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GROUP INVARIANCE AND CONVEX MATRIX ANALYSIS*
A. S. LEWISt

Abstract. Certain interesting classes of functions on a real inner product space are invari-
ant under an associated group of orthogonal linear transformations. This invariance can be made
explicit via a simple decomposition. For example, rotationally invariant functions on R? are just
even functions of the Euclidean norm, and functions on the Hermitian matrices (with trace inner
product) which are invariant under unitary similarity transformations are just symmetric functions
of the eigenvalues. We develop a framework for answering geometric and analytic (both classical
and nonsmooth) questions about such a function by answering the corresponding question for the
(much simpler) function appearing in the decomposition. The aim is to understand and extend the
foundations of eigenvalue optimization, matrix approximation, and semidefinite programming.
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1. Introduction. Why is there such a strong parallel between, on the one hand,
semidefinite programming and other eigenvalue optimization problems, and on the
other hand, ordinary linear programming and related problems? Why are there close
analogies between many important matrix norms on the one hand, and associated vec-
tor norms on the other? This paper aims to explain the simple algebraic symmetries
which drive these parallels.

A simple example may be illustrative. Suppose that we wish to understand convex
functions f : R™ — R which are “orthogonally invariant.” By this we mean that
f(z) = f(Uz) for any point z in R™ and any orthogonal matrix U. What can we say
about such functions?

We might observe first that, since f is determined by its behaviour on the half-
line {Be! | B > 0}, where e! = (1,0,0,...,0), we can write f(z) = h(||z||), where
the function h : Ry — R is defined by h(8) = f(Be'). What conditions on h are
equivalent to the convexity of f? Clearly h must be convex (being the restriction of
f to a half-line), but this is not sufficient.

After some more thought we might arrive at the following answer: h must be
convex and nondecreasing at the origin. But this obscures the essential symmetry of
f. A simple trick allows us to preserve this in our answer. Instead of examining the
restriction of f to the half-line R e! we consider the restriction to the whole subspace
Re!. We then arrive at the following much more satisfactory answer: h(]|-]|) is convex
if and only if the function A : R — R is even and convex.

This easy example illustrates the fundamental technique of this paper—analyzing
the consequences of the symmetries of a function by analyzing its symmetries on a
“transversal” (or defining) subspace. von Neumann’s famous 1937 characterization of
unitarily invariant matrix norms [27] is precisely of this mold. One statement of this
result is that a unitarily invariant matrix function f (one satisfying f(z) = f(uxv)
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for any unitary u and v) is a norm exactly when its restriction to the subspace of real
diagonal matrices is a symmetric gauge function.

What algebraic structure underlies von Neumann’s result? There are three es-
sential ingredients: first, a real inner product space X (in this case X = C™*" with
(z,w) = Retrz*w); second, a (closed) group G of orthogonal linear transformations
(in this case those of the form z — uzv for unitary u and v); third, a map v from
X to a transversal subspace (in this case y(z) is the diagonal matrix with diagonal
entries the singular values of z arranged in nonincreasing order). The map 7 should
be G-invariant and should satisfy the following conditions.

AxioM 1.1 (decomposition). Any element x of X can be decomposed as ¢ =
A~v(z) for some operator A in G.

AxioM 1.2 (angle contraction). Any elements x and w in X satisfy the inequality
(z,w) < (y(x),7(w))-

In von Neumann’s case, Axiom 1.1 is just the singular value decomposition, and
Axiom 1.2 is “von Neumann’s lemma” (see, for example, [7]).

This structure (X, G, ) (which we call a normal decomposition system) is the focus
of this paper. Our aim is to analyze G-invariant functions on X via their restriction
on the range of . For this to be of much interest we would hope that the range of
~ has lower dimension than X. Our other main example, of fundamental interest in
matrix optimization, also has this property:

X = {n X n symmetric matrices}, with (z,w) = trzw,
G = {z — uTzu | u orthogonal}, and
v(z) = Diag A(z), where
A1(z) > Ao(z) = -+ > Ap(z) are the eigenvalues of z.

In a later paper [22] a broad family of examples generated from the theory of
semisimple Lie groups will be discussed. In this paper we concentrate on outlining
how the idea of a normal decomposition system provides a simple yet powerful uni-
fying framework in which to study a wide variety of important results. Examples
include Schur convexity (see, for example, [23]), the convexity of eigenvalue functions
[10, 6, 11, 3, 13, 18], calculations of Fenchel conjugates and subdifferentials of convex
eigenvalue functions [26, 5, 12, 34, 31, 28, 29, 30, 15, 16, 1, 17, 18, 24, 33|, von Neu-
mann’s original result [27] and generalizations (for example, [4, 19]), subdifferentials
of unitarily invariant norms [37, 38, 39, 40, 41, 8, 7, 9, 19], and characterizations of
extreme, exposed, and smooth points of unit balls [2, 40, 41, 8, 7, 9, 19].

This paper concentrates on convexity and its ramifications.

2. Group invariant normal forms. Underlying all the work in this paper is
a rather simple algebraic structure. We therefore begin by fixing our notation and
formally defining this structure.

We will work in a real inner product space X. For simplicity we will assume
that X is finite dimensional, although many of our results extend easily. The adjoint
of a linear operator A : X — X is the linear operator A* : X — X defined by
(A*w,z) = (w, Az) for all points w and z in X. We denote the identity operator
by id : X — X, and if A*A = id then we say that A is orthogonal. In fact, A is
orthogonal if and only if it is norm preserving: ||Az| = ||z|| for all z in X, where the
norm is defined by ||z|| = 1/{(z,z). In this case, A= = A*.

We denote the group of all orthogonal linear operators on X (with composition)
by O(X), which we endow with the natural topology. Thus A, approaches A in O(X)
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if and only if A,z approaches Az in X for all z in X. Given a subgroup G of O(X),
a function f on X is G-invariant if f(Az) = f(z) for all z in X and A in G. We can
now describe our fundamental structure—this structure is an underlying assumption
throughout the paper.

DEFINITION 2.1. Given a real inner product space X and a closed subgroup G of

the orthogonal group O(X), the map v : X — X induces a G-invariant normal form
on X if

(a) v is G-invariant,

(b) for any point x in X there is an operator A in G with x = Av(z), and

(c) any points x and w in X satisfy the inequality (z,w) < (y(x),v(w)).

In this case (X, G,7) is called a normal decomposition system.

Notice two immediate consequences of this definition: the map v must be idempo-
tent, since for any point z in X, properties (a) and (b) imply v(v(z)) = v(A*z) = v(=),
and furthermore v must be norm preserving, since ||y(z)| = ||A*z|| = ||z||. Our first
result, which is somewhat less trivial, has the following important corollary.

e The condition for equality in property (c) is the existence of an operator A
in G with z = Ay(z) and w = Avy(w).

THEOREM 2.2. A subset K of X has the property that (z,w) = (y(z),v(w))
for every pair of elements x and w of K if and only if there is an operator A in G
satisfying © = Ay(z) for all x in K.

Proof. The “if” direction is easy, so consider the “only if” direction. Without
loss of generality, K is nonempty, so choose a point z in ri(convK) and an A in G
for which z = Ay(z). If there is a point z in K with £ # Avy(z) then the Cauchy-
Schwartz inequality implies that (z, Ay(z)) < ||z||?. It is easy to write 2 as a convex
combination z = agpr + Ei>0 ozt for strictly positive a;’s with sum 1 and points z*
in K. But now we have

(7(2),7(2)) = (Av(x), Av(2)) = (Av(), 2)
< agllz||? + (Ay(z), ¥inp it?)
< aollzll? + Y ai{y(x), (%))

>0

= agllzl® + D ei(z, )
>0

= (z,2) < (7(2),7(2)),

which is a contradiction. |

We defer a systematic discussion of examples until the end of the paper. How-
ever, for the sake of concreteness the reader may wish to keep in mind the following
extremely simple example: X = R (with (z,w) = zw), G = {£id}, and v(z) = |z|.
The properties are easily verified.

We will only use the closedness of G very rarely (specifically, in Theorem 3.3), but
it does not rule out much of interest. We think of the formula z = A~(z) in property
(b) as being a “normal form decomposition” of . Property (c) expresses the fact that
~ contracts the angle between the vectors  and w unless they have a simultaneous
normal form decomposition (in which case the angle remains constant). If we write

(2.1) ¢*={Aeg|z=A(z)},

then (b) says that G® is nonempty, while the condition for equality in (c) is that
G* N G¥ be nonempty.
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PROPOSITION 2.3. For points * and w in X,

max (z, Aw) = (y(z),y(w)).

Proof. Note that (z, Aw) < (v(z),v(Aw)) = (y(z),y(w)) for any operator A in
G. On the other hand, since there exist operators B and C in G with z = By(x) and
w = Cvy(w), we have that (y(z),v(w)) = (B*z, C*w) = (z, BC*w), so the maximum
is attained by A = BC*. ]

Given a subset K of X, the dual cone of K is defined to be the closed, convex
cone

Kt ={we X |(z,w)>0foral zin K}.

The set K is a closed, convex cone if and only if K = K** [32, Thm. 14.1]. The
function v is K*-convez if the real function (7y(-),w) is convex for all vectors w in K,
and a function f : K — [—o00, +00] is K*-isotone if f(z) > f(w) for any z and w in
K satisfying z —w € K.

It transpires that Definition 2.1 has strong implications for possible maps ~.

THEOREM 2.4. The range R(v) of the map ~y is a closed, convex cone. Further-
more, 7y is norm preserving, positively homogeneous, and R(vy)™-convex with global
Lipschitz constant 1.

Proof. For any point z in X it follows from Definition 2.1 that (z,w) < (y(z),w)

for all points w in R(7), and hence y(z) —z € R(v)*. If in particular z lies in R(y)*+
then

0 < (z,7(2) — z) = (z,7(z)) — || <0

since, as we have seen, ||y(z)|| = ||z||. It follows that z = v(z) € R(Y), so R(y)*t C
R(7), and hence R(v) is a closed, convex cone.

Supposing once more that = lies in X and that the scalar A is nonnegative, we
have

ly(z) = My (@)I1* = Iy ) [? + X[y (@)]|* — 220y (A2), ¥(@))
< el + 232 al|* — 22w, z)

whence y(Ax) = Ay(x). Thus « is positively homogeneous.
By Proposition 2.3, for any w in R(y) we have

<’)’($), ’LU> = I}fgg (JJ, Aw)»

and hence (v(),w) is convex, being a pointwise maximum of linear functions. Thus
7 is R(7y)*-convex.
Finally, for any « and w in X,

(@) = Y@)I = (1(2),7(@) + (y(w), v(w) - 2(z), 7(w)
< Jlal* + ]l - 2(a, w)
= |}z - wl?,

whence the Lipschitz constant 1. O
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Various algebraic ideas can be applied naturally to the concept of a normal de-
composition system. For example, we say that two normal decomposition systems
(X1,G1,m1) and (X, Ga,¥2) are isomorphic if there is an inner product space isomor-
phism «a : X; — X3 and a group isomorphism g : G; — G2 such that for all points x in
X3 and operators A in G; we have v3(a(z)) = a(vi(z)) and (8(A))(a(x)) = a(Ax).
There is also a natural notion of the Cartesian product of two normal decomposi-
tion systems. Observe finally that, given any inner product space X and subgroup G
of O(X), easy examples show that there may be no map v with (X,G,~) a normal
decomposition system.

3. G-invariant functions and sets. The main aim of this paper is to study
functions f : X — [—o00,+400] on the inner product space X which are G-invariant:
f(Az) = f(z) for all points z in X and operators A in the group G. As usual,
we assume that the map - induces a G-invariant normal form on X in the sense of
Definition 2.1.

We will be particularly interested in convex functions f, which we define by re-
quiring that the epigraph

epif ={(z,0) e X xR|a > f(z)}

be a convex set. The function f is closed if its epigraph is closed and is proper if it
never takes the value —oo and has nonempty domain,

dom f ={z € X | f(z) < +o0}.

The (Fenchel) conjugate of f is the closed, convex function f* : X — [—o00,+00]
defined by

£*(w) = sup{{z,w) - f(z) | = € X}.

For proper, convex f, the conjugate f* is also proper with f** = f providing that f
is also closed. For proper f we can define the (convez) subdifferential at a point x in
dom f by

0f(x) ={w € X | f(2) + f*(w) = (z,w)}.

Elements of the subdifferential are called subgradients. For all of these ideas the
standard reference is [32].

The following result is rather reminiscent of the discussion in [32, pp. 110-111].
It shows that conjugacy preserves G-invariance.

PROPOSITION 3.1. If the function f : X — [—o00,400] is G-invariant then so is
the conjugate function f*, and

f*(w) = sup{(z,v(w)) - f(z) |z € R(7)}
for any point x in X.
Proof. For any operator A in G¥ (whence w = Ay(w)),
fr(w) = sup{(z,w) — f(2) [ z € X}
= sup{(Bz, Ay(w)) — f(Bz) |z € R(y), B € G}
= sup{sup{(z, B*Ay(w)) | B € G} — f(z) |z € R(v)}
= sup{(z,7(w)) — f(z) [z € R()}
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by Proposition 2.3. Since « is G-invariant, so is f*. a

LEMMA 3.2. A G-invariant function f : X — [—o00,+00] is (Frechet) differen-
tiable at the point = in X if and only if it is differentiable at v(x).

Proof. For any operator B in G, we know that f(Bw) = f(w) for all points w in
X, and hence by the chain rule, if f is differentiable at Bw then it is differentiable at
w. Choosing an operator A in G” (so that z = Avy(z)), the result follows by setting
w=gx, B=A* and w=+(z), B= A in turn. 0

The next result is our first rather nontrivial observation. A consequence, for
example, is that symmetric, convex functions on R™ are “Schur convex” (see Example
7.1).

THEOREM 3.3. If the G-invariant function f : X — [—o0,+00] is convex then it
is R(y)*-isotone on R(7): if points x and w lie in R(y) with x — w in R(y)* then
f(@) > f(w).

Proof. The coset Gz is compact (since G is compact). If w lay outside its convex
hull then there would exist a separating hyperplane defined by a vector v in X with

(v(v),w) > (v, w) > max (v, Az) = (7(v), z),
AeG

by Proposition 2.3, and then (y(v),z —w) < 0, contradicting the assumption that
x — w lies in R(y)*. Hence there exist positive scalars A1, Az, ..., A, with sum 1 and
operators Ay, Az, ..., A, in G with w =37 M A;z.

Suppose that f(z) < f(w). Then we can choose a real number « in the interval
(f(z), f(w)), and since f is G-invariant, f(A4;z) = f(z) < o for each s = 1,2,...,7.
Now since f is convex,

flw)=f (Z )\iAiw> < Z)\ia =q
1 1

(see [32, Thm. 4.2]), which is a contradiction. 0

We will also be interested in G-invariant subsets of X, so we will conclude this
section with some simple observations illustrating how various algebraic and topo-
logical constructions preserve G-invariance. Notice first that the class of G-invariant
sets is easily seen to be closed under arbitrary unions, intersections, and comple-
ments. Suppose that the subset D of X is G-invariant (that is, x € D, A € G implies
Az € D). Then the interior of D is quickly seen to be G-invariant; whence the closure
and boundary of D are also G-invariant.

For each r = 1,2, ..., suppose that A, is a subset of R" and define a subset of X,

{Z)\

i=1

reN, €A, xl,xz,...,mTED}.

It is immediate that this set is G-invariant. By taking A, to be R", R%, {) €
R"| 3> X =1}, and {A € R, | > \; = 1} in turn we see that the linear hull, the
conical hull, the affine hull, and the convex hull of D are all G-invariant.

We say that a point z lies in the intrinsic core of D, written icr D, if for any point
w in the affine hull aff D, z + §(w — x) lies in D for all real é sufficiently small. When
D is convex its intrinsic core coincides with its relative interior ri D, the interior of
D relative to its affine hull (see [32]), and in this case the relative boundary rb D is
just el D\ riD. Since it is easy to check that icr D is G-invariant, it follows that for



GROUP INVARIANCE AND CONVEX MATRIX ANALYSIS 933

convex, G-invariant D, the relative interior and boundary of D are also G-invariant.

Finally, for any G-invariant set D the dual cone D and the orthogonal complement
D+ are both G-invariant.

4. Reduction. Let us assume once more that (X,G,v) is a normal decompo-
sition system in the sense of Definition 2.1. If the function f : X — [~o0,+00] is
G-invariant then since f(z) = f(y(z)) for all points z in X, the behaviour of f is
determined by its behaviour on R(7), the range of y. The key idea of this paper is
then rather simple—we reduce questions about f to corresponding questions about
the restriction of f to a subspace Y containing R(7): typically, Y = R(v) — R(7).

Given a subspace Y of X, we denote the stabilizer of Y in G by

Gy ={A€G|AY =Y}.
We will frequently abuse notation and write Gy for the group of restricted operators
Gyly ={Aly | A€ gy}

In other words, we think of operators in Gy as orthogonal transformations on Y (as
well ason X). When Y contains R(vy) we can consider the restricted map vy : Y — Y:
we will frequently write + in place of vy .

The following central assumption will remain in force throughout the remainder
of the paper.

ASSUMPTION 4.1. In the sense of Definition 2.1, (X,G,~) is a normal decom-
position system. The inner product space Y is a subspace of X (with the inherited
inner product) and contains the range of v. Furthermore, (Y,Gy,7) is also a normal
decomposition system.

This amounts to the additional assumption that if, in Definition 2.1, the point x
in fact lies in Y then the operator A in property (b) can actually be chosen to leave Y
invariant. Of course a trivial example is Y = X. Once again, since we are deferring
examples until the end of the paper, it may be helpful to keep a simple (although
nontrivial) example in mind. We take X to be R™ with the standard inner product,
G = O,, the orthogonal group on R", and let e! be the vector (1,0,0,...,0). Then
it is easily verified that if we define v(z) = ||z|e! for all z in R™ then we obtain a
normal decomposition system, and that if Y = span {e'} then Assumption 4.1 holds.

An interesting general framework in which Assumption 4.1 holds is developed in
[22]. In summary, suppose that G is a real, semisimple Lie group with a maximal
compact subgroup K, and that g =k @t is the corresponding Cartan decomposition
(where g and k are the tangent algebras of G and K, respectively). Now let X = t,
let the group G consist of the adjoint actions of elements of K on t, and let Y be
a maximal R-diagonalizable subspace of t. Then Gy is (essentially) the associated
Weyl group. Finally, fix a closed Weyl chamber D C Y and for any point z in t define
~(z) to be the (singleton) intersection of the G-orbit of x with the chamber D. Then
Assumption 4.1 holds; see [22] for details. In fact, all of the concrete examples which
we develop later fall into this framework.

In what follows, o denotes composition. Thus (h o ¥)(z) = h(vy(z)).

PROPOSITION 4.2. A function f is G-invariant on X if and only if it can be
written in the form f = h o~ for some Gy -invariant function h on Y.

Proof. Any function of the form h o 7 is G-invariant since « is. If, on the other
hand, f is G-invariant then it is immediate that f = f|y o, and clearly f|y is Gy-
invariant. 0
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Thus henceforth we will restrict attention to G-invariant functions h o v, where
the function h is Gy-invariant. We now follow two distinct approaches to the elegant
fact that such an extended real-valued function h o 7 is convex on X if and only if
h is convex on Y. The first approach is direct, using Theorem 3.3, and hence relies
on the underlying assumption that the group G is closed. The second approach does
not require this assumption, but instead assumes that the function h is closed and
employs an attractive Fenchel conjugacy argument.

THEOREM 4.3 (convex and closed functions). Suppose that the function h: Y —
[—00,+00] is Gy -invariant. Then the function h o~y is convex (respectively, closed)
on X if and only if h is convexr (respectively, closed) on Y. Hence, a G-invariant
function on X is convex (respectively, closed) if and only if its restriction to Y is
convez (respectively, closed).

Proof. Since h = (h o 7)|y, one direction is clear. Conversely, suppose that h is
convex. For any points  and w in X and real X in (0,1), we know by Theorem 2.4
that Ay(z) + (1 — A)y(w) and v(Az + (1 — A\)w) both lie in R(v), and that (Ay(x) +
(1= X)y(w)) —y(Az+ (1 — A)w) lies in R(y)™. Hence by Theorem 3.3 (applied to the
system (Y, Gy, 7)), we have

h(My(z) + (1= A)y(w)) = h(y(Az + (1 = Mw)).

Now for any real numbers o > h(y(z)) and 8 > h(y(w)), since h is convex we deduce
that h(y(Az + (1 — Mw)) < Aa+ (1 — A\)B; whence h o« is convex [32, Thm. 4.2].
Turning now to the closed case, since h = (h o 7y)|y we have that

(4.1) epih =epi(hovy)N (Y x R),

8o that if h o7 is closed, then so is h. Suppose on the other hand that h is closed.
If {(x;,7:)} is a sequence of points in epi(h o ) approaching the point (z,r), then
since the sequence ((y(z;),7;)) lies in the closed set epih and approaches (y(z),r)
(as v is continuous by Theorem 2.4), it follows that (y(x),r) € epih, and so (z,7) €
epi (ho7). a

The second approach to convexity is rather more transparent once we have derived
the following elegant formula.

THEOREM 4.4 (conjugacy). Suppose that the function h : Y — [—o00,+00] is
Gy -tnvariant. Then on the space X,

(hom)* =h"or.

Proof. By Proposition 3.1 applied in turn to the systems (X, G, v) and (Y, G|y, ),
we see that for any point w in X,

(hoy)*(w) = sup{(z, y(w)) — h(v(2)) | z € R(7)}
= sup{(z,v(w)) — h(z) | = € R(7)}
=h"(y(w)). O

It is an immediate consequence of this conjugacy formula that a Gy-invariant
function h : Y — (—00, +00] (note that we exclude —oo) is closed and convex exactly
when the function h o v is closed and convex on X. One direction is clear from
equation (4.1). On the other hand, if & is closed and convex then h = h**, so that
ho~y = (ho~v)* by Theorem 4.4, and hence h o is also closed and convex.
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Proposition 4.2 shows that the restriction operation which maps an extended
real-valued function h on X to its restriction h|y gives a one-to-one correspondence
between G-invariant functions on X and Gy-invariant functions on Y. Theorem 4.3
(convex and closed functions) shows that this correspondence preserves convexity and
closedness, and Theorem 4.4 (conjugacy) shows that it also preserves the conjugacy
operation. We shall see in §6 that restriction also preserves essential strict convexity
and smoothness (Corollary 6.2).

The next result provides perhaps a more compelling motivation for the conju-
gacy approach. Recall that for a point z in X, the set G® describes the possible
decompositions of z: G® = {A € G|z = Ay(x)}.

THEOREM 4.5 (subdifferentials). Given a function h : Y — (—o0,+oo] which
is Gy -invariant, suppose that the point © in X satisfies y(z) € dom (h). Then the
element w of X is a subgradient of the function h o~y at x if and only if y(w) is a
subgradient of h at v(x) with x and w having simultaneous decompositions: G*NGY #
0. In fact, the following “chain rule” holds:

(4.2) d(hov)(x) = G°Oh(v(z)).

Proof. By definition, w € 8(h o v)(z) if and only if

(z,w) = (hoy)(z) + (ho )" (w) = h(y(z)) + h*(y(w)),

using Theorem 4.4 (conjugacy). But then, since

h(y(z)) + h*(v(w)) 2 (y(z),y(w)) = (z, w),

equality holds throughout, and the first part of the result follows using Theorem 2.2.

Suppose that w € d(h o y)(z). Then by the above, v(w) € Oh(v(z)) and we can
choose an operator A in G* NGY. Then

w = Ay(w) € Adh(y(z)) C G*Oh(y(x)).
Conversely, suppose that y € dh(y(z)) and that A € G®. Then

(ho)(z) + (hov)*(Ay) = h(y(z)) + h* (v(Ay))
= h(v(z)) + h*(v(y))
= h(y(z)) + h*(y)
= (y(z),y) = (z, Ay),

using Theorem 4.4 (conjugacy) and the Gy-invariance of h*. Thus Ay lies in d(h o
~)(z), as required. a

Notice that this result is the first point at which we have used the condition for
equality in property (c) of Definition 2.1.

COROLLARY 4.6. Suppose that the function f : X — (—oo, +00] is G-invariant
and that the point x lies in dom f. Then the element w of X is a subgradient of f at
z if and only if y(w) is a subgradient of f at v(z) with x and w having simultaneous
decompositions: G NGY # 0. In fact, Of(z) = G*Of(v(x)).

Proof. Take Y = X in Theorem 4.5 (subdifferentials). O

COROLLARY 4.7. Suppose that the function f : X — (—o0,+00] is G-invariant
and convez. If f is differentiable at the point x then V f(y(z)) = v(Vf(x)).
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Proof. By Lemma 3.2, f is differentiable at v(x). By Corollary 4.6, since V f(z) €

Of () it follows that v(Vf(z)) € 8f(v(z)) = {Vf(y(z))}. ]
Given functions h,p : Y — (—o00,+00], we define the infimal convolution hOp :
Y — [“'OO, +00] by

(hOp)(y) = qgrelg{h(w) +p(y — w)}.

An analogous definition holds on X.
THEOREM 4.8 (infimal convolution). Suppose that the functions h,p : ¥ —
(—00, +00] are Gy -invariant and convex. Then

(hOp) oy = (ho)O(por).

Proof. Given any two points z and z in X, define two compact convex subsets of
Y by

C = convGy~v(z), and
D = ~y(x) — conv Gyvy(z — 2).

These two sets are not disjoint, since a separating hyperplane would give an element
u of Y and a scalar 8 with

(v(u),7(2)) = max (u, Ay(z))

<B < min (u,7(z) - Ay(z — 2))
AeG

Y

= (u,7(z)) = {(v(w),7(z - 2))
< (v(w), (@) — (2 - 2)),

which contradicts the convexity and positive homogeneity of (y(u),¥(:)) (Theorem
2.4). Thus there is a point w in C' N D, and this point must satisfy h(w) < h(y(2))
and p(y(z) — w) < p(y(z — 2)).

Now consider any fixed point x in X. By the above argument we see that

(hOp)(v(2)) = ggg{h(w) +p(v(2) — w)}
}g)f{{h(v(»’:)) +p(y(z - 2))}
= ((hoy)B(po7))(x).

On the other hand, we can choose an operator A in G°, and then

((hom)BPoN@) = inf {h(1(2)) +p(r(@ = 2))}
< int {h(7(4w)) + p(1(A(Y (@) — W)}
= inf {h(w) + p(r(2) = w)}
= (hOp)(1(a)).

IN

The result follows. 0
This result strengthens and generalizes those in (33, 22].
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5. Invariant sets. In the last section we studied G-invariant functions on the
space X. In this section we consider analogous questions for G-invariant subsets of
X. As usual, (X,G,) is a normal decomposition system with a subsystem (Y, Gy,7)
(where Y contains the range of 7). In other words, Assumption 4.1 holds.

PROPOSITION 5.1. A subset D of X is G-invariant if and only if it has the form
D = ~y7Y(C) for some Gy -invariant subset C of Y.

Proof. Clearly any set of the form v~(C) = {z € X | y(z) € C} is G-invariant
because 7y is. On the other hand, if D is G-invariant then it is easily checked that we
can write D = y~}(D NY’), which has the required form. |

Thus henceforth we will restrict our attention to G-invariant sets v~1(C) (or,
equivalently, GC), where the set C C Y is Gy-invariant. Sets can be effectively
studied via their indicator functions,

0, eC,
5C(y) = { +00, z ¢ C.

Notice, for example, that 6,-1(¢y = éc oy for any subset C of Y.

COROLLARY 5.2 (closed and convex sets). Suppose that the subset C of Y is
Gy -invariant. Then the set v~ (C) is closed (respectively, convex) if and only if C is
closed (respectively, convex).

Proof. Apply Theorem 4.3 to the function é¢. |

A fundamental idea in optimization is the (convez) normal cone to a subset C of
Y at a point y in C, defined by

Ny|C)={weY |{w,z—y) <0forall z€ C}.

It is easily checked that N(y|C) = 86¢(y), whence the following useful formula.

COROLLARY 5.3 (normal cones). Suppose that the subset C of Y is Gy -invariant
and that the point x in X satisfies y(z) € C. Then the element w of X lies in the
normal cone N(z|y~1(C)) if and only if y(w) lies in N(y(z)|C) with x and w having
simultaneous decompositions (G NGY #0). In fact,

N(zly™(0)) = G"N(v(2)|0).

Proof. Apply Theorem 4.5 (subdifferentials) to the function h = d¢. O

Other convex-analytic formulae follow easily from Theorem 4.4 (conjugacy). For
convenience, we collect some similar-looking results in a single theorem. The polar
set of a subset C of Y is defined by

C°={z€eY|(z,y)<1lforallye C},

while the polar cone is
C ={z€Y|(zy)<O0forallyeC}.

THEOREM b5.4. Suppose that the subset C of Y is Gy -invariant. Then
(i) (vHC) ™ =~"H(C),
(ii) (v~H(C))° =771(C"), and
(iii) intxy~1(C) =~ (inty C).
Purthermore, C = y~1(C)NY, and if C is also convex then
(iv) iy~ (C) =47 1(xi C), and
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(v) affy~1(C) =y~ (aff O).
Proof. An element w of X lies in (y~*(C))~ if and only if

02> 8% 1(¢)(w) = (bc 0 7)"(w) = 66(v(w)),

whence (i), and (ii) is similar.

To see (iii), note that since v may be regarded as a map from X to Y and is
continuous by Theorem 2.4, y~!(intyC) is an open subset of y~1(C), and hence
v~ (inty C) C intxy~*(C). Conversely, suppose that the point z lies in int xy~*(C),
and yet y(z) ¢ inty (C). Then there is a sequence of points (yn) in Y\ C approaching
~(z). Each point has a decomposition y, = A,7(y,) for some operator A, in Gy, and
since Gy is compact there is a convergent subsequence A, — A € Gy. Now notice
that the sequence v(yn/) = A%y, approaches A*y(z). Since y~!(C) is G-invariant,
so is intxy~!(C), and hence since z lies in intxy~!(C), so does A*y(x). Thus for
sufficiently large n’ we have y(yn') € v~ 1(C); whence v(yn/) € C. Now since C is
Gy-invariant, y,» € C, which is a contradiction.

For any point y in C, y lies in Y and there is an operator A in Gy with y =-A~v(y).
Since C is Gy-invariant it follows that v(y) € C, so that y € y~1(C)NY. Conversely,
if y € y71(C) NY then again there exists A in Gy with y = Av(y); whence y € C
since C is Gy-invariant. Thus C = y~}(C)NY.

Now suppose that C is convex and, without loss of generality, nonempty. By
Corollary 5.2, v71(C) is a nonempty, G-invariant, convex set, so there exists a point
z in riy~1(C). Since riy~}(C) is G-invariant, y(x) lies in Y Nriy~1(C). Hence
the relative interiors of the convex sets y~1(C) and Y intersect, so riC = ri(¥Y N
7y HC)) = Y nriy~Y(C), by [32, Cor. 6.5.1], and it is elementary to check that
aff (Y Ny~1(C)) = Y Naffy~}(C). Now, a point z belongs to riy~1(C) if and only if
v(2) € YNriy~}(C) = ri C, by the G-invariance of y~1(C), and (iv) follows. Equation
(v) is similar. 0

The pattern of these results is clear. If the convex subset C of Y is Gy -invariant
then for many set operations ‘4’ the following metaformula holds:

(5.1) [#(7(0) =7 (#(C)). |

The utility of this formula lies in expressing the result of an operation in the larger
space X on a complicated set, y~!(C), in terms of the result of the same operation
in a smaller space Y on the simpler set C. A straightforward deduction (in light of
Theorem 5.4) is that if the convex subset D of X is G-invariant then for many set
operations ‘#’ the following metaformula holds:

(5.2) Y N#D=#(YND) |

We will see another example of this pattern in the next section—we will show that
exp (7"1(C)) = v~} (exp C) for a closed, convex set C, where exp C' denotes the set of
exposed points of C. To end this section we prove the analogous result for the set of
extreme points of C, denoted ext C, which are those points z in C for which C'\ {z}
is convex.

THEOREM 5.5 (extreme points). If the subset C of Y is convezr and Gy -invariant
then

ext (Y71(C)) = v (ext C).
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Proof. Suppose first that the point z in X does not belong to y~!(ext C), so that
v(z) € extC. If y(z) € C then clearly = ¢ ext (y~1(C)), so suppose that for some
points u and v in C distinct from y(z) and some scalar « in (0,1) we have y(z) =
au+ (1 —a)v. For any operator A in G¥ we now have z = Ay(z) = aAu+ (1 — a)Av,
and since the points Au and Av are distinct from z in the set y~1(C), it follows that
z is not extreme in this set.

On the other hand, suppose that y(x) is extreme in C and yet z is not extreme
in y71(C)—we will derive a contradiction. Pick points u; and vy distinct from z in
4~1(C) and a scalar o in (0,1) with z = aju; + (1 — a1)v1. Now define a new point

u:{ s@+u) if y(z) = y(uw),

U1 otherwise.
Since y~1(C) is convex, u lies in y~1(C), and if y(z) = y(u1) then |z| = |jui] by
Theorem 2.4 with
x| + [|lu
Il =l < Ly =y,

Hence in either case y(u) # v(z). By defining a point v in an analogous fashion we
arrive at a representation z = au + (1 — a)v for a scalar « in (0,1) with v(u) and
v(v) distinct from v(z) in C.

Now certainly v(z) does not belong to either of the cosets Gy~vy(u) or Gy (v).

For example, if y(z) = Ay(u) for some operator A in Gy then applying v gives a
contradiction. Thus, since (z) is extreme,

v(z) & conv (Gyy(u) U Gyv(v)).

Since the set on the right-hand side is compact, we can choose an element y of ¥V
(defining a separating hyperplane) so that

(v(¥),v(z)) > (y,7(x)) > max (y, Gyv(u) UGyv(v))
= max{(7(y),7(w)), (v(¥), v(V))},

using Proposition 2.3. But this contradicts the fact that z = au + (1 — a)v and the
function (y(y),v(:)) is convex (Theorem 2.4). O

6. Smoothness, strict convexity, and invariant norms. Our aim in this
section is to investigate the dual concepts of smoothness and strict convexity for G-
invariant convex functions. Once again, we assume throughout that (X,G,v) is a
normal decomposition system, and that Assumption 4.1 holds, which is to say that
(Y,Gy,7) is a subsystem where the space Y contains the range of +.

The first result shows that a G-invariant convex function ho+y (where the function
h is Gy-invariant—see Proposition 4.2) is differentiable at a point x in X if and only
if h is differentiable at y(x).

THEOREM 6.1 (differentiability). Let the function h : Y — (—o0,+00] be Gy -
invariant. If h o vy is differentiable at a point x in X then h is differentiable at y(z),
and the following chain rule holds:

(6.1) V(hox)(z) = AVh(y(z)) for any operator A € G*.

Conversely, if h is in addition convez, and differentiable at y(z), then h oy is differ-
entiable at x and, furthermore, ¥v(V(h o v)(z)) = Vh(y(z)).
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Proof. For any operator A in G* we have z = Ay(z), and for all points y in Y’

(hov)(Ay) = h(v(Ay)) = h(7(y)) = h(y),

since h is Gy-invariant. The left-hand side is differentiable at y = (), by the chain
rule, hence so is the right-hand side with Vh(y(z)) = A*V(h o v)(x). The first part
of the result follows.

On the other hand, if h is also convex, and differentiable at vy(z), then dh(y(z)) =
{Vh(y(x))} by [32, Thm. 25.1]. Now by Theorem 4.5 (subdifferentials), if an element
w of X belongs to d(h o ¥)(z) then v(w) € Oh(y(z)), and so y(w) = Vh(y(z)). In
particular, since + is norm preserving (Theorem 2.4), any such subgradient has norm
IVA(y(z))]- Since d(h o v)(z) is a convex set and || - || is a strict norm, d(h o v)(x)
has at most one element. However, it is nonempty by the chain rule (4.2). Thus it
is a singleton, whence h o« is differentiable at z by [32, Thm. 25.1], and the result
follows. O

We say that a proper, closed, convex function h : Y — (—o0,+00] is essentially
smooth if it is differentiable at any point where it has a subgradient, and is essentially
strictly convez if it is strictly convex on any convex set on which the subdifferential
is everywhere nonempty. These two concepts are dual to each other: h is essentially
smooth if and only if its conjugate is essentially strictly convex and vice versa [32,
Thm. 26.3).

COROLLARY 6.2 (essential smoothness and strict convexity). Suppose that the
function h :' Y — (—o0,+0] is Gy -invariant, closed, proper, and convex. Then the
function h o~ is essentially smooth (respectively, essentially strictly convez) if and
only if h is essentially smooth (respectively, essentially strictly convez).

Proof. Suppose first that h o 7 is essentially smooth. If h has a subgradient
v € Y at the point y € Y then by Corollary 4.6 we have y(v) € Oh(y(y)). Since the
identity operator lies in G*® it follows from the subdifferential formula (4.2) that
~v(v) € 8(h o ¥)(v(y)). Thus because h o+ is essentially smooth, it is differentiable
at v(y), and hence by Theorem 6.1 (differentiability), h is differentiable at v(y), and
therefore also at y by Lemma 3.2. Thus A must be essentially smooth.

Conversely, suppose that h is essentially smooth. If h oy has a subgradient at a
point z in X then the subdifferential formula (4.2) implies that Oh(y(z)) is nonempty.
Hence h is differentiable at y(x), and therefore h o+ is differentiable at = by Theorem
6.1 (differentiability). Thus h oy is essentially smooth.

The essentially strictly convex case follows by taking conjugates. 0

The following result is another example of the pattern (5.1) that we observed
in the last section: #(y~1(C)) = vy 1(#(C)). If the subset C of Y is closed and
convex then we say that a point y in C is exposed if there is an element z of Y with
(2,y) > (z,u) for all points u in C \ {y}. Equivalently, a point y in C is exposed if
and only if it lies in the range of V6§ [32, Cor. 25.1.3]. We denote the set of exposed
points by exp(C). A generalization of this result to exposed faces appears in [21].

COROLLARY 6.3 (exposed points). Suppose that the subset C of Y is Gy -invariant,
closed, and conver. Then

exp(771(C)) = v~ H{exp(C)).

Proof. If the point z in X satisfies y(z) € exp(C') then for some element v of Y we
have v(z) = Vé%(v), and by Corollary 4.7 it follows that vy(z) = V5 (v(v)). Notice
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that 6,-1(¢) = 8¢ 0, and hence by Theorem 4.4 (conjugacy) we have 63-1(c) = 607

Choose an operator A in G%, so that x = Avy(z), and observe that A € G4 Thus,
applying the chain rule (6.1),

V&-1(0)(A7(v)) = V(8¢ 0 7)(Ar(v)) = AVE5(v(v) = Ay(z) = =,

so that = € exp(y~1(C)).

Conversely, if z € exp(y~!(C)) then for some element w of X we have z =
V& 10y (w) = V(6&07)(w). It follows by Theorem 6.1 (differentiability) that v(z) =
V6§ (v(w)), whence y(z) € exp(C). O

To end this section we examine our results for the special case of invariant norms.

If p is a norm on Y then we denote the dual norm on Y by pP, where for an element
zofY,

pP(2) = max{(y,2) |y €Y, p(y) = 1}.

We relate the dualizing operation for norms with conjugacy by the following standard
and straightforward trick.

LEMMA 6.4. Ifp is a norm onY then (3p(")?)* = :(pP("))2.

A norm p on Y is smooth if it is differentiable except at the origin. Equivalently,
the proper, closed, convex function p?/2 is essentially smooth. Furthermore, p is
strict if p(u + v) < 2 for all distinct points v and v in the unit ball for p, namely,
{y € Y | p(y) < 1}. Equivalently, p?/2 is essentially strictly convex. A point y in Y is
a smooth point of the unit ball if p(y) = 1 and p is differentiable at y.

THEOREM 6.5 (norms). The G-invariant norms on X are those functions of the
form po~y, where p is a Gy -invariant norm on Y. The dual of such a norm is pP o-~y.
The norm po+y is smooth (respectively, strict) if and only if p is smooth (respectively,
strict). A point x in X is an extreme (respectively, exposed, smooth) point of the unit
ball for po~ if and only if y(x) is an extreme (respectively, exposed, smooth) point of
the unit ball for p.

Proof. By Proposition 4.2, the G-invariant functions on X are those of the form
po-y with p a Gy-invariant function on Y. If po+y is actually a norm on X then pis a
norm on Y, since by Gy-invariance, p agrees with poy on Y. Conversely, suppose that
p is a Gy-invariant norm. Then certainly (p o v)(z) = p(v(z)) > 0 for all points z in
X with equality if and only if y(z) = 0 or, equivalently, z = 0. Positive homogeneity
of po-~y follows from that of v (Theorem 2.4). Finally, po+ is convex by Theorem 4.3,
and hence is a norm.

By Lemma 6.4 we have

((Pov)P)?/2=((po)?/2)* = (p*/207)*
= (p?/2)* oy = (pP)?/20v = (p” 07)?/2,

using Theorem 4.4 (conjugacy). Hence (po~)? = p? o+. The norm p o v is smooth
if and only if (p o 7)?/2 = p?/2 o v is essentially smooth, which by Corollary 6.2 is
equivalent to the essential smoothness of p?/2, and hence to the smoothness of p. The
strict case is analogous.

The last statement follows by applying Theorem 5.5 (extreme points) and Corol-
lary 6.3 (exposed points) to the unit ball for p, and by applying Theorem 6.1 (differ-
entiability) to p. o
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7. Examples. The idea of a normal decomposition system that we introduced
in Definition 2.1 works well as an abstract mechanism. Its real significance, however,
is in the variety of examples that it models. In this section we discuss these examples.
They fall into two distinct categories: “discrete” examples, where the group G is a
reflection group (in fact a “Weyl group”) and the range of the map -~y has full dimension
in the underlying inner product space X, and “continuous” examples, where v maps
X into a strictly smaller space Y. Both categories are important for our purposes.
Further discussion of the role of Weyl groups in this construction may be found in
[22].

First we explain some notation for various sets of matrices. The trace of a matrix
w is denoted by tr (w) and the Hermitian conjugate by w*.

O,: The (multiplicative) group of n x n real orthogonal matrices.
Un,: The (multiplicative) group of n X n complex unitary
matrices.
Prn: The (multiplicative) group of n X n permutation matrices.
PE: The (multiplicative) group of n x n “signed” permutation
matrices (having exactly one nonzero entry, 1, in each row
and each column.
Sn:  The inner product space of n x n real symmetric matrices
with (w,v) = tr (wv).
H,: The (real) inner product space of n X n complex Hermitian
matrices with (w,v) = tr (wv).
M n(R):  The inner product space of m x n real matrices
with (w,v) = tr (wTv).
M, n(C):  The (real) inner product space of m x n complex matrices
with (w,v) = Retr (w*v).

For a matrix w in S, or H,, the vector AM(w) € R™ has components the eigenvalues
of w, arranged in nonincreasing order. For a matrix w in My, »(R) or My, »(C), the
vector o(w) € RY (where | = min{m,n}) has components the singular values of w,
arranged in nonincreasing order.

Recall that a normal decomposition system consists of a real inner product space
X, a subgroup G of the orthogonal group on X, O(X), and a map v : X — X
satisfying Definition 2.1.

EXAMPLE 7.1 (reordering on R™). We take X = R"™ (with the standard inner
product), G = P, (considered as a subgroup of O(R™) = O,, in the natural way),
and y(z) = Z, where the vector Z € R™ has components {z1,zs,...,%,} arranged in
nonincreasing order. The conditions in Definition 2.1 are immediate except for (c),
which states that

(7.1) (x,2) < (Z,z) for all x and z in R™

(with equality if and only if x = AZ and 2z = AZ for some permutation matrix A).
Inequality (7.1) is classical; see, for example, [14, Thm. 368] and [18, Lem. 2.1}.

The range of v is R = {x € R" | (z;) nonincreasing}. The dual cone is straight-
forward to compute. In fact, a vector z lies in (R2)* if and only if

J
Z%‘ZO forj=1,2,...,n
1
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with equality for j = n. We say that a real function f on RY is Schur convez if
f(x) > f(w) whenever z and w lie in R2 with z — w in (R2)*. Theorem 3.3 now
shows that any symmetric, convex function is Schur convex [2_3, Prop. 3.C.2].

EXAMPLE 7.2 (absolute reordering on R™). We take X = R", G = P, and
~v(z) = |z| (where |z| = (|z1], |Z2],. .., |zn|). Thus

(m)l = max{|a:1|, |:I:2|, IR |xn|}’

and so forth. The conditions in Definition 2.1 are easy to check: (c) follows from
inequality (7.1).

Diagonal matrices will play an important role in our continuous examples. We
denote the smaller of the two dimensions m and n by | = min{m,n}, and then we
define a map Diag : R} — M,, »,(C) by

. o (673 ifi= ja
(Diaga);; = { 0 otherwise.

EXAMPLE 7.3 (symmetric matrices). We take X = S, and G to be the group
of orthogonal similarity transformations x — uT2u for symmetric matrices x and
orthogonal matrices u. Finally, we define vy(z) = Diag A(z).

More formally, define the adjoint representation of O, on S,, which we write
Ad : O, — O(S,), by (Ad(u))x = uT zu for orthogonal u and symmetric z. Then G is
just the range of this representation, which has kernel {£id}, and so G is isomorphic
to On/{=id}.

Let us check the conditions of Definition 2.1. Condition (a), the G-invariance of
v, amounts to the invariance of the set of eigenvalues under orthogonal similarity.
Condition (b), the decomposition axiom, follows from the spectral decomposition.
Condition (c), the angle contraction axiom, becomes the following inequality:

tr (wz) < (A(w), A(z)) for all w,z € Sy,

(with equality if and only if there exists an orthogonal matrix u satisfying x =
uT (Diag A(z))u and w = uT'(Diag A(w))u). The inequality appears in [25], for exam-
ple, and the conditions for equality may be found in [35], using algebraic techniques.
A variational proof is given in [18]. The result is closely connected with earlier work
of von Neumann—see Example 7.5.

The natural choice for the subspace Y is the space of diagonal matrices Diag R™.
A standard calculation shows that an orthogonal u has Ad(u) in the stabilizer Gy if
and only if u € PE. However, since

(Ad(Diag (£1,+£1,...,+1)))|y =id,

we see that the group Gy acting on the space Y of diagonal matrices is simply the
permutation group P, acting on the diagonal entries.

Notice also that for any vector o in R™ we have «(Diaga) = Diaga. Hence the
subsystem (Y, Gy, ) is a normal decomposition system isomorphic to the “reordering”
system described in Example 7.1. In particular, Assumption 4.1 holds, so that all of
the machinery that we have developed can be applied. We list some consequences in
the final section.

EXAMPLE 7.4 (Hermitian matrices). The complex analogue of the previous ex-
ample is very similar (and there is a quaternionic analogue). We take X = H,,, which
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we consider a real inner product space (since we are primarily concerned with prop-
erties of real vector spaces, such as convexity). The group G now consists of unitary
similarity transformations z — w*zu for Hermitian z and unitary u and, as before
~(z) = Diag A\(z).

Formally, we define the adjoint representation of U,, on H,, written Ad : U, —
O(H,), by (Ad(u))(z) = u*zu for unitary v and Hermitian z. Then G is just the
range of this representation, which has kernel Tid, where T is the circle group {7 €
C||7r] = 1}. Thus G is isomorphic to U,/Tid. Checking Definition 2.1 is entirely
analogous to the previous example.

An aside is illustrative at this point. If we choose the subspace Y as S, then the
stabilizer Gy acts on Y exactly as AdO,,. Thus in this case the subsystem (Y, Gy,~)
is a normal decomposition system isomorphic to the previous “symmetric matrix”
Example 7.3. In particular, Assumption 4.1 holds.

The natural choice, however, is again to choose Y as the subspace of diagonal
matrices Diag R™. Then it is once again straightforward to identify the action of
the stabilizer Gy on this subspace with the permutation group P, acting on the
diagonal entries. Thus the subsystem (Y, Gy,) is a normal decomposition system
isomorphic to the “reordering” system, Example 7.1. Again Assumption 4.1 holds, so
our machinery applies.

EXAMPLE 7.5 (real matrices). We take X = M, »(R) and G to be the group of
transformations z +— u”zv for orthogonal matrices u in O, and v in O,,. Then we
define y(z) = Diago(z).

Formally, we define a representation of O, x O, on M, ,(R), written Ac :
Om X On — O(Myn(R)), by (Ac(u,v))z = uTzv. Then G is the range of this
representation: since the kernel of Ac is just {£(id,id)}, the group G is isomorphic to
(Om X On)/{i(ida id)}'

Checking Definition 2.1, G-invariance amounts to the invariance of the set of
singular values under the transformations we consider. Condition (b), the decompo-
sition axiom, follows from the singular value decomposition, and condition (c), the
angle contraction axiom, becomes “von Neumann’s lemma” [27]:

(7.2) tr (wlz) < (o(w),o(x)), for all w,z € My, n(R)

(with equality if and only if w and z have simultaneous singular value decompositions
w = uT(Diago(w))v and = = u? (Diago(z))v for some u in O, and v in O,)—see
the discussion in [7].

The natural choice for Y is the space of diagonal matrices DiagR' (where | =
min{m,n}). A little thought then identifies the action of the stabilizer Gy on the
space Y with the group of transformations Diag () + Diag (pa) for a vector o in R’
and a matrix p in ’Pli. To see this, note that any such transformation clearly belongs
to Gy, whereas on the other hand a transformation in Gy must preserve diagonality
and the singular values. o

Notice also that y(Diaga) = |a] for any vector o in R'. Thus the subsystem
(Y,Gy,7) is a normal decomposition system isomorphic to the “absolute reordering”
system described in Example 7.2. Since Assumption 4.1 holds, our machinery applies.
Some consequences appear in the final section.

Two special cases deserve mention. The case m = 1 gives exactly the example
discussed after Assumption 4.1. The even more special case m = n = 1 gives our very
first example of a normal decomposition system, discussed after Definition 2.1.

EXAMPLE 7.6 (complex matrices). The complex analogue of the previous example
is very similar (and again there is a quaternionic analogue). We take X = M,, ,(C)
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and G to be the group of transformations  +— u*zv for a matrix z in My, ,(C) and
unitary matrices v in Uy, and v in U,. Once again we define y(z) = Diago(x).

Formally, we define a representation of Uy, X Up, on My, (C), written Ac : Uy, X
Un, — O(My, »(C)), by (Ac(u,v))x = u*zv. Then G is the range of this representation.
Since the kernel of Ac is easily checked to be T(id, id) (where T is once again the circle
group), we see that the group G is isomorphic to (U, x U, )/Tid. Checking Definition
2.1 is analogous to the previous example. In fact, if we choose Y = M,, ,(R) then
the subsystem (Y, Gy, ) is isomorphic to the previous example.

If we make the natural choice for Y, namely, the space of real diagonal matrices
DiagR!, then a similar argument to the previous example identifies the action of the
stabilizer Gy on the space Y as the group of transformations Diag () — Diag (pa)
for a vector o in R! and a matrix p in Pli. Thus just as in the previous example, the
subsystem (Y, Gy, <) is isomorphic to the “absolute reordering” system, Example 7.2.
Again, all our machinery applies.

8. Consequences for matrix functions. In this concluding section we con-
sider how our results can be applied to the examples in the previous section to derive
a variety of interesting results in the literature. We begin with the case of symmet-
ric matrices, Example 7.3. The complex analogue is entirely similar, and we do not
pursue it.

Symmetric matrices. A function h : R® — [—o00,400] is symmetric if for
any vector o in R™ the value h(a) is unchanged by permuting the components of
a—using the notation of Example 7.1, h(a) = h(&). Similarly, a subset C of R" is
symmetric when o € C if and only if & € C. A function on the space of symmetric
matrices f : S, — [—00,400] is weakly orthogonally invariant if f(uzu) = f(x) for
any matrices z in S, and u in O,. Such functions have also been called spectral [13].:
Analogously, a subset D of S, is weakly orthogonally invariant if uT zu € D whenever
x € D (for orthogonal u).

The following result follows immediately by applying our machinery to Example
7.3. We make no attempt to be exhaustive.

THEOREM 8.1 (convex spectral functions). Weakly orthogonally invariant ex-
tended real-valued functions on S, are exactly those functions of the form ho A for
a symmetric function h : R™ — (—o00,400]. Such a function on S, is convex (re-
spectively, closed, essentially strictly convez, essentially smooth) if and only if h is
convex (respectively, closed, essentially strictly convez, essentially smooth). For any
such symmetric function h we have

(8.1) (hoX)*=h"oA.

Suppose further that some symmetric matriz x satisfies A(z) € domh. Then the
symmetric matriz w is a subgradient of ho\ at x if and only if A(w) is a subgradient of
h at AM(z) and x and w have simultaneous spectral decompositions x = u” (Diag A(z))u
and w = uT (Diag A(w))u for some orthogonal matriz u. In fact, the following “chain

rule” holds:
d(hoN)(z) = {uT (Diag p)u | u € Op, uT (DiagA(z))u = z, u € Oh(A(z))}.

If h is convez then ho )\ is differentiable at x if and only if h is differentiable at A(z).
EXAMPLE 8.2 (the log barrier). Let us define a symmetric function h : R® —
(—OO, +OO] by

+00 otherwise.

h(e) = { =Y loga; ifa>0,
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Then h is a closed, convex function, essentially smooth, and essentially strictly convex,
with conjugate

vy o= log(—ps) if p <0,
h* () = { +00 otherwise.

It follows that the matrix function ho X : S, — (—o00, +00] defined by

_ | —log(detz) if z is positive definite,
(hoA)(z) = { +00 otherwise

is also closed, convex, essentially smooth, and essentially strictly convex with conju-
gate

«y _ J —n —log(det(—w)) if w is negative definite,
(hoX)*(w) = { +00 otherwise.

It is easy to check, using the chain rule, that for a positive-definite symmetric matrix
z,

V(hoA)(zx) = —z71.

The convexity part of Theorem 8.1 was essentially first proved in [6]. It was
rediscovered in [3]. A characterization of convexity in the differentiable case was
proved in [13] via Schur convexity, and the closed case was proved via the conjugacy
formula (8.1) in [18]. The latter paper also contains the remainder of Theorem 8.1.
A proof appears in [36] that h o X is analytic at z if and only if h is analytic at
A(z). Somewhat related results appear in [20]. Numerous formulae for subgradients
of specific matrix functions appear, for example, in [29, 30, 15, 16]. The chain rule in
Theorem 8.1 provides a simple unified approach to these.

THEOREM 8.3 (spectral convex sets). Weakly orthogonally invariant subsets of
Sy, are ezactly those sets of the form A~1(C) for symmetric subsets C of R™. If
the symmetric matriz x has A\(z) in the symmetric set C then a symmetric matriz
w lies in the normal cone N(z|A\=1(C)) if and only if N(w) lies in N(\(z)|C) with
z and w having simultaneous spectral decompositions, x = uT (Diag A\(z))u and w =
uT (Diag M(w))u for some orthogonal matriz u. In fact,

N(z|x~'(C))
= {uT (Diag p)u | u € O,, uT(DiagA(z))u =z, u € N(\(z)|C)}.
Furthermore,
(AHe) T =x7He),
(ATHO))e = 27H(Co),
int (A"Y(C)) = A"Y(int (C)), and
Diag C = A~!(C) N DiagR™.

The set A=1(C) is convex (respectively, closed) if and only if C is convex (respectively,
closed). If C is convex then

i (A7H0)) = A7 (11 (0)),
aff (A"1(C)) = A" (aff (C)), and
ext (A71(C)) = A" (ext (C)),
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and if C is in addition closed then

exp (A71(C)) = A~ (exp (O)).

EXAMPLE 8.4 (the simplex). Let us define a symmetric subset of R™ by

a >0, Xn:ai::l}.

i=1

C={a€R”

Then C is a closed, convex set with the standard unit vectors as extreme (in fact,
exposed) points. We deduce that the set of symmetric matrices

A7Y(C) = {z € S, | z positive semidefinite, tr (z) = 1}

is closed and convex with extreme (exposed) points yy? for unit column vectors y in
R"™.

The fact that the set A™}(C) is convex if and only if C is convex, for a symmetric
closed set C, was proved in [11].

Unitarily invariant norms. A function h : R} — [~o00,+00] is absolutely
symmetric if the value h(a) at a vector o in R' is independent of the _order and
signs of the components «;: in the notation of Example 7.2, h(a) = h(|e|) for all
a. In particular, if such a function is also a norm then it is called a symmetric
gauge function. A matrix function f : My, n(C) — [—o00, +00] is (strongly) unitarily
invariant if f(u*av) = f(z) for any matrix z in M,, ,(C) and unitary matrices u and
.

The following result is a consequence of applying our machinery to Example 7.6.
The real analogue is entirely similar. For brevity, we restrict ourselves to the norm
case.

THEOREM 8.5 (unitarily invariant norms). Unitarily invariant norms on My, »(C)
are exactly those functions of the form ho o for symmetric gauge functions h on R!
(where | = min{m,n}). In this case the dual norm is given by

(8.2) (poo)? =pPoo,

p oo is smooth (respectively, strict) if and only if p is smooth (respectively, strict),
and a matriz x is an extreme (respectively, exposed, smooth) point of the unit ball for
poo if and only if o(x) is an extreme (respectively, exposed, smooth) point of the
unit ball for p. Furthermore, a matriz w is a subgradient of po o at x if and only if
o(w) is a subgradient of p at o(x) with x and w having simultaneous singular value
decompositions x = u*(Diago(z))v and w = u*(Diago(w))v for unitary matrices u
and v. In fact,

d(poo)(z)
= {u"(Diag p)v | u € Up, v € Uy, u*(Diago(z))v =z, pu € Op(o(z))}.

The classical examples are the symmetric gauge function || - ||, (for 1 < p < 00),
which gives the “Schatten p-norm,” and the functions

k

pla) = (al)i (for k=1,2,...,0),

i=1
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which give the “Ky Fan k-norms.”

The fundamental characterization of unitarily invariant norms is due to von Neu-
mann [27). He proved the result in an analogous fashion to our conjugacy argument
following Theorem 4.4 by proving the duality formula (8.2) via his lemma (7.2). Some
interesting analogous results appear in [4]. The characterization of extreme, exposed,
and smooth points was proved in [2]; see also [40, 41, 8, 7, 9]. Versions of the subdif-
ferential formula appear in [38, 39).
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