) M = +x. Then it= 0,w(1) > 0,w() < 0. In particular, if

() M = +x and m = 0, then the conjugate Lagrangian equals

(4.1) LE(r,s; W, A) = J.(r+v' — A\ s +W) + (A, b).

PROOF. Since M = +« implies %*(1) = 0, and since we always have ut) =0,
we obtain #*= 0. This implies % = &~. Also w(1) < 0 would imply P =M = +=,
and then the finiteness of Pw(1) would force w(1) = 0, a contradiction. So w(1) > 0,
and similarly, w(0) < 0.

Now according to (3.4), the conjugate Lagrangian equals

(4.2) L5(r,s;%, &) = Jyu(r + 0 — A%, s + W) + (X, b)
+m(w(0) — w(1) - u(1))

and the last term cancels when m = 0. O

Similar reasoning shows that &~ = 0 and w(1) <0, #w(0) = 0 in case m = —x, SO
that we immediately deduce that w = 5, w(0) = w(1) = 0 if both M = +oo,m = —<
are satisfied. However, for the density reconstruction type problems we typically have
m = 0, M = 4=, so we cannot always deduce that the negative singular part &~ of w
vanishes. This may be the case under some extra conditions, for instance if we know
that the optimal solution ¥ does not hit the lower boundary (that is ¥(¢#) > m for all
t). Here the following result whose proof may be found in Appendix II, provides some
help:

PROPOSITION 4.2. Suppose the primal program (P) admits an optimal solution X.
Then the singular measure du~ is supported on {t € T: X(t) = m}.

The final step in our duality theory will give a method for reconstructing the primal
optimal solution ¥ from the Lagrange multipliers (#, A).

THEOREM 4.3. Suppose the constraint qualification (CQ,) is satisfied, and let (W, A)
be a dual optimal solution guaranteed by (CQ,). Suppose (P) admits an optimal solution
X. Then

(43)  (X(1),x'(t)) € 9p*|w,(t) — %Xla,(t),W(t) foralmost all ¢t.

PrROOE. (a) Let us first consider the following modified Lagrangian function
(compare with (3.3)):

(44)  Ly(x,yiw, 2) =J,(x,y) = (' — A% x) = (w,y) ~ (A, b)

— Mu*(1) + mu (1) + Pw(1) — Ow(0),
where x € A/(T), y e Z(T), w e BZ(T),w=v +u, v €ex(T)u' =0 ae., v(0) =
w(0), and where u = u*— u~,u"(0) = u~(0) = 0. Here P, Q have the same meaning

as in Theorem 3.3. From the definition of L, we obtain

Ly(x,y;w, A) <Ly(x,y;w, A)
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for all x € /(T), y € Z(T), w € BZ(T), A € R". However, by the argument given
in Theorem 3.3, the values

inf Ly(x,y;w,A) = inf Lyx,y;w,A)
x€/(T), ye Z(T) xe(D), ye (1)

coincide, and hence the primal and dual programs

(P)  minimize supL,(x, y;w, A) subjectto x €¥(T), y €Z(T)

W, A

and

(P¥) maximize infL,(x,y;w,\)  subjectto we€ B7°(T), » € RY
X,y

have the same value as the programs (P) resp. (P§). Also X resp. (W, A) are again
optimal solutions for (P) resp. (P§).

(b) We next observe that L,(x,y;w, \) may be considered as a function of
x €Z(T), y eZ(T), and we use the notation I:Z(x, y;w, A) for this extension
We now claim that the values

(4.5) inf Ly(x,y;w, A) = inf Ly(x,y;w, A)
re Z(T), ye X(T) xeH(T), ye F(T)

again coincide. This is a consequence of the fact that given any x €. 2(T), y € Z(T)
having (x, y) € dom Jj, there exist x, €#(T), y, € Z(T) such that x, - x, y, -y
both in .| norm and with J,(x,, y,) = J,(x, y). The latter is proved by an argument
in the spirit of, but slightly more elaborate than, the one given in Lemma 3.4.

(c) Consequently, the values of the primal and dual programs (P),(P}) arising
from the Lagrangian L,(x, y; w, A) have the same values as (P) resp. (P3), so primal
resp. dual optimal solutions for (P), (P3') are again optimal for (P), (P¥). Therefore,
our optimal ¥ and (W, A) give rise to a saddle point of L,(x, y; w, A).

Now the conditions for a saddle point (%, £'), (W, 3)) of L, imply

(0,0) € 4, ,L,(%,%;w, %)
or what is the same
(4.6) (%,%) € 6, [%(0,0;w, %),

where the conjugate LA"E(r, s; W, A) is now calculated with respect to the incomplete
dual pairing {Z(T) X Z(T), Z(T) X Z(T)). Indeed, the following may be derived
from Rockafellar’s results (Rockafellar (1968)). (A direct argument similar to but
easier than the one in Lemma 3.4 can be given.)

L5(r, s;w, A) =Jp(r+ 0" — AN s +w) + (A, b) + Mu™(1)

V=W

—mu~ (1) = Pw(1) + Ow(0), (u=w )

L

so (4.6) is equivalent to

(47)  (Er) LX) sTy(r+w, — A%, s + W) — Ty (W, — AT, %)
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for all r € Z(T), s €Z(T) having (r + W, — A"A, s + w) € dom Jy.. This proves the
statement of the theorem. DO
As an implicit consequence of the proof we obtain the following

COROLLARY 4.4. (%, X';w, A) is a saddle point of the Lagrangian f,z(x, y;w, A) if
and only if % is optimal for (P) and (W, A) is optimal for (P3).

ExaMpLE 4.1. Let us now exhibit the consequences of our main results for the
Fisher information, or more generally, for the class of Csiszar distances 2.1.

Let ¢(x, v) = x¢(v/x) be an integrand of this type, and assume the conditions of
Theorem 2.1 resp. Corollary 4.8 below are met, so that program (P) admits an
optimal solution X. Suppose the dual program (P}) has an optimal solution (w, ),
guaranteed by the constraint qualification (CQy). Furthermore, assume that ¥ > 0 as
a consequence of Theorem 2.2 resp. its analogue for the class of objectives (2.1). By
Propositions 4.1 and 4.2, and since m = 0, M = +, the singular part of the dual
optimal # vanishes. Now a direct calculation gives

0 if r + y*(s) <0,
+x otherwise,

(4.8) o*(r,s) = {
so (4.7) becomes

(4.9) (E,ry +{(x',s) <0 forr+w' — AN + y*(s+w)<Oae.
We claim that
wo—AA+YN(W) =0 ae.
Suppose not. Then w' — AX + y*(w) < — € on a set Q) of positive measure and for
some &> 0. Define s = 0,7 = £ xq, then the pair (r,s) is admitted in (4.9), so

Jo % & < 0, which is impossible since X > 0 on T.
Consequently, we may recast the statement in (4.9) as follows:

(%, r) + (%', s) <0 whenever r + ¢*(s +w) — ¢*(w) < 0.
Setting r = y*(w) — ¢*(s + W), we get
(X, p*(W) — y*(s +W)) +(X',s) <0
for all s €.2(T), which can only hold true if
—x(t) - (w(e)) +x'(1) =0

for almost all ¢ € T. Therefore, we get the relation

X _ el
.f([) _‘l’ (W(t))

or rather

(4.10) %(t) = c-exP{f0’¢*'(W(s)) ds},
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with the constant C > 0 determined by the constraints A% = b. In particular, for the
case of the Fisher information, we get the following result, which we state explicitly
due to its relevance for our subsequent paper (Borwein, Lewis, Limber and Noll
(1995)):

PROPOSITION 4.5.  Suppose the {a,} are pseudo-Haar with 1 lin{a,,...,ay}. Let
(CQr) be satisfied. Then for the Fisher information I, the dual program (P¥) may be
stated in the form

N
(P5) minimize ), Ab,
=1

: 1 a
subjectto w' + zw? = ) Aa,,
=1

w(0) = w(1) =0, wew(T).

The primal optimal X may be recovered from the solution (%, X) of (P$) by means of the
identity

(4.11) i(t) = C-exp{%/otW(s)ds},

where C > 0 is determined by the constraint Ax = b. 0

REMARK. As a consequence of (4.10), we derive that for analytic data a,, ¢*', the
solution X is of the same type. In particular, in the Fisher case, and for algebraic or
trigonometric moments, ¥ will be an entire function. Even for continuous a,, x will at
least be of class #2.

Let us end this section with a pleasant application of our duality theory. Suppose
we do not know whether the primal program (P) admits an optimal solution. Starting
with the dual program (P5), it seems natural to consider a bidual program (P**),
which under some constraint qualification on (P}) will have an optimal solution. It
turns out that the solution of (P**) may be viewed as a generalized solution for (P),
and even more, in some cases, it is in fact a solution of (P). Let us notice that this
bidual relaxation scheme fits a general pattern which has been used by various
authors in different contexts; see, e.g., Rockafellar (1971, 1981), Ekeland and Teman
(1989).

Let us consider the restricted dual program

(0) maximize — J,. (v — A, 0) — (A, b)

subjectto v €w(T), v(0) =v(l) =0, € RV.
We expect the values of (P¥) and (Q) to be identical. Instead of proving this directly,
we consider the duality associated with (Q). This requires a constraint qualification
for (Q):
(CO)* Oecore{u—u' + AN (u,v) EdomJ(I,*,/\ERN}

where the core means the algebraic interior of a set, and the underlying space is
Z(T), and where dom J,. is a subset of #(T) X.2/T). The Lagrangian associated
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with program (Q) is now
(4.12) L(u,v, A; x) = Jye(u,0) + (A, 0) = {u =0 + A\, x),

defined for u € Z(T),v € /(T), x e Z(T)* =2(T), A € R". Then (Q) and (Q*)
may as usual be stated in terms of L. Our duality theory enables us to prove the
following

PROPOSITION 4.6.  Suppose (CQ)* is satisfied. Then the dual program (Q*) admits an
optimal solution ¥ € B2 (T). The values of (Q) and (Q*) coincide, and (Q*) may be
represented in the form

1 1
* minimize J,(x,y'") +M*| dz"—m* | dz”
(2" a6 y) + Mo [ [

subjectto Ax =b,

where x = y + z is the Lebesgue decomposition of x, that is y = X,, z = X; (Definition
3.1), and with

« = sup{n: I *(&,m) < +=},  m* =inf{n: IES*(&,m) < +x}.

ProoF. The existence of X follows from (CQ)* and Proposition 3.1, while X €
B2°(T) is a consequence of Proposition 3.2. Theorem 3.3 gives the above form of the
dual program (Q*). D

We are now ready to extend Theorem 2.1 to a more general class of objectives. The
reader might compare this with the central existence resuit in Rockafellar (1971); see
also Rockafellar (1972).

THEOREM 4.7.  Suppose J. satisfies (CQ)*, and there exists (&, my) € dom ¢ such
that t — ¢(&,,my + 1) is coercive. Then program (P) admits an optimal solution.

PROOE. As a consequence of (CQ)*, we know that the dual program (Q*) admits
an optimal solution ¥ € B2 (T). If we can show m* = —o and M* = 4+, the
singular part X, of ¥ will vanish as a consequence of Proposition 4.1, and then X will
be an optimal solution of the original program (P).

In order to prove m* = —oo, M* = +, observe that g,y 4« = 07 ¢, where gy, 4+
denotes the support function of dom ¢*, and where 0*¢ denotes the recession
function of ¢. But now the coercivity of t = ¢( £, g + t) implies

0 ¢(0,1) = 07 $(0,— 1) = +,

hence 0yyy 4+(0,+ 1) = +o. This implies M* = +%, m* = —, as desired. o
REMARK. We may split the statement. If 0% ¢(0,1) = +, then M* = +, while
0* $(0,— 1) = += implies m* = —o. The converse is also true in either case.

COROLLARY 4.8. Let ¢(x,v) = xy(v/x) be a Csiszar distance (2.1). Suppose  is
coercive, and let 1 € linfa,, ..., ay). Then the corresponding program (P) admits a
unique optimal solution.

ProoF. The coercivity assumption in Theorem 4.7 is satisfied. Hence we have to
check that (CQ)* is satisfied.

Due to the special form (4.8) of the conjugate, it suffices to fix u =1 and
A\ = —1. Then every v €(T) having v < —*(1) will give rise to a pair (u,v) €
dom J,.. Now any v’ € #(T) having llo'll; < 1 will provide such a v by setting
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u(t) = =1 = ¢*(1) + f{v'(s)ds. But then {u — v’ + AA: (u,v) € dom Jye, A € RN}
contains the #, unit ball, which proves the statement. 0o

REMARK. Assuming conditions (1) and (2) for the Csiszar distance ¢(x,0v) =
xy(v/x) as well as coercivity of , we may now state the dual program (P5) as
follows:

N
(P5) maximize — ) Ab,

N
subject to  ¢*(w) + w' = E Aa;,
i=1

w(0) = w(1) =0, weL(T).

The formula for recovering the primal optimal solution ¥ for (P) from the dual
optimal w is (4.10). o

Conclusion. We have presented a maximum entropy type model for the spectral
density estimation problem (1.1) which is based on entropy functions that control
derivative values. A fairly general duality theory for this model was obtained in §§3
and 4. The general form of the dual program was derived in Theorem 3.3. More
special but typical cases were presented in §4. A numerically tractable dual program
formulation was obtained (Proposition 4.5 and the Remark following Corollary 4.8).
A general existence result is Theorem 4.7, which was obtained by duality techniques.
Special emphasis was given to the Fisher information model (§2, Example 3.1,
Example 4.1, Proposition 4.5).

A presentation of explicit numerical results for the Fisher information model 1.1,
(1.4) is given in the second part of our paper (Borwein, Lewis, Limber and Noll
1995).

5. Examples. In this section we present some examples which among others
indicate that the constraint model (1.1) we used throughout the §§ 2 to 4 could be
replaced by more general models—essentially without affecting the arguments pre-
sented. We indicate the straightforward changes as we go. We start, however, with an
example that fits our model (1.1) verbally, and which is included in particular to show
that the singular part of the dual variable may vanish for reasons which are different
in nature from the ones which applied for the Fisher information.

Example 5.1.  Moment matching with minimum slope. This example is included in
particular to show that the singular part of the dual optimal variable may vanish even
when the primal optimal solution hits the boundary.

Consider the program

1
(P) minimize  llx'[13

subjectto x>0, [la(t)x(r)dt=b, i=1,...,N.
0
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This is a problem in accordance with the model (1.1). The integrand (1.4) and its
conjugate are given as

1.2 1,.2
_Jgv® forx =0, . _ |5 fory <0,
$(x,0) +o  forx <0, $*(y.u) +o«  fory> 0.
Observe that (P) has a unique optimal solution X € %/,(T).
Let us consider the duality based on using the first Lagrangian. The conditions for
a saddle point (%, A) imply Ax = b and

_, 2 2 N
sE A+ okl = SlE N UL h < 4o
- + X Aa; +

0<

for every h € #,(T) having % + 7h 2 0 for small 7> 0. Therefore the Dubois-
Reymond Lemma only applies on the set {¥ > 0}, where it provides the equation

£ (s) = AX(s) =

i

X,a,(s).

1M1=

This equation, however, need not hold on the interior of the set {x = 0}. We may
nevertheless deduce at this stage that % is of class C', and that X' e AT).

Duality based on using the second Lagrangian provides more information. Notice
that m = 0 and M = + in this case, so the dual program (Py) is

(P)* maximize — %llw”% - (A B

subjectto w’' — AA <0,
w(0) <0, w(l)=0, weB7(T), reR"

We know that the differential inequality is in fact an equality on the set {X > 0}, but
might be a strict inequality in the interior of {x¥ = 0}. So we may not deduce
w €.9(T) directly. However, Theorem 4.3 helps. Indeed, we have

{(0,5)} forr<Q,
ap*(r,s) = (R, x{s} forr=0,
%) for r > 0.

Then the second coordinate in formula (5.5) implies x'(t) = w(¢) for almost all ¢.
Hence w must be absolutely continuous from what we have seen before.

We may not replace the differential inequality in the dual program by an equality,
for this would mean solving the unrestricted program without the side condition
x > 0. Therefore, whenever the optimal solution of the unrestricted program fails to
be feasible for (P), the inequality will certainly be strict on some interval.

Example 5.2. Interpolation on a strip. We exhibit an example involving higher-

order derivatives and slightly different constraints. The pattern for a duality as
expounded in §§ 3 and 4 remains essentially the same.
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Consider the problem of interpolation on a strip, which was discussed in Dontchev
(1987) (see also Dontchev and Kalchev (1989)). For a partition 0 = H<t, < o <
t, = 1 of [0, 1] we pose the interpolation problem

(IP) minimize ||x"]|,
subject to  x(¢,) =y, i=1,...,n,
a(t) <x(t) < B(r) forallte [0,1].

We assume that the problem is feasible, that is a(t,) <y, < 8(z,), and that a(-), 8(:)
are continuous and piecewise C* functions satisfying a(r) < B(r) for every ¢, It is
well known that in the absence of the constraint a < x < B, the solution is a cubic
spline interpolating the data (¢,, y,). We will show that, under reasonable conditions
on a, B, the solution of (IP) is again a cubic spline, with a finite number of extra
knots. In the case where a, B are piecewise linear on [, 7,,,], this has been

demonstrated in Dontchev (1987).
It is well known that the problem may be reformulated as

(P) minimize %Hx"”?_
subject to /la,(s)x”(s) ds=b, i=1,....,n-2,x(0) =y,
0

a(t) <x(t) <B(r), rte]0,1].
Here the a; denote the second order B-splines, and the b, are the ith divided
differences of order 2 associated with the data (¢, y,); see Dontchev and Kalchev
(1989), Dontchev (1987) or Borwein and Lewis (1991).
Let

327 if a(t) <x < B(1),
+o  otherwise,

(5.13) d(t,x,y,2z) = {

B(Hu + sw? ifv=0,u>0,
o™ (f,u,0,w) =S a(t)u + tw? ifv=0,u <0,
+oc if v#0.

Writing problem (P) in the form
minimize  Jy(x,x’, x") = j:d)(t, x(t), x'(t), x"(t)) dt

subject to  Ax" = b, x(0) = y,,
we see that the correct choice for a Lagrangian of the second type is
L(x,y,z;0,w,A,p) = Jo(x,y,2) +{0,x" —y) + {w,y' —2)

+ A, Az = b) + p(x(0) — y,),
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with x €4, (T) = {x €2 x" €24}, y €(T), €%, 0 e (T)*, w €%,. First
we represent (6,z) =<v,z') + r-z(0) for some v €%, r € R, hence (8, x’ -
= (v, x" —y') + r(x"(0) — y(0)). Then we establish duality in the spirit of Proposi-
tion 3.1. This requires a constraint qualification which in this case is satisfied as a
consequence of the feasibility of (IP) resp. (P). We obtain a dual optimal (0, w, A, p).
Now playing with the variable y, which is allowed to take on every value, we first
show that w € ¥%". Playing with x', say, shows v € BV, so we may integrate by
parts. Using again the fact that the variable y is free, we can show successively that

p(1) =0, r—uv(0)=0, w(0) =w(l) =0 and dv=dw.

This implies v = w, and hence r = 0. Therefore the Lagrangian takes on the
simplified form

L(x,y,z;0, A, p) =J4(x,y,2) — {dv, x"y — (v, z)

+ (A, Az — b) + p(x(0) — y,).

Now let us fix £ such that a(f) <X(¢t) < B(¢) and (¢ =y, We may play with x
near £, producing arbitrarily high derivatives x on small measure sets. This allows us
to prove that the singular part of the measure dv vanishes, proving v € «(T). Notice
here that we have subsumed the boundary values coming from the integration by
parts into the singular measures, so we have the representation {(dv, x'> = {v', x'),
and v(0) = v(1) = 0. Playing again with x', Proposition 3.2 shows v’ € BZ(T), so
we may again integrate by parts, which gives us

L(x,y,z;0, A, p) =Jy(x,y,2) + (x,dv'y — {v— AN, z) — (A, b).
Here we used p + 0'(0) = 0 and v'(1) = 0, which follows since problem (P) has an
optimal solution.

We decompose according to Lebesgue: v’ = v, + v;. By a result analogous to
Theorem 3.3, the dual objective function is

inf L = —J,(~ (), 0,0 =A%) = (A, b) + [Ta(t) dif (1) - [1B(t) dv (2).
¢ 0

X, ¥,z

Our next step is to evaluate the conditions for a saddle point of the Lagrangian.
Similarly to the procedure as presented in §4, this leads to the inequality

(x,r) + (x",s) < Tge(r = (44),0,5 + 0 — AX) = Jyu(= ()", 0,0 — AX)

for all r, s €%, Letting r = 0 and s arbitrary, we first get
n—-2

(5.14) x"(t) =v(t) — Y Aa/(t) foraa.t.
1=1

Since the functions a, are piecewise linear and v € %(T), we derive that x is of class
C? and is three times differentiable. Secondly, suppose ()’ <0 on a set M of
positive measure. Setting s = 0 implies

(x,ry < (B,r>
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for all r having r — (u,) = 0, which implies x = 8 on M. Similarly, (¢/,) > 0 on a set
N of positive measure implies x = « on N. In particular, v, is constant whenever x
stays strictly inside the strip.

An analogue of Proposition 4.2 tells us that the singular measure du™ is concen-
trated on the set {t: x(¢t) = a(r)}, while dv/~ is concentrated on {t: x(¢) = B}
Therefore v is affine on any part of an interval [¢,,¢,,,] on which x stays strictly
inside the strip. Since the a, are piecewise linear, so is x” by (5.14), which means that
x is a cubic spline as long as it stays strictly inside the strip. On the other hand, for
general o and B it is possible that the solution x goes along the boundary for some
time.

Let us consider the case where « and B are piecewise cubic on the [t,¢,.,] Then
we deduce that x is a cubic spline with a finite number of extra knots of the form
(t, a(t)) resp. (¢, B(¢)) in addition to the knots (¢, y). In the case where a, B are
piecewise linear, x may touch the upper resp. lower boundaries each at most once in
a given interval [¢,, ¢, ], so here the maximum number of extra knots is 2 per interval
[t,,t,.1] For piecewise quadratic or cubic a, 8, the solution may follow the boundary
on certain subintervals of the partition.

Example 5.3.  Fisher moment matching with tolerance. It often happens in practi-
cal problems that the data b, are noisy. One way of dealing with this phenomenon is
to allow for tolerances in the moment matching model (1.1). In the case of the Fisher
information, the relaxed model may be stated as

1x'%(t)

(P.) minimize [.(x) = j(‘) *00) dt
subject to x > 0, Ax — bl < €.
Here || - || is any fixed norm on R¥. Introducing a new variable e = (e)X, € R, and

separating x and x' we may recast the program as follows:
minimize [;(x) subjectto  Ar =b + e and € > ||e].
This leads us to consider the following Lagrangian of the second kind:
L(x,y,e;w, A, p) =Jp(x,y) + {w,x" —y) + (A, Ax — b — e) + p(e—lell),

for |lell < € and L = += otherwise. The duality as presented in §§ 3 and 4 will lead
to the dual program

(P)* maximize — Jy.(w' — AA,w) — (A, b) — €A,
subject to w e(T), A€ RV.

Here [I-][, denotes the norm dual to |-|. By the representation of the Fisher

CopyTr e 200 T A RIS Reserred



MAXIMUM ENTROPY RECONSTRUCTION, PART 1 465

conjugate, this gives the dual program

N
(P)* maximize — Y, Ab, — ellAll,
=1
N
subject to 4w’ + w2 =43 Aa,
i-1

w(0) = w(1) = 0.

It follows that (A, e) = ellAll, with llell = €, so the tolerance is fully used. For
example, if || - || is the Euclidean norm, the solution X, of the perturbed program (P)
coincides with the solution of the original moment matching problem (1.1) with the
moments b, replaced by either b, + ¢ or b, — €, where Le’ = €. Numerical
experiments using the Boltzmann-Shannon entropy suggest that in the case where || - ||
is the supremum norm, the perturbed program (P,) will be the original program with
b, replaced by either b, + € or b, — €.

Appendix I Let us briefly recall the origin of the Fisher information measure and its relation to what
we call the averaged Fisher information.

Fisher information was introduced by R. A. Fisher (1930) in the context of maximum likelihood
estimation. Let f(x;p), p € TCR be a parametrized famly of probability densities on R". For an
independent sample x,,..., x, the maximum likelihood estimate for the true parameter p is defined as
the parameter value p, = p,(x,,..., x,) where the log likelihood function

n n
L(xp,-. % p) =log[ [f(x;5p) = 2 log f(x,5p)s
=1 1=1

attains its maximum (f any). It was known to R. A. Fisher (1930) and proved ngorously by I. L. Doob
(1934) that, under reasonable conditions, and for large n, Vn(p, — p,) 1s asymptotically normally
distributed with mean 0 and variance o2, where

42 .
1 _f...ff(x;p*)#jpgﬂﬁdxwdx,

(e

A 2
=f.../(ik’g_f;(p%l) Fxspa)dxy.. . dx,.

The term 1 /02 is known as the Fisher information of f(-; p,), and it measures the expected negative
curvature of the log likelihood function with regard to the distribution f(x; p,)dx. In particular, the
higher the negative curvature of the log liketihood function in a neighborhood of the true value p,, the
more accurate the maximum likelihood estimate p,.

In order to measure the information of the parametrized family f(-, p), p € T = [1y,t;] C R, we assume
that a prion all p € T are equally likely to occur. It is then convenient to consider the averaged
information

) 2
(15— [ D gy iy - e + [ L)

dp,
ap op fap®

and the second term on the right-hand side of this expression, that is

'2
(5.16) ) - [,

is what we call the averaged Fisher information of f(x, p) considered as a function of the parameter p.

1t is intustively clear from (5.15) that a sharp spike of the function f at some p, giving rise to a fairly
negative curvature of log f, will make a sizable contribution to the information Iz(f). It is therefore
heuristically clear that minimizing the averaged Fisher information will have the effect of “smoothing” the
data as proposed 1n Silver (1992).
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Appendix 11

PROOF OF LEMMA 3.4. Let v € #(T), w €.Z(T). We have to show that

5.17) Jo(v,w) = sup (v, x) +w, y) ~ I(x, ).
xe A (T), ye Z(T)

Assume first that the right-hand side is finite. We show that Jd,.(u, w) < +%, Our first step is to show that
t = ¢*(u(r), w(t)) must be finite a.e.

Before starting, let us recall the notion of Lebesgue points. For a fixed rcalization f of an element of
Z(T), the set of Lebesgue points of f consists of those ¢ € T for which

lim 5 [ (s) ds = (o).

It is known that the set of Lebesgue points has full measure (see Rudin (1973) or Hewitt and Stromberg
(1969)).

Suppose now there exists a set ) of positive measure such that ¢*(u(¢), w(1)) = += for ¢ € Q. Since
the set E of common Lebesgue points of v and w has full measure, we may assume that  consists of such
points. Now for £ € Q and n € N, € > 0 fixed, select (£,7,) € dom & such that

(5-18) {",U(t) + ﬂ,W(t) - d’( & 77/) > n.
Find 6(t) > 0 such that

75 [ (605) + () ds = £(e) + mw(e) + o),

with |o(1)] < e, say, for all 0 < & < 8(¢). As the set of intervals [¢ — 8,6+ 68,teQ,0<8< 8(¢)formsa
Vitali covering of (O, we find finitely many disjoint intervals L=l -8, + 81j=1,...,r covering Q
up to a set of measure < ¢, where 1, € Q, 8 < 8(t).

Now et p > 0 be such that the intervals 1”, = [’/ -8 —-p t+ 61 + p] are still disjoint. Define
piecewise limear functions x,, y,, by
(5.19) Xep =&,  Yp=m, onl,

4

fit

r
n outside U 1

xep = 5: yep 1p?

=1

where (¢, 1) € dom & is a fixed point. By convexity, (x.,(8), y.,(t)) € dom ¢ for all 1, and moreover,
16 (3 (). 700 (0) = [9(AD(E.m) + (1= AD)(&,,m,))
<le(eml+ max 16(€,m,)!
Jj=1, ,

shows ¢(x,,. y.,) is integrable. Letting p — 0, € > 0, we derive that

Tohep Yep) = (0o xpd = Swayeed = o(D) + X [ £0(s) + mw(s) ~ #(§,.,) ds

J=1

=o() + X28(&p(4) +nw(t) — ¢(&,m)) +o(5)
J=1

>o(l)+n- Z 28 =o0(1) + n-meas(Q) - +e,
j=1

as n — 4+, contradicting the finiteness of the right-hand side in (5.17). Similar reasoning now shows that
&*(v(-), w(-)) must in fact be integrable.

Let us next check that the nght-hand side in (5.17) equals Jy+(v,w). Fix € > 0 and let E be the set of
common Lebesgue points of v, w and ¢*(o(-), w(*)). For every ¢ € E we may select (&, m,) € dom ¢ such
that

(5.20) ¢*(v(1), w(1)) < &u(t) + nw(r) = ¢(&,m) + €.
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As before, let 8(z) > 0 be such that

(5.21) 25 [P C6u(s) + mw() ds = £(6) + (o) + o),

L5 [0 s w(53) ds = 670 W) + 0D,

-8

with the corresponding lo(1)| < € whenever 0 < & < 8(¢).

Let I,,..., I, be disjont intervals [, = [t] - Bj,tl + 8]] having SJ < 8(t]), t, € E, and covering T = [0,1]
up to a set of measure < e, Let p > 0, and define the x,, ye, as above. Then the right-hand side in (5.17)
is greater or equal to

T(Feps Yer) = (0 5g) = Cwxgpy =0() + L [ £,(5) + mpw(s) = $(&,m,) ds
=1

0(1) + Z 28,(&’,]0(1']) + nl,w(tl) - ¢( g’/’"’l))

J=1

\%

.

o() + Y 28¢*(v(1),w(r)) — €.
Jj=1

By the second equation 1n (5.22), the last term has the same limit as

Z j;d)*(v(s),w(s)) ds = J(v,w) + o(1).

Jj=170

This proves that J,.(v,w) is majorized by the right-hand side of (5.18). Since the reverse inequality 1s
obvious, this proves the statement of the lemma. O

PROOF OF PROPOSITION 4.2.  Suppose contrary to the statement that there exists a Lebesgue null set
such that #(:) > m on Q, and di~ () > 0. Since the measures di” and dii~ are mutually singular, we
may assume that da*(Q) = 0. Fix €> 0, and let [;,.... ], disjoint intervals covering  up to a set of
di--measure < €. Now let J, = I, + [—p, p] be larger disjoint intervals such that still (dx + dut XJ,
U -+ U J,) < € (dx = Lebesgue measure). Define a continuous function A: T — {0,1] such that A = 1 on
each 1, and A = O outside J, U -~ U J,.

By the definition of m, and for e small enough, there exists an m' having (m + €, m') € dom ¢. Now
define an arc x € &/(T) and y € #(T") by setting

x(1) = (1 = M) + A(1)(m + €),
y(1) = (1= MOF (1) + A)m'.
Notice that (x, y) € dom I,,, since by the convexity of ¢ we have on each J:
1 (x(6), (O < 16(2(1), T (D) + d(m + &, m'),

while ¢(x, y) = ¢(%, X') outside the J,. This estimate also shows T (x, y) = (%, x'), as €, p— 0. The
construction now imples

Ly(x,y;w, A) = Ly(2, 35w, Q) —(du™, 2 —m), (e,p—07).

But ¥ 1s optimal, so {d@~, ¥ — m) < 0, and since x > m by definition, this implies that di~ = 0 on the set
{(t:x()>m} O
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