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The classical DAD problem asks, for a square matrix 4 with nonnegative entries,
when it is possible to find positive diagonal matrices D, and D, with D, 4D,
doubly stochastic. We consider various continuous and measurable generalizations
of this problem, Through a fusion of variational and fixed point techniques we
obtain strong analogues of the classical results. Our extensions appear inaccessible

by either technique separately. © 1994 Academic Press, Inc.

1. VARIATIONAL METHODS FOR INFINITE DAD PROBLEMS

1. Introduction

Suppose that A4 is an n x n matrix with nonnegative entries. The classical
DAD problem asks when it is possible to find diagonal matrices D, and D,
with positive diagonal entries such that the scaled matrix D, AD, is doubly
stochastic (in other words, having row and column sums 1). This problem
is an important special case of a large class of matrix scaling problems,
with numerous applications in diverse fields. A survey may be found

in [24].
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Necessary and sufficient conditions for the existence and uniqueness (up
to a scalar multiple) of the required diagonal matrices have been known
since the 1960s. For example, in [4] and independently in [26], it was
shown that a necessary and sufficient condition for existence is that 4 be
a direct sum of fully indecomposable matrices. This property is equivalent
to the existence of a doubly stochastic matrix with the same pattern of
positive entries as A [20].

It is natural to try to extend these elegant results to a continuous setting
or a measurable setting. For example, given a nonnegative continuous
function & on the unit square and positive continuous functions « and f on
the unit interval, when do there exist positive continuous functions f and
g on the unit interval such that

jl f(s) k(s, 1) g(t)dt =a(s), forall se[0,1], and

; (L1)
If(s)k(s,t)g(t)ds:ﬁ(t), for all te[0,1]?

0

A related problem, in which one assumes a=fg=1 and k is symmetric
and one seeks /=g above, was studied in [15] and later in [12]. See also
[10] and Section 4 of [19].

Generally speaking there have been two more-or-less disjoint approaches
to these problems: the fixed-point method and the variational method. The
fixed point method begins with the observation that finding a solution of,
for example, (1.1) is equivalent to finding a fixed point of an associated
map @ which is defined on the interior of a cone in a Banach space. Thus,
one tries to prove existence of a fixed point of @ in the interior of a cone.
See, for example, [4, 14, 12]. More recently, this approach has been
supplemented by the observation that @ behaves nicely with respect to
Hilbert’s projective metric: see [9, 19] and also [17]. This observation
yields uniqueness resuits and geometric convergence of various iterative
schemes.

For the variational method, the basic technique has been that of entropy
minimization. The idea is to minimize the Boltzmann-Shannon entropy
(x log x) of a joint distribution (in the original problem, an (n x n) matrix,
and in (1.1) a density on the unit square), subject to suitable marginal
constraints. At least formally, it is not difficult to see that the optimal dis-
tribution decomposes into two independent univariate distributions, which
provide exactly the desired scaling. In fact these distributions are related
directly to the Lagrange multipliers at the optimum, suggesting a practical
technique for solving the problem via duality. The desired necessary and
sufficient condition is exactly (in the matrix case) the constraint qualifica-
tion required to apply Lagrangian techniques.
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This technique has been quite widely applied in the matrix case (see for
example [24]). In the continuous case the idea was used in a special case
(with £>0) in [13] and in [6], both papers being in a probabilistic
framework. However, in Csiszar’s paper the underlying optimization is
hidden and some of the derivations appear obscure. In particular, the proof
of Corollary 3.1 on p. 154 (case (B)) requires a certain subspace to be
closed. This point requires careful argument (see [1]) and is even more
problematic in some of the generalizations (p. 155). In [19] Csiszar’s
results were combined with the fixed point approach to show that, if
a= f=1, a sufficient condition for the existence of a scaling satisfying (1.1)
is that k be strictly positive on the main diagonal: k(s,s)>0 for all
5s€ [0, 1]. Under these assumptions, results in our Section 4 and [19] also
imply that the functions fand g in (1.1) are unique to within positive scalar
multiples and can be obtained by an iterative scheme which converges
geometrically.

Our principal aims in this paper are to provide, starting from first
principles, a rigorous, unified optimization-theoretic framework in which
to prove and generalize results on DAD problems and to use these
theorems to obtain a generalization of the above-mentioned result of
Nussbaum. Our initial discussion (Sections 1-3) is restricted to the
entropy method, but some of our later theorems (for example
Theorem 5.16) involve a combination of the fixed point approach and
the entropy method to obtain results which do not follow obviously from
either method separately. Qur theorems will be phrased in the general
framework of regular Borel measures on compact, Hausdorfl spaces, so
as to include in a unified way the matrix case and (1.1). We shall peri-
odically refer to the matrix case, but we should emphasize that the
matrix case is essentially well-understood. Our real interest is in examples
like (1.1) under varying assumptions on k, «, and f. If, for example, k
is only known to be nonnegative, measurable and essentially bounded
and « and f are positive almost everywhere and integrable, (1.1) poses
a variety of difficulties, many of which have no analogues in the matrix
case.

We begin by studying the general optimization problem of minimizing
the Boltzmann-Shannon entropy of a density, subject to abstract linear
constraints. The existence of an optimal solution follows from the weak
compactness of the level sets of the entropy function, and uniqueness may
be deduced by strict convexity.

We next introduce a suitable constraint qualification. The condition we
use is a weakened, “quasi-interior” version of the standard Slater condition
of convex optimization, of the type studied in [2]. It requires the existence
of a strictly positive feasible solution of the optimization problem, which
for DAD problems becomes exactly the “doubly-stochastic pattern”
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property of [20]. Using this constraint qualification we deduce a necessary
“optimality” condition which is an asymptotic Lagrange multiplier
result.

In order to close the gap between the necessary and the sufficient
conditions, and hence to deduce the existence of the required Lagrange
multipliers, we need to impose more structure on the problem. Two cases
prove tractable. The first is when the abstract linear constraint has finite-
dimensional range, giving a “partially finite” convex program. In this case
we rederive results in [3], and obtain the known conditions for matrix
DAD problems. The second case, in which we are particularly interested, is
that of marginal constraints. To deduce the existence of multipliers here we
apply decomposition results from [1]. In this framework it is not difficult
to generalize the result in directions suggested above.

The remaining question concerns conditions ensuring the satisfaction of
the “constraint qualification.” Basically, the problem is to show that the
set of functions u(s, ¢) satisfying certain constraints is nonempty. If we can
prove this, our entropy minimization approach provides a solution to our
DAD problem. However, when the underlying problem is not finite
dimensional, satisfying the constraint qualification may be nontrivial. With
the aid of Theorem 5.16 and a fixed point argument, we show how the
constraint qualification can be satisfied when a=p, « is positive and
integrable, and k is nonnegative, essentially bounded, and measurable. In
a future paper, one of the authors (N.} will show how related ideas can
be applied when o # f. Once one has proved existence of a solution of a
DAD problem, Theorem 5.14 in Section 5 provides a strong result about
uniqueness and convergence of an iterative scheme to approximate the
solution.

2. ABSTRACT ENTROPY MINIMIZATION

In this section we introduce the Boltzmann-Shannon entropy and con-
sider the optimization problem of minimizing entropy subject to abstract
linear constraints. We prove the existence and uniqueness of optimal solu-
tions and give a sufficient condition for optimality. We then present a
“quasi-interior” constraint qualification, and under this assumption derive
a necessary condition for optimality.

Consider the closed, convex function ¢: R —» (— o0, + o] defined by

rlogr—r, if r>0,
o(r):=<0, if r=0, 2.1)
+ o0, if r<Q.
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Suppose (P, dp) is a (nonnegative) finite measure space. We define
the Boltzmann-Shannon entropy on P as the integral functional
I,: L\(P,dp)—(—o0, + 0] defined by

1) =] $(u(p)) dp.

THEOREM 2.2. The function I, is a well-defined, weakly lower semi-
continuous convex function, with weakly compact level sets,

{ue L (P, dp)| I(u)<a}
for all xeR.

Proof. See [21]. The weak compactness property follows either from
the fact that the conjugate function ¢*(w)=e" is everywhere finite, or may
be seen directly from the Dunford—Pettis criterion for compactness in the
weak topology on L'(P, dp). (See, for example, [7] for a discussion of the
Dunford-Pettis criterion.) |

From the fact that ¢ is strictly convex on [0, + o), it follows clearly that
1, is strictly convex on its domain:

dom I :={ue L,(P)| I,(u) < + 0 }.

Note that we may have 0 <ue L;(P) and yet I,(u)= + oo. For example,
take P:=[0,1] and dp:=e "7 di, where i is Lebesgue measure. Then
u(p) :=e'” clearly satisfies 0<ue L,(P) and yet I(u)= + co.

Let Z be an arbitrary locally convex (Hausdorff) topological vector
space, whose topological dual we denote Z*. Suppose that A: L,(P)— Z is
a continuous linear map, with adjoint 4*: Z* — L _(P), and suppose that
be Z. The optimization problem that we wish to consider is

inf Iy(u)
(EM) < subject to Au=b, and
ueL(P).

We say ue L,(P) is feasible if uedom I, and Au=b.
COROLLARY 2.3. Suppose that (EM} is consistent, meaning there exists
a feasible u. Then it has a unique optimal solution.

Proof. This is a direct application of Theorem 2.2 and the strict
convexity of 7,. |
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LEMMA 24. Suppose 0 <ryeR. Then for all re R,

(r—ro)log ro < ¢(r)— é(ro).
Proof. This is just the subgradient inequality. ||

We can now prove sufficient conditions for optimality in (EM).

PROPOSITION 2.5. Suppose that uq is feasible for (EM). Suppose further
that there exists pe Z* with A*u=\log uy a.e. Then u, is the unique optimal
solution of (EM).

Proof. Since logug=A*ueL_(P), uo>0 a.e. Suppose ue L, (P) and
Au=b. By Lemma 2.4,

$(u(p)) — ¢(uo(p)) = (u(p) — uo(p)) log ue(p)  ae.
Integrating over P gives
Ty(u) — I (up) = Cu—up, log up ) = {u—uy, A%y = (A(u—up), ud> =0,

SO u, is optimal. Uniqueness follows from Corollary 2.3. |

As usual in optimization, to derive a necessary condition for optimality
we require a constraint qualification. The condition we will use is:

(CQ) There exists &> 0 a.e. which is feasible for (EM).

This type of condition is called in [2] a “quasi-interior” constraint
qualification. More specifically, it is shown in [3] that if (CQ) holds then
i lies in the “quasi relative interior” of dom 7.

LeMMA 2°6. For re(0, + ), and deR,

(i) A MP(r+Aid)—¢(r))\dlogras A|0.
(i) A~'$(id)] ~ oo as 410, for d>0.

Proof. The lemma follows from the convexity of ¢ and the fact that
¢'(r;d)=dlogr. |

THEOREM 2.7. Suppose (CQ) holds. Then the unique optimal solution of
(EM), u,, satisfies uy>0 a.e.
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Proof. Suppose the measurable set Po={pe P | us(p)=0} has positive
measure. By assumption ¢(d) and ¢(uy)e L(P), and we have by
Lemma 2.6 as 4|0,

B(i) — Puo) = A~ 1 (Puo + A~ uo)) — $(uo))
{—oo, a.e on P,
(it —ug) log uy, a.e. on P§.
It follows by the Monotone Convergence Theorem [227] that
A~ 1(]¢(u0 + Al —ug)) — I4(up)) | — o0,

which is a contradiction, since this quotient is nonnegative by the feasibility
of i and the optimality of u,. |

We shall denote the weak* closure of a set D by w*-cl(D).
LemMa 2.8. Let W be a locally convex topological vector space, and

suppose D = W is convex. Then regarding W as a subspace of W** we have
W A w*-cl(D) = cl(D), where the closure of D is taken in W.

Proof. Suppose we Wnw*-cl(D), so for some net (w,) in D,
{w,—w, u>—0 for all ue W*. Thus w, — w weakly in W, so w lies in the
weak closure of D, which equals its closure since D is convex [23]. The
opposite conclusion is immediate. ||

We can now prove necessary conditions for optimality (c.f. [6]).
THEOREM 2.9. Suppose (CQ) holds. Then there exists a unique optimal

solution to (EM), u,. Furthermore, uy>0 a.e., and there exists a sequence
tos Ha, . € Z* with fug(4*p, —log u)l, = 0.

Proof. The first two statements follow from Theorem 2.7, and, from the
proof of this result we deduce that for any feasible » for (EM), if we denote
the directional derivative

Ty(ug; u— uo)=£i% AT T y(ug + Au—uy)) — I4(uo)),

then we have

OSI;(uO;u—-uo)=JP [u—u,] log ug. (2.10)

Define a linear map B: L . (P)— Z by Bh := A(hu,). The continuity of B
follows from the continuity of 4 and the fact that A+ huy is continuous



ENTROPY MINIMIZATION AND STOCHASTIC KERNELS 271

since [Augll; <luolly 1Al The adjoint of B, B*: Z* - L* (P} can be
computed from the fact that for all he L (P) and ue Z*,

<h’ Bt”) = <Bh, ,u> = <A(hu0)’ #> = <hu05 A*.u> = <h’ uOA*lu>a
s0 B*u=u,A*u. Thus the range of B*, R(B*), is contained in L,(P),
regarded as a subspace of L% (P).

Now suppose 4 is in the null space of B, N(B). Denote the function with
constant value 1 by 1. Then for any &,

A((1 + eh)ug) = B(1 + ¢h) = Bl = Au = b.

If furthermore |e| < ||A|| ' then

1¢((1+ah)u0)=j {(1+&h) ug log((1 + eh)ug) — (1 + &h)uy}

=j {(1 + eh)(ug log ug) + ((1 + &h) log(1 + eh) — Duy }
<11 +ehll . uglog ugll, + (1 +eh) log(1 +¢eh) — 11, llugll;
< + .

Thus (1 + eh)u, is feasible for (EM), so from (2.10),
osj [(1+ eh)ug—uy] log u0=f shug log uq.
P P

Thus for any he N(B), {h, uylogu,> =0, so
uy log uge N(B)* = (*R(B*))* = w*-cl(R(B*))
(see, for example, [237). It follows by Lemma 2.8 that in L,(P),
u, log ug e cl(R(B*)),

so for some sequence p,, i, ...€ Z*, | B*u, —ug log uy |, — 0, which gives
the desired conclusion. |

The Lagrangian for the problem (EM) is
Lu; p) :=ITy(u)+ <b— Au, py = I, (u)— (u, A*p ) + b, 3,
and the corresponding dual problem is therefore

sup inf {<{b, u)> + I u)— (u, A*p>},

ueZ* uel)
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which we can write as

(EM*)  sup {(b, pu)>—I5A*p)],

uezZ*

where by [21], I}: L ,(P)—(— 0, +00] is given by
1;(W)=1¢.(w)=j " dp.,
P

The dual problem is thus an unconstrained concave maximization. If i, is
feasible for (EM), u is a Lagrange multiplier, or equivalently an optimal
dual solution, if

0ed, L(ug, p) = 0ly(uo) — A*p,

or A*ue dd(uy)= {logu,} ae. (see [21]). Thus Proposition 2.5 may be
interpreted as saying that if there exists a multiplier ue Z for u,, or, in
other words,

A*u=logu, ae., (2.11)

then u, is optimal. On the other hand, Theorem 2.9 says that if (CQ) holds
and u, is optimal then there exists a sequence of “asymptotic” multipliers
H1» Mo, .. € Z* fOr uy, meaning

A*u,—logu,  in Ly(P, uydp). (2.12)

In order to close the gap between (2.11) and (2.12) we need a suitable
closed range assumption.

CoROLLARY 2.13. Suppose (CQ) holds, u, is feasible for (EM), and
R(A*) is closed as a subspace of L,(P, uydp), (as holds in particular if
Z =R"). Then ug is optimal for (EM) if and only if there exists pe Z* with
A*u=logu, ae.

Proof. The range of A* is a subspace of L_(P,dp) and since
uy € L,(P, dp) we may consider it as a subspace of L,(P, u,dp). The result
now follows from (2.12). If Z=R", R(A*) is finite-dimensional so
closed. |

The fact that (CQ) implies the existence of a multiplier {(or optimal dual
solution) when Z = R" may be found as part of a more general “partially-
finite” theory in [3].
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3. ConTiNUOUS DAD PROBLEMS

The previous section was concerned with minimizing the entropy of a
distribution under abstract linear constraints. Theorem 2.9 gave an
asymptotic necessary condition for optimality, under the assumption of a
quasi-interior constraint qualification. With a suitable closed range condi-
tion (as holds in particular if the constraint map has finite-dimensional
range) we obtain a necessary and sufficient condition for optimality
(Corollary 2.13). In this section we shall examine the case of marginal
constraints, where more care is required. We shall return to the question of
satisfying the constraint qualification in what follows.

Suppose (S, ds) and (7, dt) are finite measure spaces with

0<ae L (S, ds),
0< e L (T, dr), and
0<keL,(SxT,dsdr).

The marginal problem that we wish to consider is

(int j Sluls, 1)) k(s, 1) ds dt
SxT
(MOM) < subject to L u(s, ) k(s, 1) dt =a(s), ae onS,
ju(s, 0 k(s, ) ds=pB(1), ae.onT,
S
\ ue L (Sx T, kds dr),

where k ds dt is the measure on S x T with Radon—Nikodym derivative £,
and ¢ is defined as in the previous section. If we write P:=Sx T and
dp.=kdsdt then (MOM) is exactly of the form (EM), where the
constraints are marginal conditions on the density u. We therefore obtain
the following result directly from the previous section. The constraint
qualification becomes

(CQ1) There exists >0 a.e. [k ds dt] which is feasible for (MOM).

THEOREM 3.1. If (MOM) is consistent then it has a unique optimal
solution. If uy is feasible and there exist xe L (S, ds) and ye L (T, dt) with

x(s)+ y(r) =log uy(s, t) ae. [k dsdt], (3.2)

then u, is the unique optimal solution. Conversely, suppose (CQ1) holds.
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Then the unique optimal solution u, satisfies uy>0 a.e. [k ds dt] and there
exist sequences x,€ L (S, ds) and y,e L (T, dt) for n=1,2, ... with

Hm (x,(s)+ y,.(1))=1og uels, t) ae. [k dsdt] (3.3)

Note. In fact we shall show
x,(s)+ p, (1) = log uy(s, t), in L,(SxT, uykdsdt) (3.4)

Proof. In the notation of the previous section, we set Z := L,(S, ds) x
L (T, dt), and define A: L, (Sx T, kdsdt)— L,(S, ds)yx L\(T, dt) by

j u(s, 1) k(s, 1) dt
Au = T .
j u(s, t) k(s, 1) ds
S

It follows that A*: L _(S,ds)x L (T,dt)—> L (SxT,kdsdt) is deter-
mined by

Cuy A¥(x, y)> = {Aw, (x, y))

=J X(S)J u(s, t) k(s, 1), dt ds
+j. Y(I)J‘ u(s, t) k(s, t) ds dt
T S
=[ s Do)+ ) ks, 1) ds
SxT

(by Fubini's Theorem), for all u, x, y, so
(A*(x, ¥))(s, 1)=x(s)+ p(r)  ae [kdsdt]

Existence and uniqueness follows from Corollary 2.3, and the sufficient
condition (3.2) follows from Proposition 2.5. Finally, from Theorem 2.9
it follows that uy>0 ae. [kdsdr] if (CQL) holds, and that for some
sequences (x,) and (y,), (3.4) holds. Taking a subsequence converging
pointwise a.e. [k dsdt] (see [22]) and relabeling gives (3.3). §

The DAD problem asks when it is possible to find nonnegative functions
f:S—-R and g:T— R (generally having some further continuity or
measurability properties) satisfying
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J S(s) k(s, 1) g(1) dt = as), a.e. on S, and
’ (3.5)

[ 76V ks, ) g0y ds=p(1),  ae.on T

When S=T={1,2,..,n}, with ds and dr counting measure, and « and
are identically 1 then this is the classical DAD problem. If we can close the
gap between the necessary and sufficient conditions and deduce (3.2) from
(3.3) then we obtain the solution of the DAD problem: (3.2) implies

Uo(s, t) = &>V ae. [kdsdt],

so if we put f(s5):=e*" and g(t):=e”"” then (3.5) follows from the
feasibility of u,.

Whether (3.2) necessarily follows from (3.3) is however not immediately
clear. This question is passed over in the analogous result in [6], and is
treated in detail in [1].

COROLLARY 3.6. Suppose (CQ1) holds. Then the unique optimal solution
uo of (MOM) satisfies uy,>0 ae. [kdsdt] and there exist functions
x: 8- R and y: T — R satisfying

x(s)+ p(1)=logug(s, t)  ae [kdsdr]. (3.7)

Furthermore putting f(s):=e™ and g(t):=e”"" solves the DAD
problem (3.5).

Proof. Equation 3.7 follows from (3.3} and [1]. The remainder of the
argument is as above. |

Note. The constraint qualification (CQ1) has a very useful “scaling”
property. Suppose that on K= {(s,¢)|k(s,1)>0} there exist constants
m>0 and M >0 with mk <k < Mk. Suppose that (MOM) with & replaced
by & has a solution. Then (MOM ) itself has a solution. Indeed, if & solves
the former problem then

e ak/k, if (s,1)eKk,
10 otherwise,

has finite entropy and is feasible for the original problem. This simple
observation will prove very useful in Part II

If a(s)=0, a.e. on S, then clearly we lose nothing in (3.5) if we replace
S with §\S,, and similarly for T. Therefore, we suppose in future:
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Assumption 3.8.
a(s) >0, a.e. on S, and

B(t)>0, ae on T.

COROLLARY 3.9. Suppose Assumption 3.8 holds. Then (CQ1l) is both
necessary and sufficient for there to exist a feasible solution for (MOM),
with finite value, of the form u(s, t) = f(s) g(t), a.e. [k ds dt], with both f and
g strictly positive.

Proof. If (CQ1) holds, the desired conclusion follows immediately from
Corollary 3.6, while the converse is immediate. |

Note that at this stage we do not even know whether the functions f, g,
x, and y in Corollaries 3.6 and 3.9 are measurable. We return to this point
in the next section.

The Finite-Dimensional Case

The case where S and T are finite sets is now particularly
straightforward.

CoroLLARY 3.10. Suppose O<w,, f;eR, and 0<k,eR, for all
i=1,.,m, j=1,..,n Then there exist 0 < f,, g;€ R satisfying

Y fikygi=0  i=1.,m,
! (3.11)

Y Skigi=B,  j=1..m

i=1

if and only if there exist v; satisfying, for each i, j,

>0, if k;>0,
vij{=0, if k=0, (3.12)
with
z V=0, l=l, , m,
/=t (3.13)
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Proof. Suppose (3.11) holds. Then v;:=fk;g, satisfies (3.12) and
(3.13). Conversely, suppose (3.12) and (3.13). Define S:={1,..,m} and
T:= {1, .., n}, both with counting measure, and set

. fvgtky, if ky>0,
0, if k=0,

for each i, j. Then # is feasible for (MOM) by (3.13) and satisfies (CQ1)
by (3.12). The result now follows by Corollary 3.6. |}

This result is exactly Corollary 3.3 in {6]: a matrix 4 with nonnegative
entries can be scaled by positive diagonal matrices D, and D, so D, 4D,
has prescribed positive row and column sums if and only if there exists a
matrix B with nonnegative entries and the same zero pattern as 4 and with
the prescribed row and column sums. This question has been widely
studied in the literature (see [24] and also the references preceding), in
particular in the case where m = n and the row and column sums are 1. We
call a nonnegative square matrix B fully indecomposable if there do not
exist permutation matrices P and Q such that

B, ©
P =
Be <Y Bz)’

where B, and B, are square matrices. By convention a 1 x 1 matrix is fully
indecomposable if and only if it is positive. The results in [20] show that
there is a doubly-stochastic matrix with the same pattern of positive entries
as A if and only if 4 is a direct sum of fully indecomposable matrices (after
row and column permutations). The results concerning DAD problems in
[4, 26] then foliow from the above corollary. For another approach to
these results, see [8].

The Dual Problem

Following the remarks after Theorem 2.9, the dual problem for (MOM)
is

sup L a(s) x(s) ds + L B(1) w(1) dr

MOM*
( o ) _[ ex(.r)+y(1)k(s, I) ds dt
SxT

subject to xe L (S, ds), yve L (T, dt),
and (x, y) is optimal for (MOM*) if and only if

x(s)+ y(1) =log uy(s, 1), ae. [kdsd]
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(where u, is optimal for (MOM)), in which case, as before, f(s) := ¢**) and
g(1) :=e*") solves the DAD problem (3.5).

Thus one approach to solving (3.5) is to solve the unconstrained concave
maximization problem (MOM¥*). The solution of DAD problems is of con-
siderable computational interest. For references, see [24, 257, where this
dual approach is described (in the finite-dimensional case), and [5], for
example. An early discussion of the continuous case, including algorithmic
considerations, may be found in [13].

One simple computational approach is to alternate between maximizing
the dual objective function over x and y respectively, keeping the other
variable fixed. We could initialize for example by setting x, =0 and y, =0,
and the resulting iteration is

X4 1(5) :=log ([f e’ k(s 1) a’t] - a(s)),

Yo+ 1(t) := yal(t),

Xopya(8) = Xon 4 I(S),
Vansall) = log [( [ eertngs, 1) ds]” ﬂ(r)).
S

The iterates remain in L (S)x L (T) providing « and f are bounded and
bounded uniformly away from 0, and if, for example, (4.3) holds.

Define u'(s, ¢t) := eI+ Then it is easy to see that x, and y, are
chosen so that " satisfies the first marginal constraint of (MOM) for odd
r and the second for even r. The alternating ascent technique is thus none
other than a dual interpretation of the “iterative proportional fitting
procedure” described in [13].

The Multivariate Case

Much of the original interest in DAD problems arose from the estima-
tion of contingency tables (see, for example, [11]). It was observed in [13]
and in [6] that many of the techniques used extend trivially to analogous
questions for multivariate distributions. Rather than demonstrate this in
generality, we illustrate this by an example from [6].

Suppose (S;, ds;), i=1, 2, 3, 4, are finite measure spaces with

%123 € L1(S; X S5 % Sy, dsy ds, ds;),
%124 € Li(S) X 83 x Sy, ds, ds, ds,),
%34 € L1(S3% Sy, ds; ds,),
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all strictly positive a.e., and
0<kelL,(S5,x8,%xSyxS8,,ds, ds,ds,ds,).

We ask under what conditions it is possible to find strictly positive
functions

f123: 81 x 8, x§; = R,
f124: Sl x52xS4_’R, (3.14)

S3a: 838, — R,
so that if we write

F(sy, 53,83, 54) = [123(51, 52, 83) f124(515 52, 84) f34(53, 54),

then u := F satisfies the conditions

f uk ds, = o53, a.e.,
Ss

j uk dsy =0y,  ae, (3.15)
S

3

J‘ uk dsl dS2=a34, a.c.
S1x 85,

Foliowing the analogous route to Corollary 3.6, we consider the problem

inf j k(u) ds, ds, ds, ds,
I],L, Si
(MOM’) subject to (3.15), and

4
OSUELI (HSi,kdsl dsldfg dS4).
1

The constraint qualification becomes

(CO1) There exists i >0 a.e. [k ds, ds, ds; ds, ]
which is feasible for (MOM"),

and exactly as in Corollary 3.9 we deduce that we can find functions as in
(3.14) solving the multivariate DAD problem (3.15) if and only if (CQ1’)
holds. The only difference in the proof is that the relevant result in [1] is
now Theorem 4.4.

580/123/2-4
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4. MEASURABILITY, INTEGRABILITY, AND CONTINUITY

Let us recapitulate the main result of the previous section. Under
Assumption 3.8, the constraint qualification (CQ1) is both necessary and
sufficient for the existence of strictly positive functions f:S— R and
g: T— R such that u(s, 1) .= f(s) g(t) is feasible for (MOM) (implying f
and g solve the DAD problem (3.5)), with finite value.

It is natural to impose further conditions on f and g, in addition to
simply requiring that f(s) g(t)e L,(Sx T, k ds dt), which follows from
feasibility. We will consider three such conditions: measurability,
integrability (see, for example, [6]), and continuity (as in [19]). We could
also enquire about the uniqueness of f and g, as in [19], up to multiplica-
tion by a constant.

Such questions are considered in [1], so we begin by applying the
results there. Throughout this section we suppose that Assumption 3.8
holds, and we write

K:={(s,1)e Sx T | k(s, 1) >0}, (4.1)

defined up to a set of measure zero [ds dt].

THEOREM 4.2. Suppose K is a countable union of measurable rectangles
(up to a null set [dsdt]). Then the functions f and g of Corollaries 3.6 and
3.9 are necessarily measurable. This holds if (S, ds) and (T, dt) are separable
metric spaces with associated Borel measures, and K is open, which holds in
particular if k is lower semicontinuous.

Proof. By construction we have f(s) g(t)=uy(s,t) ae. [kdsdt],
where uye L,(S x T, k ds dt) is the optimal solution for (MOM). It follows
that f(s) g(2) =uy(s,t) ae. on K [dsdt]. We now apply the results

of [1]. 1

In order to deduce further properties of f and g we need to impose
further conditions on the kernel k. Suppose that S and T are compact
Hausdorff spaces with associated regular Borel measures, and consider the
following conditions:

For some 6 >0, we have:

(i) For all 5¢ S there exists fe T with k(s, 1) > ¢
a.e. [dsdt] on a neighbourhood of (5, 1),

(ii) For all /e T there exists §e S with k(s, t) > 6
a.e. [dsdt] on a neighbourhood of (3, {). (4.3)
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The function & is lower semicontinuous with

(i) For some continuous n: S — T,

k(s, n(s)}) >0, for all se S,

(i1) For some continuous p: T — S,

k(p(1), t)>0, for all teT. ‘ (4.4)

S§'= T, k is lower semicontinuous and k(s, s) >0, forall se S. (4.5}

S=7, and for some >0 we have that for all 5€S,
k(s,t)= 0 a.e. [dsdt] on a neighbourhood of (5, 5). (4.6)

LemMa 4.7. (4.5)= (4.4)=>(4.3), and (4.6) = (4.3).

Proof. Clearly (4.5)=-(4.4), and (4.6) = (4.3). To see that (4.4)=>(4.3),
note that k(s, n(s)) is lower-semicontinuous on the compact set S, so for
some £,>0, k(s,n(s))=¢; for all seS. Similarly, for some &,>0,
k(p(t), t) = ¢, for all te T. Now putting J := imin{e,, &,}, F:=n(s) in (i)
and 5§=p(f) in (ii) gives (4.3) by the lower semicontinuity of k. ||

The next result allows us to deduce in addition from Theorem 4.2 that
f and g are in fact integrable.

THEOREM 4.8. Suppose that S and T are compact Hausdorff spaces with
associated regular Borel measures of full support (so nonempty open sets
have positive measure in S and T respectively). Assume that f: S — R and
g: T— R are measurable and strictly positive a.e. and that k: SxT— R is
measurable and non-negative a.e., with f(s) g(t) k(s,t)e L,(Sx T, ds dt). If
(4.3) holds (or (4.4), (4.5) or (4.6)), then fe L,(S, ds) and ge L (T, dt).

Proof. By Lemma 4.7 we can assume (4.3) holds. By Fubini’s theorem
we have that f(s) g(z) k(s, t)e L (T, dt) a.e. [ds], and we know f(s)>0,
ae. [ds], so g(t) k(s, t)e L (T, dt) a.e. [ds].

By (4.3) and the assumption of full support we can associate with each
te T, open sets O, in T (containing ¢) and U, in S such that O, and U, have
positive measure and k(s, 1) >0, ae. [dsdt] on U,x O,. Since {O,:te T}
is an open cover of T, there is a finite subcover O,, 1 <i<n. Since U, has
positive measure, there exists s;e U, with g(t) k(s,, t)e L,(7, dt). Our
construction ensures that

Y k(s;,1)=6, ae [dt]onT,
i=1
so we have

0<e<(3) 3. £ ks, e LT, di)
i=1
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which implies that ge L,(7, dt), as required. The argument for f follows
similarly. J

Remark. 1f the measures on S and T are not of full support, there exist
compact sets S; = .S and T, < T such that the measure [ds] restricted to S,
is of full support and [dt] restricted to 7 is of full support and S\S, and
T\T, have measure zero. If k, denotes the restriction of £ to S, x T, and
if k, satisfies (4.3) on §, x 7, then the argument above still proves that
feL,(S,ds)and ge L (T, dt).

COROLLARY 4.9. Suppose (S, ds) and (T, dt) are compact metric spaces
with associated regular Borel measures of full support and assume that k is
lower semicontinuous and (4.3) holds. Then the functions f and g in
Corollaries 3.6 and 3.9 are integrable.

Proof. We can apply Theorem 4.2 to deduce that f and g are
measurable. The result now follows by Theorem 4.8. |}

In order to move one step further and show f and g are continuous, we
need a further lemma.

LemMma 4.10. Suppose that (S, ds) and (T, dt) are compact Hausdorff
spaces with associated Borel measures, that ke C(SxT), and that
feL,(S,ds). Define a function F: T — R by

F(t) j f(s) k(s, t) ds. (4.11)

Then F is continuous.

Proof. 1If S and T are compact metric spaces this is immediate from the
uniform continuity of & on the compact metric space S x T. In general we
use a standard compactness argument.

Suppose that z,e T and £¢>0. For any se S there exist open sets O, in
S (containing s) and U, in T (containing ?,) such that |k(r, 1) — k(s, t,)] <
¢/2, for re O, te U,. Since S is compact it has a finite subcover {J7_, O
Now for any tin (7_, U, (an open neighbourhood of r,) we have, for any
i=1,.

Ik(l‘, t) _k(r’ tO)' < Ik(r’ t)_k(sis tO)l + lk(r’ t(])—k(si, 10)',

for all re S, so picking i with r€ O, gives |k(r, 1) — k(r, t,)| <e¢, forallre S.
Finally we have, for te \]_, U,
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IR = Flo) = [ S5 kts. ) = kG5, ) s
< [ 1S Ikts, 1)~ k(s, to)] ds
R}

<e [ 1f(s) ds

so F is continuous, as required. |

COROLLARY 4.12. Suppose that (S, ds) and (T, dt) are compact metric
spaces with associated regular Borel measures of full support, that k is con-
tinuous on Sx T, that o and B are continuous, and strictly positive a.e. on S
and T respectively, and that (4.3) holds {or (4.4), (4.5), or (4.6)). Then the
functions f and g in Corollaries 3.6 and 3.9 may be taken to be continuous
(and strictly positive a.e.).

Proof. Corollary 4.9 shows that f and g are integrable and we know
that if we define F as in (4.11) then F is continuous, and, by feasibility,

g(1) F(t)=p(1), ae. [dt].

We claim F is strictly positive. To see this, suppose 7€ 7. Since we are
assuming (4.3), we have k(5 7)>0 for some §e.S, so by continuity,
k(s, £)>0 for all s in a neighbourhood of § (which, since ds has full sup-
port, has positive measure). But we know f is strictly positive a.e., so (4.11)
shows that F(f)>0. Finally, we note g(¢)=(t)/F(t), ae. [dt], and the
righthand side is continuous, so we may take g to be continuous. The same
argument works for f. §

We close this section by discussing some questions of uniqueness of solu-
tions related to the problem (MOM). Assuming (MOM) is consistent, we
know by Corollary 2.3 that it has an optimal solution u, which is unique
among functions ue L,(Sx T, k ds dt) such that /,(u) < co. Furthermore,
by Theorem 3.1, if p and g are measurable with

0<b,<p(s)< By, ae. [ds] and

(4.13)
0<b,<q(t)<B,  ae [di],
and if they solve the DAD problem
j p(s)k(s, 1) g1y dt=a(s), ae [ds], and
! (4.14)

[ P ks, 0 gy ds=B(r),  ae. [ar],



284 BORWEIN, LEWIS, AND NUSSBAUM

(where 20 a.e., >0 ae., ae L,(S, ds) and fe L (T, dt)), then we must
have

p(s) g(t) = ug(s, 1), ae. [kdsdt] (4.15)

We can now apply uniqueness results in [1, 18, 19] to solutions p and ¢
of the DAD problem (4.14). Obviously, if p and g solve (4.14) and A is a
positive constant, then Ap and A~ 'q solve (4.14). Our aim is to prove that
this is the only nonuniqueness for p and g, in other words that p and q are
unique to within positive scalar multiples. We illustrate with one particular
case.

Suppose that S and T are compact Hausdorff spaces with associated
regular Borel measures [ds] and [dt], which we assume have full support.
Suppose that a e L,(S, ds) and fe L,(T, dt) are positive almost everywhere
and that ke C(S x T) is nonnegative and satisfies (4.3). Assume that there
exist nonnegative functions f € L (S, ds) and g e L,(7, dt) satisfying

j F(s)k(s, 1) g(t)di=a(s), ae [ds], and
’ (4.16)

[ f@ ks 0 g0 ds=p)  ac [di].

If k£, «, and § are as above and (CQ1) is satisfied, we know that (MOM)
has a unique solution uy(s, )= f,(s) g,(¢), a.e. [k dsdt]. If we assume, in
addition, that § and T are separable, (which will be true if § and T are
metrizable), Theorem 4.2 implies that f;(s) and g (¢} are measurable and
Theorem 4.8 implies that f, € L,(S, ds) and g, € L,(7, dt). Thus, if (CQ1)
holds, there exist solutions f and g as in (4.16).

There is a slight subtlety, however. If f and g are as in (4.16), it is
immediate from (4.16) and the assumption that « and 8 are positive a.e.
that f and g are positive a.e. It follows from Lemma 4.10, from (4.3) and
from the assumption that [ds] and [dt] are of full support that if

u(s)= -[r k(s, t) g(t) dt and v(t)= JS f(s)k(s, t) ds,

then » and v are continuous, strictly positive functions.
It follows that f(s) = a(s)/u(s) and g(¢) = B(t)/v(¢) a.e. In particular, if we
define w(s, t) = f(s) g(t), we can see that

I(w) < o <:” a(s) B(2) log(a(s) (1)) k(s, 1) ds dt < oo.
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If, for example, k(s, t) >0 for all (s, t)e S x T, it follows that f,(w)< oo if
and only if

ja(s)log(a(s))dsmo and jﬂ(:)log(ﬂ(t))dmoo. (4.17)
s T

If we prove (as we shall) that (4.16) always has unique (to within scalar
multiples) positive solutions f€ L,(S, ds) and ge L (T, dt) when k(s, t)>0
for all (s,#)e Sx T (ke C(Sx T)), it will follow from our remarks above
that (CQ1) is not satisfied in the case when (4.17) fails. (If (CQ1) were
satisfied, we could find w= fg with 74(w) < c0.)

On the other hand, if «e C(S) and Be C(T) and a and B are strictly
positive on S and 7 respectively, we see directly that f and g are continuous
and strictly positive and Theorem 3.1 implies that uy(s, t) = f(s) g(¢) is the
solution of (MOM).

THEOREM 4.18. Suppose that S and T are compact Hausdorff spaces with
regular Borel measures [ds] and [dt] of full support, and either S or T is
connected. Suppose o€ C(S) and Be C(T) are both everywhere strictly
positive and ke C(Sx T) is nonnegative and satisfies (4.3). If fe€ L(S, ds)
and g € L (T, dt) are nonnegative functions which satisfy (4.16), then f and g
are unique to within positive scalar multiples.

Proof. We have already seen that, under the given assumptions, f and
g are equal a.e. to continuous and positive functions; Theorem 3.2 implies
that f(s) g(¢) = uy(s, t} a.e. [k ds dt] where uy(s, t) is the unique solution of
(MOM). Thus if f; and g, also solve (4.16) then

Si(s) (1) =1f(s) g(1),  ae. [kdsdt],

so, on the open set K defined in (4.1), fi(s) g,(¢) = f(s) g(¢), a.e. [dsdt].
Since both sides of the above equation are continuous and ds and dt have
full support, we conclude that f(s) g,(z)=f(s) g(r), for all (s,t)ek.
(Note, by the way, that if we assume from the beginning that f and g are
continuous and nonnegative functions which satisfy (4.16), then the
assumptions that k, « and § are continuous, k>0 and x>0 and >0,
imply that k satisfies (4.3).)

It follows by a simple connectedness argument using (4.3) (see [1]) that
there exists a positive constant A so fi(s)=Af(s) for all s and
g1(t)=A""g(¢) for all ¢ as required. §

It has long been known (see [15], and [12] for the case S=T= [0, 1])
that if (S, ds)=(T,dt) and k(s, t}=k(¢, s5), ae. [dsdt], then there is a
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solution of (4.16) with f =g. We now show that this is a simple conse-
quence of uniqueness results like Theorem 4.18.

COROLLARY 4.19. Let assumptions and notation be as in Theorem 4.18
and suppose in addition that (S, ds)=(T, dt), a(s)=p(s) for all s and
k(s, ty=k(t,s) for all s and t in S. Then (4.16) has at most one solution (up
to scalar multiplication) and we can assume f=g.

Proof. Uniqueness follows by Theorem 4.18. By symmetry, if f:= f,
and g := g, solves (4.16), then so does f =g, and g := f,. Uniqueness thus
implies that there is a positive scalar 1 so gyo=A4f,, and setting
fi=g, = ﬁ Jfo, we obtain a solution of (4.16) of the desired type. |}

Uniqueness results like those above depend ultimately on using the form
of the optimal solution (4.15) in conjunction with the connectedness of a
certain graph associated with the set K defined in (4.1). These techniques
can be applied in both the discrete, matrix case, and as above using
topological considerations. In Part II we shall adopt a very different
approach to the uniqueness question, which also yields further iterative
techniques for approximating the solutions f and g of (4.16).

II. A CoMBINED FIXED POINT AND VARIATIONAL APPROACH TO
INFINITE DAD PROBLEMS

S. Constraint Qualification and Solutions of the DAD Problem

The key assumption in characterizing solutions to (MOM) was the con-
straint qualification (CQ1). If (CQ1) is satisfied, Corollary 3.6 implies that
there exists a solution to the DAD problem in equation (3.5). However, it
may not be trivial to verify (CQ1). In this section we want to show how
our previous results can be combined with ideas from [18, 15, 12] to prove
a generalization of a DAD theorem in [19]. The proof we shall give is
different from that in [19], and indeed, the argument in [19] does not
directly extend to the situation we shall consider. One advantage of the
explicit fixed point approach we use in this section is that it produces an
iterative technique for solving DAD problems which is guaranteed to
converge geometrically in great generality.

We begin first with some simpler cases.

THEOREM 5.1.  Suppose that (S, ds) and (T, dt) are finite measure spaces
and that a € L,(S, ds) is strictly positive a.e. [ds] and fe L (T, dt) is strictly
positive a.e. [dt]). Assume that ke L (Sx T, ds dt) and that there exists a
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positive scalar 6 such that k(s,t)206>0 ae. [dsdt]. If o« and B have finite
entropy, so

jalogads<oo and f flog fdt <,
S T

and if

Lﬁn¢=Lmna

then the DAD problem (3.5) has a solution, and the functions f and g in (3.5)
are measurable and strictly positive a.e.

Proof. Define c=[za(s)ds>0. By the results of Section 3 and
Section 4, it suffices to prove that the constraint qualification (CQ1) is
satisfied. However, if we define

_als) B(r)

U(S, Z)— Ck(S, t) 9

one can easily verify that u is feasible for (MOM). The only point where
care is needed is in showing that

[ dtuts, ) k(s 1) ds di < o,
SxT

where ¢ is given by (2.1), and this follows from the assumption that « and
f have finite entropy. |

There is a variant of Theorem 5.1 which is actually closer to the
questions we shall be considering later in this section.

THEOREM 5.2. Suppose that (S, ds) and (T, dt) are finite measure spaces
and that o€ L(S, ds) and Be L (T, dt) are positive almost everywhere and
fads={pdr Assume that ke L (SxT,dsdt) and that there exists 6>0
such that k(s, t)=9, ae. [dsdt]. Let C3 (respectively, C7) denote the
interior of the cone of nonnegative functions in L (S) (respectively, L (T)).
Then there exist ve Cg and we Cy such that setting f:=av and g :=pw
satisfies the DAD problem (3.5). Furthermore, if v,€C%, w,€C% and
fi=av, and g, = Bw, also satisfy the DAD problem (3.5), then there exists

a positive scalar A such that v, = Av and w, = 1" 'w.

Proof. Define k(s, t)=a(s) k(s, 1) B(r) and u(s, 1) = (ck(s, 1)) ~', where

c=j a(s)ds. If k(s, 1) replaces k(s, t) in problem (MOM), u(s, t) is feasible
for (MOM) and u(s, t)>0, a.e. [dsdt]. It follows from Corollary 3.6 that
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there exist functions v{s) and w(z) which are positive almost everywhere
such that setting f:=v and g:=w solves the DAD problem (3.5), and
Theorem 4.2 implies that v and w are measurable. Equations (3.5) imply
that

o(s) L k(s, 1) () w(t)dt=1,  ae. [ds],

and since there exist positive constants 6 and M such that éd <k(s, 1)< M,
a.e. [dsdt], and v(s) >0, a.e. [ds], we conclude that fwe L,(T). It follows
that

! 1
(W) <uls)s (W> ac. [ds],

sove L_(S). A similar argument shows that we L (7). Theorem 3.1 now
implies (since k ts positive a.e.) that v(s) w(?) = uy(s, t), a.e. [dsdt], where
ug is the unique solution of (MOM). If v, and w, are as in the statement
of the theorem, the same argument shows that

v(s) w(t) = uy(s, t)=v,(s) wy(2), ae. [dsdt].

By Fubini’s theorem, there exists s, such that v(sq) w(t) =v,(so) w,(¢), ae.
[dr], which implies that w(t)/w,(¢t)=1=uv,(s¢)/v(se), a.e. [dt]. The same
argument shows that v,(s)/v(s) =4, ae. [ds]. |

We remind the reader that we have already discussed in Section 3 the
classical case of an nxn nonnegative matrix with a=f=1. The more
general case, where S={1,2,..,m}, T={1,2,.,n} and « and B are
arbitrary nonnegative vectors, is discussed in [14].

We now want to discuss some DAD problems which generalize results in
Section 4 of [19]. We begin with a lemma related to Theorem 2 in [12].

THEOREM 5.3. Let (S, 0) be a finite measure space with ae L,(S, o),
a(s)>0ae [c], ke L (SxS,ax0)and k(s,1)26>0 ae. [0xa], where
0 is a scalar. Let p be a scalar with 0 < p <1 and let C° denote the interior
of the cone of nonnegative functions in L _(S). Define a map @: C° — C° by

1
v(t)?

(®(0))(s) = f k(s, ) a(?) ( ) do(t).

Then there is a unique ue C° such that $(u)=u. If 0<p<1, and xe C°,
then

lim &/(x)=1.

J—=®
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If p=1 and x € C°, there is a positive scalar A(x) such that

lim @¥(x)=Ax)u  and  lim ®¥*'(x)=Ax)""u

jo® j—o o

The map x — A(x) is real analytic on C°.

Proof. We shall use Hilbert’s projective metric d and Thompson’s
metric d on C°; see [18, p. 13] for definitions. It is an elementary exercise
(see Proposition 1.5, p. 19, in [18]) that if J(x)=x"* for xe C°, then

d(Jx,Jy)<pd(x,y) and  d(Jx,Jy)<pd(x,y) forall x, yeC°.

If we define a linear operator 4: L _(S)— L_(S) by
(Ax)(s) = [ ks, 1) alt) x(2) do (),

then note that 4 is a bounded linear operator {with | 4] < k|l ll2ll;) and
that A(C°)c C°. It follows (see Proposition 1.5, p. 19, in [18]) that A4 is
nonexpansive with respect to d or d. If 0 <p < 1, it follows that & = A4J is
a contraction mapping of C° into itself with contraction constant p < 1.
A result of [27] implies that (C°, d) is a complete metric space and that
d gives the same topology on C° as does the norm on L_(S). Thus the
contraction mapping principle implies Theorem 5.1 when 0 <p < 1.

It remains to consider the case p=1. If B is a bounded linear operator
such that B(C®)c C°, define 4(8) by

A(B) =sup{d(Bx, By): x, ye C°}. (5.4)

If 4(B) < o0, an old result of Birkhoff implies that d(Bx, By) < cd(x, y) for
all x, ye C°, where ¢ =tanh(4(B)/4) < 1. See [18, p. 43] for references to
the literature. Define maps ¥: C° -+ R* and &,: C° —» C° by

&
#(»)=[ ys)ds  and ¢1(x)=;,(7},—’(‘;)5.

If we assume that 4(A4) < oo, our remarks above show that for all x, ye C°
we have d(P(x), D(y))=d(D,(x), D,(y))<cd(x, y), where the constant
c=tanh(4(4)/4)<1. If T={xeC°: ¥(x)=1}, it is well-known that
(2, d) is a complete metric space: see Theorem 1.2 in [18] and the referen-
ces to the literature there. Thus (assuming 4(A4)< o) @D, is a Lipschitz
mapping of (Z, d) into itself and &, has Lipschitz constant ¢ <1, so the
contraction mapping principle implies that @, has a unique fixed point ¢
in Z. It follows that &(&)= A(¢), where 1= Y(D(&)). If we take u= pé,
where A=y’ a calculation (using the homogeneity of @) gives ®(u)=uwu.
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Conversely, if @(u) =u, a calculation implies that u/¥(u) is a fixed point of
@, so u/P(u)=¢&, (P(u))* = P(D(£)), and u is unique.

If we define f=®? f:C°— C° is homogeneous of degree one, order-
preserving and real analytic. If « is the fixed point of @ and L = f'(u), the
chain rule implies that L= (—®’(u))? so A(L)< A(—D'(u)) = 4(A). If we
prove that 4(A4) < oo, it follows that 4(L) < oo, and Remark 2.4 on p. 44
of [18] implies that the essential spectral radius of L (see [16] for defini-
tions and references to the literature) is strictly less than the spectral radius
of L. The final statement of Theorem 5.3 thus follows from Theorem 3.2 on
p-93in [18].

It remains only to prove that 4(A4) < oco. This result is known (see [16]
for references to the literature), but we sketch a proof for completeness. Let
o and M be positive numbers such that d<k(s,t)< M, ae [axc].
Fubini’s theorem implies that there is a set S; = .S such that the measure of
the complement of S, is zero and if s .5, 0 <k(s, 1)< M, ae. [do(t)]. If
sy, 5,€ S, and if we define u= M§ ', it follows that for any xe C°,

(Ax)(5,) = | ks, 1) o(0) x(2) do(e) < p [ K(sa, 1) o(0) x(1) do(r) = (uAx)(s,).

If e denotes the function which is identically one, it follows that
d(Ax, e) <log(u),

which implies that 4(4)<2log(u). |

Remark 5.5. 1f k(s, t)=k(t, s) for all s and ¢t and p =1, the existence
and uniqueness of the fixed point » can be obtained from Theorem 5.2, but
the convergence of ®@¥(x) requires other ideas.

Remark 5.6. In [12] it is assumed that S=[0,1], «=1 and k is con-
tinuous. In that case, the linear map A is compact. Karlin and Nirenberg
use the compactness of 4 and the Schauder fixed point theorem to prove
the existence of a fixed point of @ = A4J in C°, even for p > 1. (Uniqueness
may fail even in the matrix case for p large). In the generality of
Theorem 5.3 such a proof is not directly available, because 4 may not be
compact. To see this, take S=[0,1], «=1 and o the usual Lebesgue
measure. For j2> 1, j an integer, define ;= [1/2/, 1/2/~']. Define k(s, t) by

1 _
ks, )=2+(—1)" if sel, and ;<z<m+ for 0<m<2’,
Define v;€ L,(S) by

m+1

n()=(~1)" if ZT<i< . 0<m<2

2/ 2/
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A calculation yields

1, if sel,

Upo=1¢ oS ;
It follows that

|Av;— Av,, | =1 for j#m,

so {Av;: j= 1} is not precompact and A is not compact.

We want to extend Theorem 5.2 to a case in which & is nonnegative and
positive on a neighbourhood of the diagonal of Sx S. We shall need a
lemma first.

LEMMA 5.7. Let S and T be compact metric spaces with finite, regular
Borel measures ds and dt respectively. Assume that k,e L,(Sx T, ds dt) and
define a map A: L .(T)— L,(S) by

(Ax)(s) = Lk,(s, 1) x(t) dt.

Then A is a compact linear operator.

Proof. It is immediate that A is a bounded linear operator with
L4 <[ | teuts, o)t ds d,
ST
because if xe L (T), we have
[ 1 as< | [ ks 0l Ix drds< x| [ 1kis, 0l deas.
5 ST ST

Recall that if X and Y are any Banach spaces and A,, is a compact linear
map from X to Y for m=1, and if |4,,— A — 0, where 4 is a bounded
linear map, then A4 is a compact linear map. Thus in our case it suffices to
find a sequence of compact linear maps A,, from L_(7T) to L,(S) which
converge to A in norm. Since ds dt is a finite regular Borel measure on the
compact Hausdorff space Sx 7, it is known that there exists a sequence
cm(s, 1), m=1, of continuous, real-valued maps with domain §x T such
that

lim ” e (s, 1) —k,(s, )| ds dt =0.
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If we define A4,,: L (T)— L,(S) by (4,,x)(s)= | c,(s, ) x(¢) dt, the first
part of the lemma shows that |4 — A, | <|c,,—k,|,, which approaches
zero as m approaches co.

Thus it suffices to prove that A4, is a compact, linear operator. However,
A,, can be considered a bounded, linear map from L_(7T) to C(S), and
C(S) is continuously imbedded in L,(S). Thus it suffices to prove that 4,,
is compact as a map from L_(T) to C(S), and by the Ascoli-Arzela
theorem, this will be true if {4,,v:veL_(T), |v| <1} is equicontinuous.
However, equicontinuity follows easily from the fact that ¢, is uniformly
continuous on Sx 7. |

QOur next theorem and remark are generalizations of results of Karlin
and Nirenberg [12].

THEOREM 5.8. Let S be a compact metric space with a finite, regular
Borel measure t of full support. Suppose that a € L(S, t) is positive a.e. [1]
and ke L (S x S, txt) is nonnegative a.e. [tx1]. Assume that for every
s€ S there exists an open set G, containing s and a positive constant d, such
that k(r,t) 248, for almost all (r,t)eG,xG,. Let p be a scalar with
0<p <1 and let C° denote the interior of the cone of nonnegative functions
in L _(S). Then there exists ue C° such that

1
u(t)?

j k(s, 1) a(t) —— de(t)=u(s),  ae. [z].

Proof. let @, A and J be as defined in the proof of Theorem 5.3.
If 0<p<1, exactly the proof in Theorem 5.3 shows (assuming only
that 4(C°)cC°) that @ has a unique fixed point u in C° and that
lim; , , ®/(x)=u, for all xe C°.

Thus we shall assume p=1. As in [12], for each ¢ with 0 <& < 1 define

k.(s, t)=k(s, t)+ ¢ Theorem 5.3 implies that there exists a unique u, € C°
such that

1
u,(1)

The problem is to take the limit as ¢ » 0, and we proceed initially as in
[12]. The defining equation for u, gives

j ks, 1) a(t) — de(t) =u,(s),  ae. [z].

dr(1) du(s) = f ) o).

u,(s)

att) as)
u,(2) u,(s)?

f ks, t

If G, is as in the statement of our theorem, we can use the compactness of
S to find a finite open covering G,, i =1, .., m and we can then assume that
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every G, equals G, for some i, 1 <i<m. We also have that k(r,7)2d=

min{é,:1<i<m} forallr,teG,, 1<i<m
With these conventions we find

a(?) a{o) a(o)
— S ——— R
° OG u,(t) dr(t))(J.G’ u(a)? dt(a)) -[s u(0)? #(2)
An application of Holder’s inequality gives
a 1/2 o 1/2
A VDN (%)
If we define v(s) = |4, o, we obtain that

1 2
Larwo)

s [

It follows that

(ngﬁlﬁglg

u o sUg su,

3 &

where ¢, = |jal|, 6 ! is independent of ¢, for 0 <e< 1.
For a given ¢ select i so that

o led
— = max .
G, Ug 1€/j€smJG, U

8 sp €

It follows that

a3 o
J — Smclj' —.
Gy, U, G, U

s %e

The above inequality implies that there is a constant c,, independent of ¢,
such that

o o o
—<c, and so —<m| —<mey,=c5.
Gy U, SU, Gs; U

If we define M = ||k| ,, we conclude that

a(?)
u(t)

dr(t) S Mcy=c,, ae. [1]

uls)=| ks 1)
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It follows that, defining J,=min, ¢, [ *>0, we have almost
everywhere

u()=[ ks z)@dw»ac; j a(t) de(1) = 38,¢; = ¢5 > 0.
G 4

Notice that ¢4 and ¢ are independent of ¢, for 0 <e< 1.

Now let ¢ be a sequence of positive numbers approaching 0. Our
previous remarks show that J(u,) is bounded in L(S) for j>1, so
Lemma 5.7 implies that a subsequence of AJu, =u, converges in L,(S)
to some element uel,(S). By relabeling, we can assume that
lim, . . flu, —ufl; =0, so by taking a further subsequence, we can also
assume lim, _, , u, (s)=u(s), ae. [t].

Since 0<c5<u (s)<cy, ae [t], we also know that cs<u(s)<cy,
ae. [r] It follows that lim,, ., (u,(s)) "' =u(s)”', ae [7], and
(1, (s)) "' <c5t, for all j, ae. [1]. Usmg these facts, it is now easy to see
by Lebesgue dominated convergence that, almost everywhere,

u(s)= lm u, (s)— llm f k, (s, {0 4 )='[ k(s, t)i(t—;dr(t). 1
S

J—o o ,( ) u(t

Remark 5.9. As noted in the proof of Lemma 5.7, there exists a
sequence of continuous functions c,,(s, t), which approach k(s,¢) in L,
norm. If p > 1 and if ¢, is defined with some care, the kind of argument in
[127 can be applied to prove the existence in C° of u,, such that

1
j als D2l s de(D=unls), ae. 7]

Then, by using the kind of argument as in Theorem 5.8, one can prove that
there are positive constants b, and b, such that b, <u,,(t)<b,, ae. [1],
and some subsequence u,, converges almost everywhere to ue C°, where

jk(s 1) afr) (l) () =uls),  ae [].

Thus Theorem 5.8 remains true for p > 1.

To proceed further we shall need a purely linear result. For any given &
in L,(SxT), ain L,(S)and fin L,(T) we can define 4,: L (S)— L (T)
and A,: L (T)— L (S) by
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(A,w)(t)=L k(s, 1) a(s) w(s)ds  and

(A:0)(s)= | K(s, 1) B(e) o(e) i,
and then B= A, A, is given by
(Bw)(r)=J. ey(r, 5) a(s) w(s) ds, (5.10)
S

where ¢,(r, s)= [, k(r, t) k(s, 1) B(t) dr. The following condition will be
useful.

Assumption 5.11. There exists an integer m =1 such that for any two
points r and s in S there exist points s, S for 0 <i<m, with s,=r and
s =S5, open neighbourhoods G; of s;, for 0 <i<m, and a positive constant
0=58(r,5) with ¢(s;,5,,,)=9 almost everywhere on G,xG,,, for
0<ig<m

LemMa 5.12. Let S and T be compact Hausdorff spaces and suppose that
ds and dt are regular Borel measures of full support on S and T, respectively.
Suppose that ke L (S x T, ds dt) and that k(s, t) 20, ae. [dsdt]. Assume
that w e L,(S, ds) and B L (T, dt) are both positive almost everywhere, and
that Assumption 5.11 holds. Then if C° denotes the interior of the cone of
nonnegative functions in L (S), d denotes Hilbert’s projective metric on C°,
and B is given by (5.10), we have

A(B™)=sup{d(B"x, B™y): x, ye C°} < 0.

Furthermore, we have that B™(C\{0})< C°.

If F=#(B) is the spectral radius of B and p = p(B) is the essential spectral
radius of B, then § <F. Furthermore, there exist ue C° and u* e (L _(S))*
with Bu=fu, B*u* =ru* and u*(u)>0. The map rl— B is Fredholm of
index zero and the eigenvalue 7 is isolated in the spectrum of B and has
algebraic multiplicity one.

Proof. Lemma 5.12 will follow immediately from Theorem 2.4 and
Remark 2.4 on p. 44 in [18] if we prove that B™(C\{0})c C° and
A(B™) < 0. (The assertion that 7/ — B is Fredholm of index zero follows
from Remark 2.4 in [18], because Remark 2.4 implies that 77— B differs
from a linear homeomorphism by a compact linear map.)

580/123/2-5
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It is well-known that for j > 1

(Bw)(r)= ¢/(r,s)als) wis)ds,  where
S
¢r,5)=[ exlrsi)ep (51, 5) dsy

=J' _[ I cl(rasl)cl(slssl)"'Cl(sj—las)dsldsl"'dsj—l'
ss s

It follows from Assumption 5.11, the above formula for ¢,,, and the fact
that ds has full support that for each r and s in S there exist open
neighbourhoods U=U,; and ¥V=V_, of r and s, respectively, and
n=n(r, s) >0 such that c,,(p, 6)2n>0 for almost all (p,c)eUx V.

Now S x S is a compact Hausdorff space with open cover

{U,;xV,:(r,s)eSxS},
so there exists a finite subcovering {U, ,x V¥, ,:1<i<n} and

Cmlp, a) 2 0= n(r;, 5,)>0,
for almost all (p,6)e U, ,xV, ,,for 1<i<n Ifn=min{n,:1<i<n}, we
conclude that c¢,,(p, o) =n, a.e. [dsdt].

On the other hand, it is clear that there exists a constant M so
cn(p, )< M, ae. [dsdr]. If we C\{0}, it follows that, almost everywhere,

(B'"w)(r)=fc,,,(r, s)a(s) wis)ds=n f oaw and

(B™w)(r) < Mchw.

This shows that B™w e C° and, letting e denote the function which is identi-
cally equal to one,

d(B"w,, B"w;) <d(B"w,, e) + d(e, B™w,) < 21log(M/n),

so A(B")<2log(M/n). 1

LemMa 5.13.  Let notation and assumptions be as in Lemma 5.12 except
Jor Assumption 5.11. Suppose that S is connected and metrizable. Assume
that for every s€ S there exists an open neighbourhood U, of s, a nonempty
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open set V c T and a positive constant 8, such that k(s, ()= 4, for almost
all (6,{)eU,xV,. Then there exists an integer m>=1 for which Assump-
tion 5.11 is satisfied, and the operator B satisfies all the conclusions of
Lemma 5.12.

Proof. Tt suffices to prove that Assumption 5.11 is satisfied. By com-
pactness of S we can cover S by finitely many open sets U, 1 <i<n, with
corresponding nonempty open sets V,, 1 <i<n. By assumption we have

k(o,{)> 6 =min{s,: 1<i<n},

for almost all (g,{}e U, xV,, 1<i<n. If v is the measure on T and if
we define x =min{t(V,):1<i<n}, then we find that for almost all
(01,0,)eU,xU,, 1<i<n, we have

¢,(0y, 03) =JT k(a,, 1) k(a,, 1) dt > jy k(oy, 1) k(. 1) dt > 8%1(V,) > 8%«

Let y denote the metric on S and for p> 0 and s€ S, let B,(s) denote the
open ball of radius p and center s. Let p, denote a “Lebesgue number” of
the open cover {U,:1<i<n}, so for any s€S, B, (s)<c U, for some i.
Select a fixed number p >0 so 2p < p,. Because S is connected and com-
pact, there exists an integer m such that for any r and s in § there exist
points s;€ .S, for 0<i<m such that so=r, s,,=5 and y(s;, 5;,,)<p for
0<i<m (see [28]). For s, as above, define G,= B,(s;). If j is chosen so
that B,,(s;) c U;, note that

Gix Gy < Byy(s) X Byy(s) = Uy x Uy,

so c;(6,, 0,) = 6%, almost everywhere on G, x G, ;.
This proves that Assumption 5.11 holds. |

With the aid of Assumption 5.11 and Lemma 5.13 we can generalize
earlier results of this section. Under Assumption 5.11 or the conditions of
Lemma 5.13 we can prove that if the DAD problem (3.5) has a solution, it
is unique (to within scalar multiples) and the function f in (3.5) can be
obtained by an iterative procedure which converges geometrically.

We adopt the following notation. Let A4,, 4,, and c, be defined as before
(immediately before Assumption 5.11). Cg denotes the cone of nonnegative
functions in L (S) and C the cone of nonnegative functions in L (7),
with interiors C5 and C7%, respectively. Define Jg: C5— C% and
Jr: C5— Cs by

1 1
(JSX)(S)=E—) and (JTy)(t)=m,
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and define yY(x)={gx(s)ds for xeL(S,ds). Define F:Cs— C3 and
G:Cs— Cg by
_ _Flx)

Y(F(x))

F=A4,J;4,J; and G(x)

THEOREM 5.14. Let S and T be compact Hausdorff spaces and suppose
that ds and dt are finite regular Borel measures of full support on S and T
respectively. Suppose that o € L (S, ds) is positive, a.e. [ds], fe L (T, dt) is
positive ae. [dt] and {ga(s) ds=§rﬂ(t) dt. Assume that ke L (SxT,
dsdt), k(s,t)=20, ae. [dsdt] and k satisfies condition (4.3). Then
A(CH<=Cr and A,(CF)=Cs. If S is connected and metrizable, S
automatically satisfies Assumption 5.11; otherwise, assume it holds.

With these assumptions the DAD problem (3.5) possesses solutions
feL(S), and ge L,(T) with f and g strictly positive almost everywhere if
and only if F has an eigenvector xy€ Cs. Such an eigenvector xg is
necessarily a fixed point of F. If F(x¢)=x, for some x,eC% and
Vo=A,Jsxq, then f=a/x, and g = B/y, are L, functions which are strictly
positive almost everywhere and solve the DAD problem (3.5). Such solutions
S and g of (3.5) are (if they exist) unigue to within scalar multiples; a fixed
point xqe Cg of F (if it exists) is unique to within scalar multiples. If F has
a fixed point x,€ C3, then for any x € C5 there exists a scalar A(x)> 0 such
that

lim F™(x)=A(x)x,

m— oC

is a fixed point of F, where convergence is in the L norm. The map
x> A(x) is real analytic. Furthermore, for any x e C3, G™(x) converges to
a fixed point of F in C5, and the convergence is geometric.

Proof. The fact that ¢, satisfies Assumption 5.11 if § is connected and
metrizable follows from Lemma 5.13 and the assumption that k satisfies
(4.3). Because ke L_(SxT), k satisfies (4.3) and S and T are compact
Hausdorff spaces with corresponding Borel measures ds and dr of full
support, it is also not hard to see that A,(C3)<= C% and A,(CT)<=Cs.
We leave the details to the reader.

Suppose that felL,(S) and geL,(T) are strictly positive almost
everywhere and solve the DAD problem (3.5). By using the facts
that ke L (S x T), k satisfies (4.3) and S is compact, it is not hard to
see that

xo(s)=jk(s, 1) g(t) dt
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defines a function x,€ C%. Similarly, one finds that if

yolt) = [ kis, 1) f(s) ds

then y,e C7. Equation (3.5) then gives that

a(s)
Xo(5)

f k(s, 1) ds=yo(t), ae [dt], and

Jk( t) f(—)— = Xo(5), a.e. [ds].

This shows that y,=4,Jsxq and xq= A,J 1 yq, 50 xo= F(x,).
Conversely, suppose that F(x,)=4ix, for some x,e C:. Necessarily,
A>0, and writing y,= 4,J5x,, one obtains

yolt) = [ (s, 1) L
Xol$)
ﬂ(t)
Axo(s)=J. y 0 dt, ae. [ds].
These equations yield
B(t)= 4 ((t))k( )“((S;)ds, ae [dt] and
\ 1 B a(s)
,uz(s)_j kO ae (4]

Thus, to prove we have a solution of (3.5), it suffices to prove A=1.
However, we have

LG 0y 28 (s)

J,poa=] [ Soks 025

dsdi= Aj a(s) ds,

and since we assume {sa(s)ds= [ f(t)dt>0, A=1.

It follows that to prove uniqueness (thhm scalar multiples) of L, func-
tions f and g which are strictly positive almost everywhere and solve (3.5),
it suffices to prove that if F has a fixed point x,€ Cg then all other fixed
points of F in C§ are of the form px,, for p>0. Note that F is order-
preserving and homogeneous of degree one, so F is nonexpansive with
respect to Hilbert’s projective metric. Note also that Fis C! (in fact, real
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analytic) on C3%. Suppose that F(x,)=x,€ C%, and define B= F'(x,), the
Fréchet derivative of F at x;. If we set y, = A,J¢xq, the chain rule implies

F'(xo)=B=A4,4,, where

(A, u)(1) = j k(s, 1) &(s) u(s)ds,  where &=u/(x,)?%  and

(A:0)5)= [ K(s, ) Bty olt) ds,  where B =B/(yo)*

Here, 4,: L (S)— L (T) and 4,: L (T)— L_(S).
It follows as in Lemma 5.12 that B= 4,4, is given by

(Bw)(r) = j &(r, 5) &(s) w(s)ds,  where

2,(r, 5)= j k(s, 1) k(r, 1) Bi2) dt.

It follows that there exist positive constants such that k,¢,(r, s) < ¢, (r, 5) <
k,&,(r, 5), where c¢,(r, s) is as in Lemma 5.12. Since ¢, satisfies Assumption
5.11, so does &,. It follows from Lemma 5.12 that the essential spectral
radius, p(B), of B is strictly less than r(B), the spectral radius of B. Also,
there exists an integer m so B™(Cg\{0})< C3. Theorem 3.2 on p. 93 of
{187 now implies that for each x e Cg, there exists a scalar A(x)> 0 such
that
lim F*(x)=A(x)x,,

k— oo

and the map x+ A(x) is real-analytic. In particular this implies that fixed
points of F in C% are unique to within scalar multiples. Because F is
homogeneous of degree one and order-preserving, F is nonexpansive with
respect to Hilbert’s projective metric d on C§ and

F*(x)
Y(F"(x))

The fact that G"(x) converges geometrically to a fixed point of F follows
from Theorem 2.7, p. 78, in [18]. |}

G (x)=

We observe here that in fact the convergence of F™ demonstrated in the
above result is exactly equivalent (after a change of variables) to the
convergence of the “iterative proportional fitting procedure” described at
the end of Section 3.
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Remark 5.15. If B=F'(x,) is defined as in the proof of Theorem 5.14,
Lemma 5.12 actually implies that

1. B(u)=ru for some ue C% and r = r(B), the spectral radius of B,
2. (B)* (u*)=ru* for some u* e (L (S))* with u*(u)>0,

3. rI—Bis Fredholm of index zero, and

4. the dimension of the null space N(rI— B) equals one.

A map B which satisfies these conditions is said to satisfy “condition K-R,”
see p. 41 in [18]). Let Y={xeL,(S)| [ x(s)ds=0} and let G be as in
Theorem 5.14. Because F’(x,) satisfies condition K-R whenever
F(x,) =x,€ C%, it is a special case of an argument in [18, pp. 50-52] that
(I—G')(x0)| Y is one-one and onto Y. This observation will play a crucial
role in our further remarks.

We shall now show how the uniqueness ideas in Theorem 5.14 can be
combined with the implicit function theorem and our results from
Section 3 to prove an existence theorem for solutions of the DAD
problem (3.5).

THEOREM 5.16. Let assumptions and notation be as Theorem 5.14.
Assume that the DAD problem (3.5) has a solution fe L((S) and ge L(T)
such that f and g are positive almost everywhere. Assume that ke L (S x T),
k(s, 1)=0, ae. [dsdt), and k satisfies (4.3). Define K and K (up to sets of

measure zero) by
K={(s,0)| k(s,£)>0} and R={(s,1)| k(s,1)>0}.

Assume that there exists a constant M so k(s,t)<Mk(s, 1) almost
everywhere (so K< K) and that K is a countable union of measurable rec-
tangles. Then there are functions fe L,(S) and §e L,(T) such that fand §
are positive almost everywhere and f and § give a solution of the DAD
problem (3.5) for k. The functions f and g are unigue to within scalar multi-
ples and can be obtained by an iterative procedure as in Theorem 5.14.

Proof. For 0<A<1 define k;=(1—A)k+Ak. Define A?: L. (S)—
Lo (T)and A3: L (T)— L,(S) by

(4l0)(1)= | ksls, 1) as) o(s) s,
and

(Aiw)(s) = jT k(5. 1) (1) w(t) db.



302 BORWEIN, LEWIS, AND NUSSBAUM

Define a C! map F:C3x[0,1] - C$ by F(x, 1)=(A2J;A}Js)(x). For
x € L,(S), define \/I(X)=I sX{s)ds and define Y (a closed linear subspace
of L,(S)) by Y={xeL,(S)|y¥(x)=0}. By assumption and by
Theorem 5.14, there exists x,€ C% such that F(xg, 0)=x, and ¥(x,)=1.
Define

F(x, A)
Y(F(x, 1))’

Define U={ye Y| x,+ yeCs} and define H: Ux [0,1] — ¥ by

Gix, A)= for xeC%, 0<iglL

H(y, \)=xq+y—G(xq+ y, ).

By Theorem 5.14, the DAD problem (3.5) (with &k, replacing k in (3.5)) has
a solution if there exists y € U such that H(y, 1) =0. However, Remark 5.15
implies that the Fréchet derivative of the map y+— H(y, 0) at y =0 is one-
one and onto Y. Thus we can apply the implicit function theorem to H:
There exist 1,>0 and a C' map A— y,e Y for 0<A<4, such that
xo+ y,eU and H(y,,A)=0. It follows from Theorem 5.14 that if we
define

o B
= , and g, =,
X0+ ¥; 2T AN s(xo+ y3)

S

then f,e L,(S), g,€L,(T) and f; and g, are positive almost everywhere
and solve (3.5) for k;.
For 0 <A <1 define

kX (s, t)=als) k;(s, 1) B(2),
so k¥(s, t)=oa(s) k(s, 1) B(). For 0 < A< A, define

1 1
= , and g,
Xo+ Ya g AT s(x0+ p1)

I
and note that /*e C5 and gf e C%. Take a fixed 1€ (0, 4,), and define

SX(s) gH () k¥ (s, t)/k¥(s, 1)
u*(s, t)= =f¥s) gX O ks, t)ky(s, 1),  for (s, 0)ekK
0, for (s,1)¢ K.

We easily derive from our assumptions on k and % that

-~

X)) gy <u*(s, NS LU -A)M+ 4] fi*(s) g¥(1)  on K
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This implies that u*(s, 1)> 0, a.e. [k ds dr] and that therS exist constants u,
and p, such that 0 < p, <u*(s, t) < u,, ae. [dsdt] on K. If we define ¢ as
in Section 2, the above inequality shows that

” Slu*(s, 1)) kX s, 1) ds dt < .
Also u* has been chosen so that
j u*(s, ) k¥(s, ) dt=afs), ae [ds]  and

ju*(s, Nk¥s ) ds= (),  ae [dt].

It follows that condition (CQ1) of Section 3 is satisfied for £, so there
exists functions f* and g* which satisfy

'{f*(s) ki¥(s, t) g*(¢) dt = afs), ae. [ds], and

[rr@ ks ne*ds=po),  ae [a],

where f*(s) g*(t)e L,(Sx T, k¥ ds dt). The results of Section 4 imply that
f* and g* are measurable, and the assumption that « and f are positive
almost everywhere implies immediately that f* and g* are positive almost
everywhere. We claim that /* € C3 and g* € C%. If we can prove this, then
f= gf"‘ eL(S) and g=Bg*e L,(T) will satisfy the DAD problem (3.5)
for k.

To prove that f* € Cg, notice that Fubini's theorem gives

ro=([Es s emar)

where jE(s, 1) f(r) g*(t)dt < 0, ae. [ds]. By (4.3), we can cover S by a
finite number of open sets U,, for 1 <i<m, such that for each i there exists
an open set ¥, = T and a constant x,> 0 such that k(s, ¢) > x, for almost all
(s, )e U;x V.. If x =min, {x,}, we see that for almost all se U,,

+ao> L k(s, 1) B(2) g*(1) di = x L, B(1) g*(2) dt.
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Because f# and g* are positive almost everywhere, we have

= min {Li B(1) g*(z)dt}>0.

1<ism

We conclude that, for almost all se S,
[ Kts, 0B g*(0y dr =8 =35,,
T

and f*(s)<d;'. A similar argument shows that g*(¢z) is bounded in
L (T), so g*(1) <8, ! ae. [dt]. However, this yields

ro=([ Bsosogma) >iEze (] soa) . ae (a)

so f*e Cs. A similar argument shows that g* e C5.

Because we assume that k < Mk almost everywhere and k satisfies the
conditions of Theorem 5.14, it is not hard to see that k also satisfies
the conditions of Theorem 5.14. This gives the final assertion of the
theorem. |

By combining Theorems 5.8 and 5.16, we can now give a new existence
and uniqueness theorem for the DAD problem (3.5} and a geometrically
convergent iterative procedure for constructing solutions.

THEOREM 5.17. Let S be a compact Hausdorff space with a finite,
regular Borel measure of full support, 1. Assume that ke L ,(Sx S, Tx 1) is
nonnegative almost everywhere and that o€ L,(S) is positive almost
everywhere. For each s€ S, assume that there exists an open neighbourhood
G, and a positive number 8,>0 such that k(r,1)=9, for almost all
(r, t)e G, x G,. Define

k*(s, )= min{E(s, 1), k1, 5)} and c¥(r, 5= I k*(r, t) k*(s, t) dr(2),

and suppose that Assumption 5.11 is satisfied by c¥.

Suppose that K= {(s,t)e Sx S | k(s, 1)> 0} is a countable union of
measurable rectangles. Then there exist functions f and g € L,(S) which are
positive almost everywhere and satisfy

(1O Fs D g de)=als)  ac.  and

[ 76) ks, 1) (1) de(s) =at)  ae
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The functions f and g are unique to within scalar multiples and can be
approximated by the iterative procedure in Theorem 5.14. If k and a are
continuous, f and g can be chosen continuous.

Proof. 1f we apply Theorem 5.8 to k* and define f* = g* = a/u, where

f k*(s, 1) a(t) (;%) di(t)=u(s), ae.,

we find (using the symmetry of £*) that

J' FH(s) k*(s, 1) g*(t) de(t) =of(s)  ae.  and

j FHs) k*(s, 1) g* ) des)=alt)  ae.

We now apply Theorem 5.16, with k* replacing k. Our definition of k*
ensures that k* <k a.e. The assumptions about G, and &, imply that & and
k* satisfy (4.3). Thus the hypotheses of Theorem 5.16 are satisfied, and we
obtain the existence of f and g. The uniqueness of f and g follows from
Theorem 5.14, and the continuity of fand g (when k and o are continuous)
follows from Corollary 4.12. |

If S is connected and metrizable, Theorem 5.17 takes a simpler form.

COROLLARY 5.18. Let S be a connected, compact, metric space with a
finite, regular Borel measure of full support 1. Assume that EeLw(Sx S,
Tx 1) is nonnegative almost everywhere and that oe L,(S) is positive
everywhere. For each s€ S, assume that there exists a positive number 6,
and an open neighbourhood G, of s such that k(r,1)=6, for almost all
(r,)eG,xG,. In addition_assume that KE={(s,1)| k(s, t)>0} is a coun-
table union of measurable rectangles. Then there exist functions [ and
g€ L,(S) which satisfy all the conditions of Theorem 5.17, so the DAD
problem (3.5) is uniquely solved for k and o« = p.

Proof. If k* is defined as in Theorem 5.17, we have k*(r, t)>2 4, for
almost all (r, t)e G, x G,. It follows that k* satisfies condition (4.3), so
Lemma 5.13 implies that c¥ satisfies Assumption 5.11. Corollary 5.18 now
follows immediately from Theorem 5.17. |}

Conclusion

The techniques leading to the main results in this paper comprise a
mixture of variational and fixed point methods. Many of our results appear
inaccessible without the combined use of both approaches.
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