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DERIVATIVES OF SPECTRAL FUNCTIONS

A.S. LEWIS

A spectral function of a Hermitian matrix X is a function which depends only on the
eigenvalues of X, A(X) = A,(X) = - = A(X), and hence may be written
FALX), Ay(X), ..., A,(X)) for some symmetric function f. Such functions appear in a wide
variety of matrix optimization problems. We give a simple proof that this spectral function is
differentiable at X if and only if the function f is differentiable at the vector A(X), and we
give a concise formula for the derivative. We then apply this formula to deduce an analogous
expression for the Clarke generalized gradient of the spectral function. A similar result holds
for real symmetric matrices.

1. Introduction and netation. Optimization problems involving a symmetric ma-
trix variable, X say, frequently involve symmetric functions of the eigenvalues of X in
the objective or constraints. Examples include the maximum eigenvalue of X, or
log(det X) (for positive definite X), or eigenvalue constraints such as positive
semidefiniteness. The aim of this paper is to provide a unified, concise and construc-
tive approach to the calculus of such matrix functions. The convex case was covered
in Lewis (1996): here we use an independent approach to develop the nonconvex
case.

Since the seminal paper of Cullum, Donath and Wolfe (1975), the study of matrix
optimization problems (and in particular eigenvalue optimization) has become ex-
tremely prominent. A typical constraint is positive semidefiniteness (see for example
Fletcher 1985, Shapiro 1985, Wolkowicz 1993, Yang and Vanderbei 1993), and with
the modern trend towards interior point methods, it has become popular to incorpo-
rate this constraint by a barrier penalty function (involving the eigenvalues), as in
Nesterov and Nemirovsky (1994), Alizadeh (1992) and Jarre (1993). A related objec-
tive function is used in Fletcher (1991) to give an elegant variational characterization
of certain quasi-Newton formulae (see also Wolkowicz 1993). One very common
objective function is the maximum eigenvalue (Overton 1988, 1992; Rend! and
Wolkowicz 1992; Jarre 1993), or more generally, sums of the largest eigenvalues
(Overton and Womersley 1993, Hiriart-Urruty and Ye 1995).

A key step in algorithm development is the investigation of sensitivity results, and
hence differentiability questions about the eigenvalues. The standard reference on
the effect on eigenvalues of perturbations to a matrix is Kato (1982), which for the
most part deals with matrices parametrized by a scalar. By contrast, what are needed
in this context are sensitivity results with respect to matrix perturbations: the two
recent papers Overton and Womersley (1993) and Hiriart-Urruty and Ye (1995)
undertake detailed constructive studies of this question. More generally, we may wish
to construct generalized gradients: Burke and Overton (1993) is an interesting
example, examining the much more difficult question of eigenvalue analysis for
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DERIVATIVES OF SPECTRAL FUNCTIONS 577

non-Hermitian matrices. For recent, second-order approaches, see Shapiro and Fan
(1995) and Overton and Womersley (1995) and the references therein. Interesting
applications include Polak and Wardi (1983) and Watson (1991).

Let %, denote the real vector space of n X n Hermitian matrices, endowed with
the trace inner product, (X,Y) = tr XY, and let %, denote the n X n unitary
matrices. A real-valued function F defined on a subset of %, is unitarily invariant if
F(U*XU) = F(X) for any unitary U. Such functions are called spectral functions in
Friedland (1981), since clearly F(X) depends only on the set of eigenvalues of X,
denoted A(X) > A(X) = -+ > A, (X). (This notation also permits us to consider
the function A: % — R")

Associated with any spectral function F is a symmetric, real-valued function f of n
real variables (where by symmetric we mean that f(u) = f(Pu) for all n Xn
permutation matrices P). Specifically, we define f(u) = F(Diag u), where Diag u is
the diagonal matrix with diagonal u,, u,,..., u,. Thus we see that spectral functions
F(X) are exactly those functions of the form f(A(X)) for symmetric functions f.

We begin by describing a straightforward approach to answering the question:
When is the spectral function f(A(-)) = (fo A)-) differentiable at the Hermitian
matrix X ? We prove the following result. (A set Q0 in R" is symmetric if PQ = Q for
all n X n permutation matrices P.)

THEOREM 1.1. Let the set ) in R" be open and symmetric, and suppose that the
function f: Q — R is symmetric. Then the spectral function f(X(*)) is differentiable at the
matrix X if and only if f is differentiable at the vector N X). In this case the gradient of
feAdatXis

(1.2) (fe1)'(X) = U*(Diag(f'(AM(X))))U,

for any unitary matrix U satisfying X = U*(Diag( M X)))U.

It is easy to see that f must be differentiable at A(X) whenever fo A is differen-
tiable at X, since we can write

f(u) =f(MU*(Diagp)U)),

(with U as in the theorem), and apply the chain rule at u = A(X). Furthermore, the
converse is also straightforward at matrices X with distinct eigenvalues, since then
the map A: %, — R” is differentiable at X and we can easily apply the chain rule to
deduce formula (1.2). The interesting case is when some of the eigenvalues of X
coalesce: remarkably the spectral function f(A(-)) remains differentiable at X even
though the map A is not. The technique revolves around first establishing the result
for a diagonal matrix X, and then extending to the general case by a unitary similarity
transformation. In this paper we will be concerned only with first-order results. By
contrast, in Tsing, Fan and Verriest (1994) it is shown that fo A is analytic at X if
and only if f is analytic at A(X), in which case (1.2) holds.

The situation where the function f is convex is considered in rather more
generality and with an entirely different approach in Lewis (1996). The following

analogous result is Theorem 3.2 in Lewis (1996). In this result, ¢ denotes the convex
subdifferential.

THEOREM 1.3.  Suppose that the function f: R" — (—oo,+ ] is symmetric, convex
and lower semicontinuous. Then the Hermitian matrix Y lies in (f o AXX) if and only if
NY) lies in df(MX)) and there exists a unitary U with X = U *(Diag MX DU and
Y = U*(Diag MY))U.
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578 A. S. LEWIS

In fact when f is convex, and differentiable at the vector A(X) (lying in the interior
of its domain), Theorem 1.3 reduces to formula (1.2) (see Lewis 1996).
A nice example is to take the symmetric (convex) function

f(w)y=—Xlogu, onQ={ulp,mu,...,um, >0}
1

which corresponds to the spectral function
F(X) =f(MX)) = ~log(det X),

defined on the set of positive definite matrices X. Formula (1.2) then gives F'(X) =
—X~! (which may also be obtained directly).

Our ultimate aim in this paper is to unify Theorems 1.1 and 1.3 by considering the
Clarke generalized gradient. For an open set ) in R” and a function f: ) — R, we
say that f is locally Lipschitz around a point w in () if there is a real constant k with
|f(») — f(y)] < kllv — vl for all points v and vy close to w. If the set () is symmetric
and the function f is symmetric and locally Lipschitz around a point w in ) then the
spectral function fo A is locally Lipschitz around the matrix Diagu, because each
component A,(-) is locally Lipschitz throughout %, (see the next section).

The directional derivative of Clarke (1983) is defined for a direction p in R" by

fo( w P) = limsup f(V+tpt) —-—f(y) ,

vou,tl0

and we say that a vector vy lies in the Clarke generalized gradient of(p) if {y, p) <
fo(u; p) for all p in R". We make analogous definitions for locally Lipschitz
functions on %Z,.

The set df(u) is compact, convex and nonempty. It coincides with the convex
subdifferential when f is finite and convex on the open, convex set Q, and it is
exactly {f'(w)} if f is continuously differentiable (though not necessarily if f” is not
continuous at u): see Clarke (1983) for these and related results. Our main result, the
following theorem, thus goes a long way toward unifying Theorems 1.1 and 1.3 (in a
fashion that we will make more precise at the end of the paper). Like Theorem 1.1
(which is used in the proof) the result is first established in the diagonal case, and is

then extended by unitary similarity.

THEOREM 1.4. Let the set Q in R" be open and symmetric, and suppose that the
Hermitian matrix X has MX) € Q. Suppose that the function f: Q — R is symmetric,
and is locally Lipschitz around the point XX). Then

5(f+ N)(X) = {U*(Diag v)Uly € 3f(N(X)), U € %,, U*(Diag A(X))U = X}.

We conclude by observing that the same approach applies to real symmetric
matrices X, simply substituting “real orthogonal” for “unitary” wherever appropriate.

2. The differentiable case. For each integer m = 1,2,..., n, define a function
o,: % — Rby g,(X) = LM (X)), the sum of the m largest eigenvalues of the matrix
X. It is a well-known result of Fan (1949) that g, is convex (see also Horn and
Johnson 1985). Our development revolves around the following known fact. We

n

denote the standard basis in R” by el, e?,...,e"
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THEOREM 2.1. For real numbers p, = p, = *** = pby, if Moy > M4, for some m
then the function o, is differentiable at Diag u with gradient

m
o) (Diag u) = Diag ) ¢'.
i-1

(The condition holds vacuously for m = n.)

PrOOF. See Corollary 3.10 in Hiriart-Urruty and Ye (1995), or the proof of
Corollary 3.10 in Lewis (1996), or formula (3.28) in Overton and Womersley (1993)
for example. ©

Given two vectors a and u in R”, we say that u block-refines a if a, =«
whenever u, = u;.

LEMMA 2.2. If w block-refines a in R", and p, = p, = -+ = u,, then the function
a\(°) is differentiable at Diag p with (a"))'(Diag p) = Diag a.

PrROOF. Suppose that

By = My = 0 = M > Mg e T T T My 2 Mg T T
Since u block-refines «, there exist reals B, B,,..., 8, with
a, = B; whenever k]_1 <isk], j=12,...,r,

where we set k, = 0. Defining o, = 0, we obtain
r k] r
aNX)= LB ¥ MX)= L B(a(X) -0 (X))
=1 1=k, ;+1 j=1

Now applying Theorem 2.1 gives

k k

r ] 7—1
("))’ (Diag n) = X B,|Diag }_ ¢ — Diag ). ¢’
j=1 i=1 i=1
r k]
=Y B, Diag Y e = Diag a,
=1 i=k,_ +1

as required. O
Henceforth we shall assume that the set () is open and symmetric in R” and that
the function f: () — R is symmetric.

LemMMA 2.3. If f is differentiable at a point p in Q satisfying pu, = p, = =+ =,
then p block-refines f'( ). Consequently the function f'( wYA(-) is differentiable at the
martrix Diag u, with (f'(w)2)'(Diag w) = Diag(f'( w)).

PROOF. Suppose that u, = u, for some distinct indices i and j. Let P be the
matrix of the permutation which transposes the ith and jth components. Since the
function f is symmetric, f(y) = f(Py) for all points y in the set {2, so applying the
chain rule at y=pu gives f'(u)=PTf'(Pu). Thus Pf'(u)=f'(u), so that
(f'Cw)), = (f'(w)),. The last statement follows from the previous lemma. 0o

Since each component of the function A(-) can be written as a difference of two
finite, convex functions, A,(-) = o,(:) — a,_,(*), it follows that A is locally Lipschitz
(see Clarke 1983). We now prove the key result.
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580 A. S. LEWIS

THEOREM 2.4. If the symmetric function f is differentiable at a point u in Q c R"
satisfying u, = py = -+ = m,, then the spectral function f(X()) is differentiable at the
matrix Diag u with

(foA)'(Diag p) = Diag(f'(w)).

PrROOF. Given any real € > 0, since f is differentiable at u we have

IF(v) = F(r) = F () (v - wll < elly - ul,

for points y sufficiently close to u. Since A is locally Lipschitz around Diag u, there is
a real constant K with

IA(Y + Diag p) — ul < K|Y

for all Hermitian Y sufficiently small. Hence

|f(MY + Diag p)) = f(u) = f' ()" (MY + Diag u) — p)|
< €llA(Y + Diag p) — ull < KelYl,

for all small Y.
We also know from Lemma 2.3 that

|f'(w)"MY + Diag ) — f'( )" — tr(Y Diag(f'( n)))! < ell¥,

for all small Y. Now adding the two previous inequalities and using the triangle
inequality gives

|F(A(Y + Diag w)) — f( ) — tr(¥ Diag(f'(u)))| < (K + DellY

for all small Y, which completes the proof. o

PrOOF OF THEOREM 1.1. As we observed, one direction is easy, so suppose that f
is differentiable at the vector A(X), and choose any unitary matrix U with X =
U*(Diag(MX)U. Now clearly for all Hermitian Z close to X,

(f e M(UZU*) = (f> M(Z).
Applying Theorem 2.4 and the chain rule at Z = X gives
(feN)'(X) = U*((f= 1) (UXU*))U
= U*((f°2)'(Diag(A(X))))U
= U*(Diag( f'(AM(X))))U,

since the adjoint of the linear map X — UXU* is just W — U*WU. ©

COROLLARY 2.5. Theorem 2.4 holds without the assumption that p, > u, = -+ >
-

PrROOF. Let T be the vector obtained by permuting the components of the vector
u into nonincreasing order, and pick a permutation matrix P with Pu = 1. Since f is
symmetric, we know that f(Pv) = f(v) for all points v close to w, so applying the
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DERIVATIVES OF SPECTRAL FUNCTIONS 581

chain rule at v = u gives f'(u) = PTf'(Pu), and hence f'() = Pf'( ). Now if we
set X = Diagyu then A(X) = 7. Observe that P(Diagu)P” = Diag(Pu), so we can
choose U = P in Theorem 1.1, and deduce that

(f°A)'(Diag p) = P"(Diag(f'(R))) P = Diag(P'f'()) = Diag(f'( 1)),

as required. O
As an example, let the symmetric function f: R” — R be defined by

f( i) = the mth largest element of { py, gy, ..., iy}
This function is differentiable at any point p for which

My = Mo 2 2 iy > My > Moy 41 = M 12 Z 2 My,

with f'(u) = e™. Now Theorem 1.1 states that the mth largest eigenvalue A,() is
differentiable at the Hermitian matrix X if and only if the eigenvalue A, (X) has
multiplicity one, in which case the gradient A, (X) = uu* for any corresponding
normalized eigenvector u.

3. The locally Lipschitz case. Throughout this section we shall suppose that the
set ) in R” is symmetric and open, that the point u in R” satisfies uy = pu, = -+ =
i,,, and that the symmetric function f: 0 — R is locally Lipschitz around pu.

For a Hermitian matrix Z, the vector diagZ is the diagonal of Z. The map diag:
#, - R™ may be thought of as the adjoint of the map Diag: R" —%,. For square

matrices A;, A,,..., A,, we write the block-diagonal matrix
A0 - 0

0 A4,
. . = Diag(A,, 4,,..., 4,).
0 0 - A

r

We denote the set of n X n (real) doubly-stochastic matrices by .%,.
The following result is elementary: it describes how the Clarke directional deriva-
tive defined in the introduction is affected by unitary similarity transformations.

LEMMA 3.1.  For any unitary matrix U and any Hermitian matrices X and Z we have
(fe M(X;Z) = (fe A(U*XU, U*ZU).

PROOF.

(Fo 0 (X;2) = limsup LA H12)) ZJ(AY))
Y-oX,t10

sy JAU +2)V)) — F(AUYD))
Y-oX,t]0 t

fMW +tUZU)) ~ f(MW))
t

= limsup
W—U*XU,t 10

= (fe )(U*XU;U*ZU),

as required. O
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582 A. S. LEWIS
We define a compact set of n X n matrices,

(3.2) #, = {U € %,|JU*(Diag u)U = Diag u}.
THEOREM 3.3.  For any Hermitian matrix Z we have

(3.4) (f°A)°(Diag p; Z) = max{f°( u; diag(UZU*))IU € 7}

PROOF. From page 64 in Clarke (1983), there exists a sequence of Hermitian
X, — Diagu with fo A differentiable at each X, and

((feN)'(X,),Z) - (f> 1)(Dieg u; Z),

and notice that A(X,) — u. For each r=1,2,..., there exists a unitary U, with
U*(Diag(MX,)U, = X,, and so by Theorem 1.1,

(f°A)'(X,) = U*(Diag(f'(MX,))))U,.
Since %, is compact, there is a subsequence for which U,, —» U € %,. But now,
U*(Diag p)U = linU, (Diag(A(X,)))U, = limX, = Disg p,
so that U € #,,. Hence
(f° 1)°(Diag u; Z) = lim(U* (Diag(f' (M X,))))U,. Z)
= lim{ f(A(X,.)), diag(Y, ZU))
= lim( f'(A(X,.)), diag(UZU™))

< limsup{ f'(y), diag(UZU*))
y-u

= f°( p; diag(UZU*)).

Thus we have proved “ < ”in formula (3.4).
On the other hand, fix a matrix U in #,. Again from page 64 in Clarke (1983),
there is a sequence of points " — u with

F°( w3 diag(UZU*)) = lim( f'( "), diag(UZU*))

— lim( Diag( #'( 1)), UZU')

lim( (f » A)'(Diag ,), UZU*)

limsup {(f° A)'(Y),UZU*%
Y- Diag u

(fo A)°(Diag w; UZU*)
= (f )*(Diag p; Z),

using Corollary 2.5 and Lemma 3.1. ©

IA
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We next translate Theorem 3.3 into a statement about the Clarke generalized
gradient. We define another set of n X n matrices

(3.5) 2, = (U*(Diag y)UIU €7,y € of( )}

Notice that since df( u) is a compact set in R" and %, is a compact set in Cc**", and
since the map (y,U) - U*(Diagy)U is clearly continuous, it follows that 2, is
compact.

COROLLARY 3.6. The Clarke generalized gradient J(f - AXDiag w) is the convex hull
of the set 9,,.

ProoF. The convex hull of 9,, and the generalized gradient are both compact,
convex sets, so it will suffice to see that the two corresponding support functions are
identical (see page 28 in Clarke 1983). The support function of the convex hull of 2,
conv Z,, evaluated at a Hermitian matrix Z, is (using Theorem 3.3)

max{(Z,Y)|Y €9,} = max{{Z,Y)|Y € conv2,}
= max{(Z, U*(Diag y)U)IU € %,, v € 3f( 1)}
= max{max{(diag(UZU*), y)ly € af(w)}IU € 7.}
= max{f°( u; diag(UZU*))IU € 7,)

= (f°A)"(Diag u; Z),

which is the support function of the required Clarke generalized gradient. o

To continue the proof of Theorem 1.4 we need to show that the set 9, is convex.
This fact, which does not seem obvious, is extremely important: it ensures that no
convex hull operation is required in the Clarke derivative formula in Theorem 1.4,
making this formula much more computationally attractive. It should be noted that if
the generalized gradient Jf( w) is replaced in equation (3.5) by an arbitrary convex
set then the corresponding set &, will not generally be convex.

The first step is an alternative description of the set #%,. Suppose that

(3.7) My = Mo = 0t g > My e T T Mg, > Mgy = My

and define k, = 0.

PROPOSITION 3.8. The set %, consists of all block-diagonal matrices of the form
Diag(U,, U,, ..., U,), with U in ?/k]_kﬂ, forj=1,2,...,r.

Proor. This is standard: matrices in %, have the form W, u?, ..., u"), with
columns an orthonormal basis of eigenvectors for Diag u, and since the standard unit
vector e’ is an eigenvector with eigenvalue u, we have (u’,e') = 0 whenever
#, # p,. The result then follows. o

LEMMA 3.9.  Suppose that for vectors y' in RM"5-1 (j =1,2,...,r), the (parti-
tioned) vector y = (y',y?,...,y") lies in df( ). Then for any doubly-stochastic matri-
ces S, in S (j=1,2,...,r), the (partitioned) vector (S,y", S,v%, ..., S,y") also
lies in af( ).
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584 A. S. LEWIS

Proor. By Birkhoff’s Theorem (a result proved earlier by Konig, see Chviatal
1983), since the set 9f( ) is convex it will suffice to prove the result when each S; is
a permutation matrix. In this case, define the permutation matrix P =
Diag(§,, §,, ..., S,), and note that Pu = u. Now since f is symmetric, f(v) = f(Pv)
for all points » close to w, so by the Chain Rule, Theorem 2.3.10 in Clarke (1983),
3f( ) = PT9f(Pu). Hence Py = (8,7, S,7%,...,S.y") € of(u). o

We can now derive an alternative description of the set 9.

COROLLARY 3.10. The set @, consists of all block-diagonal matrices of the form
Diag(D,, D,,..., D,) with D; in Hie—k,p» for j=1,2,...,r, and with the vector
(XMD,), XD,),..., XD,)) in df(u).

ProOF. This follows easily by applying Proposition 3.8 and Lemma 3.9 (with the
S, chosen as suitable permutation matrices). 0O

LeMMA 3.11. For any two m X m Hermitian matrices D and E and any real « in
[0, 1], there is an m X m doubly-stochastic matrix S with

MaD + (1 - a)E) = S(aA(D) + (1 — a)A(E)).

PrROOF. In the Schur partial order, the vector aA(D) + (1 — a)AME) majorizes
the vector M(aD + (1 — «)E): in other words (see Marshall and Olkin 1979)

J J
A_le AMaD +(1-a)E) < ; (ar(D) + (1 = @) A,(E))

for j =1,2,...,m, with equality for j = m. This follows from Fan’s result that the
function £{A,(*) is convex (c.f. Friedland 1981). The result now follows from page 11
in Marshall and Olkin (1979). ©

THEOREM 3.12. The set 2, is convex.

PROOF. Suppose that the matrices 4 and B belong to &, and fix a real « in
[0,1). By Corollary 3.10 there are matrices D; and E; in % _, | for j=1,2,...,r
with

A = Diag(D,, D,,...,D,), B = Diag(E,, E,,..., E,),
and with both the vectors
(A(Dy), AM(D),...,X(D,)) and (A(E;);A(E;),...; A(E,))
in 9f(u). By Lemma 3.11 there exist matrices S; in %, _, = with
(3.13) MaD, + (1 - a)E;) = S,(aA(D)) + (1 — a)ME))),
for j = 1,2,...,r. Since the set Jf( u) is convex V\;e have that

a(MDy), MD;), .-, A(D,)) + (1 — a)(MEy), MEy),..., ME,)) € If ().
Hence by Lemma 3.9 and (3.13),

(MaD; + (1= a)E;), (aD, + (1 - a)E,),..., MaD, + (1 - a)E,)) € of(n),

so a4 + (1 — a)B €9, by Corollary 3.10. o
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We have now proved, by Corollary 3.6, that 3(fe AXDiagu) =92,. The general
result follows by a simple change of variables.

PROOF OF THEOREM 1.4. Pick a unitary ¥ with V(Diag(MX)V* = X. Since
(f o AXV*YV) = (f o AXY) for all Hermitian Y close to X, we can apply the Chain
Rule, Theorem 2.3.10 in Clarke (1983), at Y = X (observing that the linear map
Y — V*YV is invertible) to deduce that

d(fo M(X)
=V(o(fe )(V*XV))V*
= V(3(f° 1)(Diag(A(X))))V"
= (VU*(Diag y)UV*|y € f(M(X)),U € %,, U*(Diag( M(X)))U
= Diag(A(X))}
— {W*(Diag v)Wly € 9f(A(X)), W € %, W*(Diag( \(X))) W = X},
as required. O
byEXAMPLE OF Cox AND OVERTON (1994). Let the function f: R” — R be defined
f(y) = mth largest element of {y,, ¥;,..., %} -

Notice that f is symmetric and locally Lipschitz on R”, and the corresponding
spectral function is given by

f(A(X)) = mth largest eigenvalue of X.

Suppose that the point u in R" satisfies (3.7) and that k, < m < k. Then it is easy
to compute (for example using Theorem 2.5.1 in Clarke 1983) that

9f(w) = convle'lk; <i < kj,,}.

Using this observation, it is a straightforward consequence of Theorem 1.4 that for
any Hermitian matrix X,

3(feo (X)) = conv{uu*|Xu = A, (X)u, llull = 1},

as observed in Cox and Overton (1994). 0

The connection between the convex case, Theorem 1.3, and the locally Lipschitz
case, Theorem 1.4, can be made clear by rewriting Theorem 1.3 in the following form.
In this result, & denotes the convex subdifferential.

COROLLARY 3.14. Suppose that the function f: R" — (—co,+ ©] is symmetric, con-
vex and lower semicontinuous. Then for any Hermitian matrix X, the convex subdifferen-
tial of fo A at X is

d(foA)(X) = {U*(Diag y)Uly € df(MX)),U € #,,U*(Diag A(X))U = X}.

PROOF. Suppose first that some Hermitian Y lies in d(f ¢ AXX). By Theorem 1.3,
choosing y = A(Y') shows that Y lies in the right-hand side above.
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Conversely, suppose that for some vector y in df(A(X)) and some unitary U with
U*(Diag MX)U = X, we define a matrix Y = U*(Diag y)U. Let 3 be the vector with
components y;, v,, ..., %, permuted into nonincreasing order, so that A(Y) = 3. Let
the function f*: [R{" — (—o0,+ x] be the convex conjugate of f, defined by f*(u) =
sup {vTu — f(»)}. Then it is 1mmed1ate that f* is also symmetric, and by definition,
f) + f*(w) = v’y if and only if u € 3f(v). Since

FMX)) +75(v) = YMX) < TMX) <f(MX)) +*(T) = F(MX)) +F*(7),

it follows that % € Jf(AM(X), and furthermore there is a permutation matrix P with
Py =%y and PXX) = MX), by Lemma 2.1 in Lewis (1993). Now

Y = (PU)*(Diag(A(Y)))(PU) and X = (PU)*(Diag(A(X)))(PU),

so by Theorem 1.3, Y lies in d(f° AXX). ©

Our main result, Theorem 1.4, coincides with the above corollary when the
function f is convex and continuous on a neighbourhood of the point A(X). The
corollary is more general in the convex case however, because it applies at boundary
points of the domain of f.

To link Theorem 1.4 with the differentiable case, Theorem 1.1, we need one
further idea. If the set } C R” is open then a locally Lipschitz function f: Q — Ris
strictly differentiable at point w in Q if it is differentiable there with, for all vectors ¢
in R",

lim f(§+t§t) f(f) =ff(M)T§

Eop,tl0
In fact, a locally Lipschitz f is strictly differentiable at u exactly when its Clarke
generalized gradient is a singleton there, in which case Jf(p) = {f'(w)}. If f is
continuously differentiable at w then it is strictly differentiable there (and locally
Lipschitz). For these ideas, see Clarke (1983).

COROLLARY 3.15.  Let the set ) in R" be open and symmetric, and suppose that the
function f: Q — R is symmetric and locally Lipschitz. Then f o A is strictly differentiable
at the matrix X if and only if f is strictly differentiable at the vector M(X).

PrROOF. If fo A is strictly differentiable at X, then we have J(fo ANX) =
{(f - A)(X)}. Hence by Theorem 1.4, for any y in df(A(X)) and any unitary U with
U*(Diag M\ X)U = X we have

llyll} ={U*(Diag y)U, U*(Diag ¥)U) ={(f° 1)'(X),(f= 1) (X)).

Since the right-hand side is constant and 13 is strictly convex, the convex set
Jf(MX)) is a singleton. Hence f is strictly differentiable at A(X).

Conversely, if f is strictly differentiable at A(X) then we have Jf(MX)) =
{F'(MX))}. Now 3(f o A(X) = {(f A)Y(X)} follows by applying Theorems 1.1 and
1.4, and hence f° A is strictly differentiable at X. O

It is a nice exercise using Theorem 1.1 to show the analogous result that fo A is
continuously differentiable at X if and only if f is continuously differentiable at
A(X). Our last example shows, perhaps not surprisingly, that the exact correspon-
dence between differentiability, continuous differentiability, and strict differentiabil-
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ity of fo A at X with that of f at A(X), does not extend to Géteaux differentiability.
Recall that f has Gateaux derivative y at the point g if for all vectors v we have

i L) — ()

T.
Y.
t—0 t

ExaMPLE. In R2, let S be the punctured hyperbola consisting of points ( y, ;)"
distinct from (1,0)7 and (0, 1)” satisfying

M+ 3+ 3y — 20 — 2, +1=0.

Define a symmetric function f: R? - R to take the value 0 on S and 1 otherwise.
Then clearly f has Géteaux derivative zero at the point (1,0)". Notice however that

for any nonzero real ¢,
10 1 1
A6 o) =i o)) =s

sme (s[5 )+ (1 3]3S

does not exist. Thus fo A is not Géteaux differentiable at the matrix Diag(1, 0).

and so
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