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CONVEX ANALYSIS ON THE HERMITIAN MATRICES*

A. S. LEWIS

Abstract. There is growing interest in optimization problems with real symmetric matrices as
variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues
of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric
convex functions of the eigenvalues. A new approach to this characterization is given, via a simple
Fenchel conjugacy formula. We then apply this formula to derive expressions for subdifferentials, and
to study duality relationships for convex optimization problems with positive semidefinite matrices
as variables. Analogous results hold for Hermitian matrices.
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1. Introduction. A matrix norm on the n x n complex matrices is called uni-
tarily invariant if it satisfies [IXVII--[[X[I--IIVX[[ for all unitary V. A well-known
result of von Neumann [30] states that if f is a symmetric gauge function on
then f induces a unitarily invariant norm, namely, I[X[[y f(al(X),...,an(X)),
where al (X) <_ <_ an(X) are the singular values of X. Conversely, every unitar-
ily invariant norm can be written in this form. A good exposition may be found in
[14]. More generally, a matrix norm is called weakly unitarily invariant if it satisfies
[IV*XVII IlZll for all unitary V.

The n x n complex Hermitian matrices may be regarded as a real inner product
space ?/, with inner product (X, Y/ defined as traceXY. Let us now ask a similar
question about general convex functions on 7: What can be said about unitarily
invariant convex functions F 7-/--. (-o, +cx], where now by unitarily invariant we
mean F(V*XV) F(X) whenever V lies in/d, the n x n unitary matrices? Such
functions clearly depend only on the eigenvalues of X: they are sometimes called
spectral functions (see [10]).

Observe first that if we write diag(A) (given A in IRn) for the diagonal matrix with
diagonal entries AI,... ,An, and define a function f 11n --+ (-oo, +oo] by f(A)
F(diag(A)), then clearly f is convex and symmetric: f(A) f(PA) for all P in P, the
n x n permutation matrices. In fact the converse is also true: if f
is a symmetric convex function then it induces a unitarily invariant, convex matrix
function fn :7 -+ (-, +oo], defined by

(1.1) fn(X) f(A(X)),

where A(X) ()l(X),...,/n(X))T is the vector of eigenvalues of X in nondecreasing
order. This result was first proved in [4], for everywhere finite f: the proof extends
immediately to allow f to take the value +c.

As an example (see 4), if we take

n

f(A) Ei=l log Ai, ifA >0,
otherwise,
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then we obtain the well-known convex matrix function

logdet X, if X positive definite,fn(X) +x, otherwise.

The approach to the basic result in [4] is direct, using a technique also appearing
in [18] (strict convexity is not discussed). An independent approach appears in [10],
revealing the role of "Schur convexity." Let us define a convex cone

which has dual cone K+ (y yTx >_ 0 /x K} given by

K+= {Y I’[ Eyi _> 0 (j 1,2,...,n- 1), Eyi o

We say that a function f K (-c, +cx)] is Schur convex if it is K+-isotone: in
other words, f(x) <_ f(z)whenever z- x e g+. Implicit in the argument in [10]
(which focuses on differentiable functions f) is the fact that the spectral function f
is convex exactly when f restricted to K is convex and Schur convex.

In fact it is not difficult to see that convex, Schur convex functions are precisely
restrictions to K of symmetric convex functions. Thus fn is convex whenever f is
convex and symmetric. By contrast with our approach, lower semicontinuity of f is
not required in either [4] or [10]. On the other hand, these approaches give no insight
into conjugacy or subdifferentials, which of course are of fundamental interest in an
optimization context.

We will follow a new approach to the basic result via Fenchel conjugation: this
approach is close in spirit to von Neumann’s technique in the norm case (see [14]).
For a function f: IRn - (-oc, +(x)], the Fenchel conjugate f* If(n - [-oc, +c] is
the lower semicontinuous, convex function

f*(y) sup{xTy f(x) x e }.

(We will make frequent use of ideas and notation from [26].) By analogy, for a
matrix function F T/ -- (-x), +c] we can define a conjugate matrix function
F*" T/-. [-oc, +cx)] (cf. [8])by

(1.2) F* (Y) sup{trXY F(X) IX e

Exactly as in ]Ru, because F* is expressed as a supremum of (continuous) linear
functions of Y, it must be convex and lower semicontinuous.

The idea of our key result is then rather simple. We will prove (Theorem 2.3)
that if the function f is symmetric on ]Ru then the conjugate of the induced matrix
function fn defined in (1.1) is given by

(1.3) (f)* --(f*).

Since every lower semicontinuous, convex function g (excepting g _---- +c) can be
written as a conjugate, g f*, it follows from this formula that the matrix function
it induces, g, is a conjugate function, and hence it is lower semicontinuous and
convex: in fact, to be specific, gt ((g*)n)*. An analogous argument proves the
corresponding result for real-orthogonally invariant, convex functions on the n n real
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symmetric matrices. Using the conjugacy formula (1.3) it becomes straightforward
to link strict convexity and differentiability properties of the underlying function f
with those of the induced matrix function fn. Furthermore, (1.3) results in a simple
expression for the subdifferential of fn in terms of the subdifferential of f.

It is possible to follow an analogous route to the study of the real vector space of
m n complex matrices (with inner product (X, Y) Re(trXY*)) and (strongly) uni-
tarily invariant functions F on this space (meaning F(X) F(UXV) for any unitary
U and Y). By analogy with (1.1), such functions have the form F(X) f(a(X)),
where a(Z) is the ith singular value of Z (for i 1, 2,..., q min{m, n}), arranged
in nondecreasing order, and f is symmetric and absolute (f(a) f(lall, 121,..., laql)
for any a in lRq). In a fashion very similar to our present development we arrive at
the analogue of formula (1.3) and hence expressions for subdifferentials. Details are
deferred to a forthcoming note: we simply observe that such expressions have been
the topic of a number of recent papers in the special case where f is a symmetric
gauge function, and hence F is a unitarily invariant norm (see [36, 31, 32, 37, 5]).
This approach will also yield characterizations of strict convexity and smoothness in
this setting analogous to those in our present development: such results for unitarily
invariant norms have appeared in [3, 36].

Studying convex matrix functions via their Fenchel conjugates is not a new idea.
It is implicit for example in some of the techniques in [7], and was used explicitly
in [8] to study the sum of the largest k eigenvalues of a real symmetric matrix, an
approach also followed in [12] (see also [13]). The primary aim of these latter papers
is to study sensitivity results via the subdifferential set. Various representations of
this set were investigated in [22]-[24].

We present a number of well-known convex matrix functions, showing how their
(strict) convexity follows easily. To conclude, we use the conjugacy formula to study
duality relationships for various convex optimization problems posed over the cone
of positive semidefinite, real symmetric matrices. Interest in matrix optimization
problems (and duality in particular) has been growing in recent years (for instance

[27, 23, 1, 33, 35, 28]). The examples we choose are of recent interest in applications
of interior point methods (see for example [1, 15, 21, 2]), as well as for variational
characterizations of certain quasi-Newton updates (see for example [9, 34]).

2. Conjugates of induced matrix functions. We begin with a technical
lemma (cf. [11, Theorem 368]).

LEMMA 2.1. Suppose that <_ 2

_
<_ cn and <_ 2 <_

_
ln are

real numbers and that P is an n n permutation matrix. Then aTp
_
(T, with

equality if and only if there exists an n n permutation matrix Q with Q( ( and
QPI .

Proof. Consider permuting the components of Pf in the following fashion.

Phase 1. Whenever we find indices and j with c < cU and (P/) > (P/)j,
swap (P/)i and (P)j, giving a new sum aTp, > aTp (because (hi-
ay)((P/)i- (P)j) < 0). We repeat this procedure until it terminates, say
with the sum oTpp. Notice that the sum oTpp increases strictly at each
step, and can take only finitely many values.

Phase 2. Now partition {1, 2,..., n} into sets I _< I2

_ _
Ik so that ai %

for all i in It, where % increases strictly with r. Finally choose a permuta-
tion with matrix Q, fixing each index set It, and permuting the components
{(P") e I} into nondecreasing order for each r.
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Now note that Qc t, while since (P"fl)i _< (P"fl)j whenever ci < cU we
deduce that QP" ft. Notice that aTp,, (Qa)T(Qp,,) ate. Hence we
see that aTp <__ (T. If equality holds then Phase 1 must be vacuous, and hence
P P". The converse is immediate, rl

The basis of the following key result is fairly standard and due to von Neumann
[30] (see, for example, [19, p. 248] and the discussion in [5]). The full result (including
conditions for attainment) may be found in [29] via an algebraic approach. In keep-
ing with the variational spirit of this paper, and for completeness, we present here
an optimization-based proof, following ideas from [25]. The underlying variational
problem originated once again with von Neumann (see [20]).

THEOREM 2.2. For Hermitian matrices X and Y,

(2.1) trXY

_
A(x)TA(Y),

with equality if and only if there exists a unitary matrix V with V*XV diagA(X)
and V*YV diagA(Y).

Proof. Consider the optimization problem

maximize trZ*XZY
(2.2) subject to Z*Z I,

Z E C’x’.

This problem is solvable by compactness. We can regard the constraint as a linear
map between two real vector spaces, (I) Cnxn --. 7-/, with a nonsingular derivative at
any feasible point. Thus corresponding to any optimal solution Z0 there will exist a
Lagrange multiplier A in /, so that

Vz(trZ*XZY trZ*ZA)[zo O.

Thus for all W in Cnx,
0 lim t-l(tr(Zo + tW)*(X(Zo + tW)Y (Zo + tW)A)

t-,0

Z)(XZoY- Z0A))
= trZ)XWY / trW*XZoY trZWA- trW*ZoA
tr(YZ)X AZ))W / trW*(XZoY- Z0h).

Choosing W XZoY- Z0A shows that XZoY ZoA, and hence

Z)XZoY A A* YZ)XZo.

Thus Y commutes with ZXZo, so there is a unitary matrix U diagonalizing Y and

ZXZ0. In other words

(2.3) U*YU=diag(PIA(Y)) and
U*ZXZoU diag(P2A(X))

for some permutation matrices P1 and P2. Now we have

trXY <_ trZ)XZoY tr(U*Z)XZoU)(U*YU)
(PA(Y))T(p2A(X))= (Y)T(pP2)(X

<_ A(Y)TA(x)
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by Lemma 2.1.
If equality holds in (2.1) then Z0 I is optimal for (2.2), and equality holds

above. Again by Lemma 2.1 there is a permutation matrix Q with QA(Y) A(Y)
P-*and Q 1P2A(X) A(X). From (2.3) we know that PU*YUP1 diagA(Y) so

QPU*YUPIQ* diag(QA(Y)) diagA(Y).

Also from (2.3) we have

QPU*XUPIQ* diag( *PQP1 (x)) diag,(X)

and the result follows if we choose V UPIQ*.
We can now prove the main result.
THEOREM 2.3. Suppose that the function f IRn (-o, +cx] is symmetric.

Then (ft)* (f*)7.
Proof. For a Hermitian matrix Y we have

(fn)*(Y) sup{trXY f(A(X)) X e
sup{txg f(PA(X))lx . P }
sup{trxg f(A) X ?t. P P. A . PA(X)

Now considering the supremum over A first, we can rewrite this as

(f)*(Y) sup {sup{trXYlX ?-t, e "P, PA(X) A} f(A)}

sup {sup{A(Y)T(QA)[Q P} f(A)}

sup{A(Y)T(QA) f(QA) A ]R, Q P}
f*(A(V)) (f*)n(V),

where we used Lemma 2.1 and Theorem 2.2 in the first step to see that the inner
suprema are equal.

COROLLARY 2.4. If the function f ]n (-cx, q-oe] is symmetric, convex, and
lower semicontinuous then the matrix function ft 7{ -- (-o, +cx] is convex and
lower semicontinuous.

Proof. We can assume that f is somewhere finite. Then since f* is nowhere -o,
with f** f [26, Theorem 12.2], and since f* is symmetric [26, Corollary 12.3.1], we
have f ((f*)*)t ((f*)n)*. Thus ft is a conjugate function, so is convex and
lower semicontinuous.

Exactly analogous results for functions on the real symmetric matrices may be
derived by replacing unitary by real orthogonal matrices throughout.

3. Subgradients, differentiability, and strict convexity. Suppose that A" is
a finite-dimensional, real inner product space. The conjugate of a function F
[-c, +c] is the function F*" A" --* [-cx, +oe] defined by

F* (Y) sup { {X, YI F(X)}.

Since X’ is isomorphic to IR" with its usual inner product, convex-analytic results on
IR" can be translated directly.

The domain off is the set domF {X X[F(X) < +c}. If this set is
nonempty and F never takes the value -o, then we say that F is proper. By [26,



CONVEX ANALYSIS ON THE HERMITIAN MATRICES 169

Theorem 12.2], if F is proper and convex, then F* is proper, convex, and lower semi-
continuous. For proper F with X in domF, we can define the (convex) subdierential
of F at X as the convex set

(3.1) OF(X) {Y e X IF(X / F*(Y) <X, Y>},
and when F is also convex this set is a singleton {Y} exactly when F is differentiable
at X, with gradient VF(X) Y [26, Theorem 25.1].

We say that the proper, convex function F is essentially smooth if it is differen-
tiable on the interior of domF (assumed nonempty), with IIVF(Xr)II +oc whenever
Xr approaches a boundary point of domF. We say that F is essentially strictly convex
if F is strictly convex on any convex subset of {X E domFlOF(X) q}} (and hence
in particular on the interior of domF) [26, Chapter 26]. A lower semicontinuous,
proper, convex function F satisfies F F** [26, Theorem 12.2], and F* is essentially
strictly convex if and only if F is essentially smooth [26, Theorem 26.3]: this is the
case exactly when OF(X) is single-valued when nonempty [26, Theorem 26.1].

THEOREM 3.1. Suppose that the function f :]R -, (-x), +x)] is symmetric.
Then Y Ofu(X) if and only if A(Y) 0f(A(X)) and there exists a unitary matrix
V with V*XV diagA(X) and V*YV diagA(Y).

Proof. For Hermitian matrices X and Y, Y lies in Oft(X) exactly when

trXY fn(X) + (f)*(Y) f()(X)) + f*((Y)) >_ .k(x)T(Y)
_
trXY,

by Theorem 2.3, and the result follows by Theorem 2.2. [:l

COROLLARY 3.2. Suppose that the function f :JR’ -- (-o, +o] is symmetric,
convex, and lower semicontinuous. Then the function f -- (-c, +oc] is essen-
tially smooth if and only if f is essentially smooth. In this case, .for any Hermitian
X in int(domf) we have that

(3.2) Vfn(X) Ydiag(Vf(A(X)))Y*

for any unitary V satisfying V*XV diagA(X).
Proof. Suppose that f is essentially smooth (the converse is straightforward by

restricting to diagonal matrices). If Of(X) is nonempty then by Theorem 3.1 it is
exactly

{Ydiag(Vf(),(Z)))V*lV*ZV diag,(X), V e b/}.

Therefore every element of the convex set cOf(X) has the same Frobenius norm,
IIVf()(X))II2 and hence this set is a singleton (because the Frobenius norm is strict).
Thus fn is essentially smooth.

Some additional comments are warranted in regard to this corollary. Notice that
the proof above actually shows that if the function f is symmetric, lower semicontinu-
ous, and convex then the function f is differentiable at X whenever f is differentiable
at (X), with gradient given by (3.2). Furthermore, using Davis’s result [4] in place
of Corollary 2.4 allows us to dispense with the assumption of lower semicontinuity in
this observation. In fact a completely different approach [17] shows that convexity is
not needed for the gradient formula (3.2): this paper also derives a result analogous
to Theorem 3.1 for the Clarke generalized derivative.

Taking conjugates gives the following result.
COROLLARY 3.3. Suppose that the function f Rn --, (-oc, +oo] is symmet-

ric, convex and lower semicontinuous. Then the function fn T/ - (-c, +] is
essentially strictly convex if and only if f is essentially strictly convex.
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Again, exactly parallel arguments show the corresponding results for real sym-
metric matrices.

4. Examples. In this section we will see that many of the classically known con-
vex functions on the Hermitian matrices can be derived from our main result. Any
symmetric convex function is Schur-convex [19, Proposition 3.C.2], and not surpris-
ingly, many of the standard Schur-convex functions are symmetric, convex, and lower
semicontinuous. We will simply illustrate a variety of examples.

The simplest class of examples are functions of A E of the form

n

(4.1) - g(Ai) for g" (-o, /o] convex, lower semicontinuous.
i--1

In particular, in (4.1) we could take

(4.2) g(#) { 0, if # >_ 0,
+oc, if#<0,

(4.3) g(#) { +cx,l/#’ ifif ## <_> 0,0,
-log#, if#>O,(4.4) g(#) +c, if # _< 0.

More generally, we could consider

(4.5) h(PA) for h" n __. (-cx, +cx] convex, lower semicontinuous.
PET

This will encompass such functions as i [Ai- A (where A -i Ai/n) and i,j IAi-
Aj[ for example.

For any symmetric set C c Rn (in other words, closed under coordinate permu-
tations) the support function sup{eTA E C} will be convex, lower semicontinuous
and symmetric. In this way we obtain the examples (for k 1, 2,..., n)

(4.6) sum of the k largest elements of {A1, A2,..., An}

(by taking C {]0 _< i _< 1 (i 1, 2,..., n), k}), and similarly

(4.7) sum of the k smallest elements of

In particular, any symmetric gauge function will be symmetric, convex, and continu-
ous (see [14, p. 438]). Examples are [JAIl p for 1 _< p _< +cx, and

(4.8) sum of the k largest elements of {]AI[, IA2[,...,

For k 1, 2,..., n, the elementary symmetric function Sk (A) and the complete
symmetric function Ck(A) have the property that -(Sk(A)) I/k and (Ck(A)) 1/k are
both symmetric, convex, and continuous on the nonnegative orthant [19, 3.F.2
and 3.F.5]. A particular example is

f -(AA2... )in) l/n, if A >_ O,(4.9) +c, oherwise
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Furthermore, for any strictly positive real a, the function

(4.10) { Sk(/-a,Aa,...,Aa), if A > 0,
+c, otherwise

is symmetric, convex, and lower semicontinuous [19, 3.G.l.m]. Somewhat analogously
to (4.5), we could consider

max h(PA) for h" n (-cx), +oc] convex, lower semicontinuous.
PET

Examples are (4.6),(4.7) and (on the domain)

(4.11) (product of the k largest elements of {A1, A2,..., An }) 1/k.

For n n Hermitian matrices X and Y we write X

__
Y if Y- X is positive

semidefinite, and X - Y if Y- X is positive definite. We denote the identity matrix
by I. Now by Corollary 2.4, each of the examples above induces a lower semicontinuous
convex function on the Hermitian matrices, and Theorem 2.3 gives a formula for the
conjugate. Thus example (4.2) induces the indicator function of the cone of positive
semidefinite matrices {X

_
0}, which is thus a closed, convex cone, and computing

the conjugate shows that this cone is self-dual (Fejer’s Theorem; see [14])"

trXY>O for allX-0 : Y-0.

The functions (4.3), (4.4), (4.6), and (4.7) (whose conjugates may be computed
directly) induce, respectively, the lower semicontinuous, convex, matrix functions

trX-, ifX-0,
+oc, otherwise,

-logdetX, ifX-0,
+c, otherwise,

n

(4.12) E As(X) and
i=n-k+l

k

i--1

and by applying Theorem 2.3 we see that the corresponding conjugate functions are

-2tr(-Y) /2, ifY0,
+, otherwise,

-n- logdet(-Y), if Y - 0,
+c, otherwise,

(4.13) if0__YI, with trY=k,
otherwise, and
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0, if -IY_0, with trY=n-k,
otherwise.

The function IIAIIp induces the Schatten p-norm, special cases being the trace norm
(p 1), the Frobenius norm (p-- 2), and the spectral norm (p oc). The function
(4.8) induces the Ky Fan k-norm in__n_k+l IAi(X)I. The functions (4.9), (4.10), and
(4.11) induce the matrix functions

-(detX) 1/n, ifX0,
4-00, otherwise,

Sk(l(X)-a,/2(x)-a, n(x)-a),
4-o0,

ifX -0,
otherwise, and

--(Hin.=n_k+l i(X))l/k, if X O,
+oc, otherwise.

All of these examples may be found in [19, 16.F] for example. Many are easily seen
to be strictly convex with the help of Corollary 3.3.

As a final example, suppose that the set C C If(n is closed, convex, and symmetric.
By applying Corollary 2.4 with f the indicator function of C we see immediately that
the set of Hermitian matrices X with A(X) E C is a closed, convex set (cf. [16]).

Theorem 3.1 can be used to calculate subdifferentials. Consider for example the
sum of the k largest eigenvalues of X (example (4.12)). The problem of deriving
expressions for the subdifferential of this function is considered via the computation
of the conjugate function (4.13) in [8, 12, 24]. If the function f(A) is given by (4.6) then
at any point A in In satisfing A1 _< A2 _< _< An it is a straightforward calculation
to check that/ e Of(A) if and only if

0 if i < n-k+l,
# [0,1] ifA=

1 if Ai > An-k+,

with #i k. Using Theorem 3.1 we see that the subdifferential of X is exactly the
set of matrices Vdiag(#)V* with unitary V satisfying V*XV diagA(X) and # in
l’ satisfying

0
#i e [0,1]

1

if A(X) < An-k+ (X),
if Ai(X) An-k+l(X),
if Ai(X) >/n-kTl(X),

and #i k. In particular, for example, for the maximum eigenvalue function
An(X) (which is the case k 1) we obtain the well-known result

o(x) conv{vv* llvll , Xv- M(X)v},

A similar expression can be obtained for the subdifferential of the Ky Fan k-norm.
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5. Fenchel duality, semidefinite programming, and quasi-Newton up-
dates. In this section we illustrate how the conjugacy formula derived in 2 can be
used to study duality properties of optimization problems involving real symmetric
matrices. In particular we can study analogues of linear programming over the cone
of positive semidefinite matrices (see [27, 23, 1, 33, 35, 2]), penalized versions of such
problems (see, for example, [1, 15, 21, 2]), and convex optimization problems leading
to well-known quasi-Newton formulae for minimization algorithms [9, 34].

Suppose that A’ and 3; are finite-dimensional inner-product spaces. For functions
F: X -+ (-oo, +oo] and G: 3) --+ (-oo, +oo], and a linear map A: ,’ -+ 3;, consider
the optimization problem

(5.1) c= inf {F(X)+G(AX)}.

If we define the adjoint map AT Y ---+ 2( by

(5.2) (AX, YI (X, ATy) for all X E X, Y E 3;,

then we can associate with the primal problem (5.1) a dual problem

(5.3) /3 sup {-F*(ATy) G* (-Y)}.
YEY

The weak duality inequality >_ is trivial to check. Fenchel duality results give
conditions ensuring that a . We consider one such particular result. We say that
the function G is polyhedral if its epigraph epiG {(Y, r) y llr >_ G(Y)} is a
polyhedron. We denote the interior of a convex set C c X with respect to its affine
span by riC. The various parts of the following result (stated for X ]Rn) may be
found in [26].

THEOREM 5.1. Suppose in problem (5.1) that the functions F and G are convex,
with G polyhedral. Then providing that there exists an X in ri(domF) with AX
in domG, the primal and dual values (5.1) and (5.3) are equal, and the dual value
is attained when finite. In this case, Xo and Yo are optimal for the primal and
dual problems respectively if and only if-Yo OG(AXo) and ATyo OF(Xo). In
particular, if F is lower semicontinuous and F* is differentiable at ATYo then the
unique primal optimal solution is Xo VF*(ATyo).

As an example, consider the semidefinite programming problem (cf. [21]):

(5.4)
inf trEX
subject to XB+,

0_XS,

where ,S denotes the n n real symmetric matrices, E and B are given symmetric
matrices, and is a given subspace of S. Observe that for any function H A" -+

(H + (E, "/)* (Y) H*(Y E).

If we choose spaces A’ 3; ,9, the map A to be the identity,

trEX,F(X)
ifX >-_0,
otherwise, and
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f 0, ifX e B+,G(X) +o, otherwise,

then it is easy to calculate directly (or using (4.2) with (5.5)) that

F*(Y) 0, ifY E,
+cx, otherwise, and

trBY, ifYe+/-,G*(Y) +, otherwise,

where the orthogonal complement +/- is the subspace of symmetric matrices Y satis-
fying trXY 0 whenever X . Hence the dual problem is (cf. [27])

sup trBY
(5.6) subject to Y +/-,

E_Y ,..
We can emphasize the symmetry with the primal problem (5.4) by setting Z E-Y,
if so desired. Now Theorem 5.1 shows that providing there exists a positive definite
X in B + , the primM and dual values are equal, with attainment in the dual if
it is feasible. In this case complementary slackness results are also straightforward
to derive: feasible X0 and Y0 are respectively primal and dual optimal if and only if
trX0(E Y0) 0.

A related problem, arising for example when we replace the constraint X

__
0 in

problem (5.4) by adding a penalty function to the objective function, is.

(5.7) { inf trEX
subject to X

where 5 > 0 is a small penalty parameter and the function f ]R --, (-c, +cx] is
lower semicontinuous and convex with cl(domf) IR. An example is (4.4), giving
the "logarithmic barrier" penalized problem

inf trEX 5 log det X
(5.8) subject to X

O-XE8.

The dual problem for (5.7), using the real symmetric version of Theorem 2.3, is

(5.9) ( inf trSY 6f*(6-1A(Y E))
subject to Y

Again, providing there is a positive definite matrix X in B + , Theorem 5.1 shows
that the primal and dual values are equal, with attainment in (5.9) when it is feasible.
For the primal problem (5.8) we obtain the dual problem

inf trBY 5 log det(E Y) + 5n(log 5 1)
subject to Y

E-Y,

which is just the logarithmic barrier penalized version of the original dual problem
(5.6). Semidefinite programming problems involving other objective functions can
also be studied using these techniques. The maximum eigenvalue is an example [22].
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To conclude, we consider problems of the form

inf trEX + f(A(X))
subject to Xs y,

XES,

where again the function f IRn (-(x, +] is lower semicontinuous and convex
with cl(domf) ]R, and the vectors s and y in lln are given. Such problems arise
in the context of characterizing quasi-Newton Hessian updates satisfying the "secant
equation" Xs y (see, for example, [9]). The given real symmetric matrix E is
derived from the old Hessian approximation. Once again a good example comes from
(4.4), which gives the problem

(5.11)
inf trEX log det X
subject to Xs y,

0-XES.

The adjoint of the linear map A 1 defined by AX Xs is easily computed
to be given by ATz (zsT + szT)/2 for z in . If wechoose F" --, (-cx, +c] to
be given by F(X) trEX + f(A(X)) and G" ]Rn --, (-c, +c] defined by G(w) 0
if w y and +cx otherwise, then applying Theorem 2.3 gives the dual problem

+ +

If sTy > 0 then it is well known that there exists a positive definite matrix X satisfying
the secant equation Xs y (for this and other standard theory of quasi-Newton
updates, see [6]). Hence Theorem 5.1 applies to show that the primal and dual values
are equal, and that (5.12) is attained when finite. Furthermore, if z0 solves (5.12)
and we denote the matrix -E + (zosT + sz)/2 by E0, and if f* is differentiable at
/(E0), then by the comment after Corollary 3.2 the unique optimal solution of (5.10)
is X0 VVf*(A(Eo))V* for any unitary matrix Y satisfying V*EoV diagA(E0).

In particular, the dual problem for (5.11) becomes

(5.13) sup {yTz + log det(A(E (zsT + szT)/2))} + n.
zER

This is straightforward to solve explicitly, using the fact that V log det X X-1,
and assuming that E is positive definite (which ensures that (5.13) has the feasible
solution z 0). The resulting optimal solution X0 of (5.11) is the "BFGS update" of
E-1 (see [6, p. 205] and [9]).
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