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I. Introduction 

Dual i ty  theorems are central to the study of cons t ra ined  opt imizat ion problems.  

From the point  of view of problems arising in practice, their  usefulness is twofold:  

unde r  appropr ia te  condi t ions  (constraint  qualif icat ions) ,  first they enable  us to check 

whether  a given feasible solut ion is optimal ,  and  secondly we can often find the 

opt imal  solut ion by first solving the cor responding  dual  problem. When  the pr imal  

problem is inf in i te-dimensional  two difficulties become apparent .  The most  straight- 

forward constra int  qualif icat ion (the "Slater"  condi t ion)  is frequently not  met in 

practice, since it requires the existence of an inter ior  po in t  of  a convex set which 

often has empty interior. Fur thermore ,  since the dual  p rob lem will general ly also 

be inf in i te-dimensional ,  it may be very hard to solve. 

In  this paper  we shall pr imari ly be concerned  with problems of the form 

(P) inf  f ( x )  

sub jec t to  A x  <~ b, 

x c C ,  

* Present address: Department of Combinatorics and Optimization, Faculty of Mathematics, University 
of Waterloo, Waterloo, Ont., Canada N2L 3G1. 
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where C is some convex subset of a vector space X, f :  X ~ ] - ~ ,  ~ ]  is convex, 
A : X ~ ~ n is linear and b 6 ~". This convex model covers a wide variety of interesting 

problems which arise in practice. Examples we shall consider include constrained 
approximation problems, variants of semi-infinite linear programming, and semi- 

infinite transportation problems. 

We shall construct a powerful duality theory for this class of problems which has 

two main advantages over standard duality theorems in infinite-dimensional optimiz- 

ation. First, the new constraint qualification required to apply the duality result is 
much weaker than the standard Slater condition, and equally easy to check: rather 

than requiring an interior point of  C to be feasible, we only need a feasible 

point in the 'quasi relative interior' of C, an extension of the idea of relative 

interior in ~n. The quasi relative interior will frequently be nonempty even when 

the interior of C is empty. Secondly, under suitable conditions on the space X 

and when the function f and the set C are sufficiently simple, the corresponding 

dual problem is finite-dimensional and of very simple form: it is frequently compu- 

tationally tractable, and by first solving it we can often calculate a primal optimal 

solution. 
An outline of the paper is as follows. We begin in Sections 2 and 3 by studying 

the notion of the quasi relative interior of a convex set. We develop a number of 

its elementary properties, largely analogous to results for relative interior in ~n. An 

important property of the relative interior of a convex set in R n is that it is nonempty; 

we give a parallel result for quasi relative interiors. We also compute the quasi 
relative interior of some important sets, including the positive cones of some standard 

Banach spaces. 
The next section (4) presents the fundamental result, a Fenchel duality theorem. 

It is from this result that we derive the duality theory described above. We also 

obtain as corollaries a subgradient formula and a minimax theorem. 

The calculation and uniqueness of primal solutions, and the numerical treatment 

of the dual problem depend on the differentiability of the dual objective function. 

Many of the problems we consider are posed in vector lattices, so Section 5 is 

devoted to studying the differentiability of certain commonly arising real-valued 

convex functions in vector lattices. We also derive some properties of the absolute 

kernel of a positive linear functional on a vector lattice, which we require in what 

follows. 

In Part II of this work we study the application of these ideas to more concrete 

models. We concentrate on two special cases: the case when C is a cone (Section 

6, 7) and the case when C is of the form 

I xx ,   l x=e  o o  achi I 
where e~>0 is some fixed element of the partially ordered vector space E 
(Section 8, 9). 
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With C a cone we obtain duality results for semi-infinite linear programming and 
variants, and for certain quadratic programs in the Hilbert space of square integrable 
functions, L2(T, p~). When the function f is a norm we obtain the constrained 
interpolation problems considered in, for example,  Irvine, Marin and Smith (1986), 
and spectral estimation problems (see Ben-Tal, Borwein and Teboulle, 1988 and 

1989). 
In the second case, where C is of  the form (*) (and X = E ' ) ,  when the function 

f is linear we obtain an analogue of many of the features of classical linear 
programming theory. As examples we consider semi-infinite linear programming 
with an upper  bound constraint, and Ll-approximat ion.  In Section 9 we study two 
more examples: the semi-infinite transportation problem considered in Kor tanek 
and Yamasaki (1982), and the generalized market area problem (see Lowe and 
Hurter, 1976). 

Throughout this work we shall address the standard questions of constrained 

optimization: the formulation of a dual problem, conditions ensuring the equality 
of  primal and dual values, attainment and uniqueness in the primal and dual 
problem, optimality conditions and complementary slackness, and the derivation 
of a primal opt imum from the solution of the dual problem. We shall for the most 
part  defer consideration of computational aspects to a later paper. 

The convex analytic terminology we use, when not explicit, is that of Rockafellar  
(1970). We also use ideas and terminology from the theory of vector lattices 
extensively in what follows. Vector lattices provide an extremely useful unifying 
framework for many of our problems. However, in order to maintain accessibility, 
where possible we have given elementary or convex analytic proofs of the results 
we use. The reader will find that the calculations we perform in lattice notation may 
be easily followed through in concrete spaces, with no knowledge of vector lattices. 

2. Quasi relative interiors 

We begin with a simple result concerning convex sets in Rn, which will motivate 

our definition of the quasi relative interior of  a set. Given a vector space X and 
C c  X, we denote the cone generated by C by P C  ={) tx lx  ~ C, & oR, A/>0}. 

Proposition 2.1. Suppose C c E n is convex. Then ~ ~ ri C if  and only i f  P( C - ~) is a 

subspace. 

Proof. Suppose ~ ~ ri C, so for some neighbourhood N of ~, N c~ aft C c C. It 
follows that P ( C  - :~) = (aft C) - £, which is a subspace. On the other hand, suppose 
: ~ r i  C, so we can properly separate :~ from C: for some y ~ E n ,  yX~<~yX x for all 
x ~ C with strict inequality for some 2 c C (Rockafellar,  1970, 11.3). Thus yXz >~ 0 

for all z c g ~ ( C - £ ) ,  and : ~ - £ ~ P ( C - ~ ) ,  but ~ - ~ P ( C - ~ ) ,  so P ( C - ~ )  is not 
a subspace. [] 
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Lemma 2.2. Suppose C ~ ~n is convex. Then C is a subspace i f  and only i f  cl C is a 

subspace. 

Proof. I f  C is a subspace then cl C = C. On the other hand,  if C # cl C and cl C 

is a subspace then C lies in a closed halfspace o fc l  C, by Rockafel lar  (1970, 11.5.2), 

which is clearly impossible. []  

Thus in Proposi t ion 2.1 we could replace P ( C  - ~ )  with its closure. This motivates 

the following definition. Hencefor th ,  X will be a Hausdorff  topological  vector space. 

Definition 2.3. For  convex C ~ X, the quasi relative interior of  C (qri C)  is the set 

o f  those x e C for which cl P ( C - x )  is a subspace. (We also write ~--qri  C, where 

~- denotes the relevant topology.)  

The above observat ion shows that in R" the notions o f  relative interior and quasi 

relative interior coincide: 

Proposition 2.4. Let  X be a normed vector space, and C c X convex and finite- 

dimensional  Then qri C = ri C. 

Proof.  Restricting attention to aft C, we are reduced to the E n case (since all norms 

on R n are equivalent).  The result now follows f rom Proposi t ion 2.1 and 

Lemma 2.2. []  

Notice that, unlike the finite-dimensional case, we may not  have qri C = qri(cl C).  

For instance, if C is a dense subspace o f  X then qri C = C while qri(cl C) = X. 
The following result is trivial. 

Proposition 2.5. Suppose X = [I~=1 X~, where the Xi's are topological vector spaces, 

• " - I ] m  (qriC,) .  [] and that Ci c X,. is convex fo r  each i. Then qrl(lqi=/ Ci) - i=1 

Proposition 2.6. In a normed vector space the quasi relative interiors o f  a convex set 

in the weak and norm topologies are identical 

Proof. The result follows immediately  from the fact that  in a normed vector space, 

a convex set has identical weak and norm closure. []  

The following result is extremely impor tant  in what  follows. It will be strengthened 
in Proposi t ion 2.10. 
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Proposition 2.7. Suppose C c X is convex, and A : X -~ ~" is a continuous linear map. 

Then A(qri  C)  c r i (AC).  

Proof.  Let x c qri C, so cl P ( C  - x) is a subspace.  It follows that A(cl P ( C  - x))  c R" 

is a subspace,  and hence also closed. But 

A(cl  P ( C  - x)) c c l ( A P ( C  - x)) (since A cont inuous)  

c cl(A[cl  P ( C - x ) ] )  

= A(cl e ( C  - x ) ) .  

Hence c l ( A P ( C  - x ) )  is a subspace,  and therefore,  by Lemma 2.2, so is A P ( C  - x )  = 
P ( A C - A x ) .  The result now follows by Proposi t ion 2.1. []  

The next result gives what  is often the most  useful tool in determining the quasi 
relative interior o f  sets. X*  denotes the topological  dual o f  X, and N c ( ~ ) c  X *  

denotes the normal  cone to C at ~ c C:  

No (:~) = {th • X * ] ¢  (x - ~) ~ 0 Vx • C}. 

Proposition 2.8. Let X be locally convex, C ~ X be convex, and ~ • C. Then ~ • qri C 

if and only if Nc (~ )  is a subspace of  X*.  

Proof.  For  K c X, the polar  o f  K is given by 

K°={ch•X*lch(x)<~ 1 V x •  K } =  {6 • X*l  ch(x)<~O V x c  K}, 

if K is a cone. Similarly, for a cone L c  X*,  

°L={xcX[4~(x)<~OV4~• L}. 
It is immediate  that if K is a subspace,  so is K °, and if L is a subspace,  so is °L. 

Now for  ~ h • X * ,  6 ( x - ~ ) ~ < 0  for all x • C  if and only if ~b(u)<~0 for  all u •  

cl P ( C - ~ ) ,  by  the continuity of  4). Thus N c ( ~ ) =  (cl P ( C -  ~))°. 
On the other  hand,  

°Nc(~)  = °((cl P ( C  - ~))°) = cl P({0} c~ cl IP(C - ~ ) )  = cl IP(C - ~ ) ,  

by the bipolar  theorem (Holmes,  1975). The result now follows. [] 

Lemma 2.9. Let X be locally convex, C c X be convex, and suppose x~ • qri C and 

x2 • C. Then AXl + (1 - A )x2 • qri C, for all 0 < A <~ 1. 

Proof. By convexity,  A x ~ + ( 1 - A ) x 2 e  C, and we can assume A <1 .  Suppose  ~b• 

Nc  (Axl + (1 - A )x2), so & (x - Axl - (1 - A )x2) <~ 0 Vx • C. Putting x = xl gives ~b (xl - 

x 2 ) ~ 0 ,  while x = x 2  gives 4~(x2-xl)<~O, so &(Xl)=  ~b(x2). Thus ch(x-xl)<~O for  
all x e C, or O e Nc(x~). 

But Xl • qri C, so by Proposi t ion 2.8, -4~ e N c ( X l )  also. It follows that 

- q ~ ( X - A X I - ( 1 - A ) X 2 ) ~ O  f o r a l l x •  C, 

or  -~b • Nc(Ax~ + (1 - A)x2). Thus Nc(Ax~ + (1 - A ) x 2 )  is a subspace,  and the result 
follows by Proposi t ion 2.8. [] 
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Notice that, unlike in the finite-dimensional case (Rockafellar, 1970, 6.1), this 

result can fail if we allow x2 c cl C. For example, let X = C[0, 1], with C being the 

dense subspace of all polynomials. Then qri C = C, cl C = X, and the result clearly 

fails. 

We are now ready to strengthen Proposition 2.7. 

Proposition 2.10. Let X be locally convex, C c X be convex, and A : X ~ ~ a con- 

tinuous linear map. I f  qri C ~ ~ then A(qri C) = ri(AC). 

Proof. By Proposition 2.7, A(qri C) c ri(AC). Suppose y c ri(AC). By assumption, 

there exists x~cqri C. For some e > 0 ,  y - e ( A x ~ - y ) c A C ,  so for some x z c C ,  

y = A ( ( e / l + e ) x , + ( 1 / l + e ) X z ) 6 A ( q r i  C), by Lemma 2.9. [] 

Proposition 2.11. Let X be locally convex, and C c X be convex. Then qri C is convex. 

Proof. Immediate, by Lemma 2.9. [~ 

We shall see in the next section that in the case where C is the positive cone in 

a topological lattice, the concept of quasi relative interior is very close to the concept 

of quasi-interior in Schaefer (1974). Schaefer shows in particlar in this case that if 

X is locally convex and qri C # 0 then qri C is dense in C, that if int C ¢ ~0 then 

qri C = int C, and that if X is separable and complete metrizable then qri C ¢ 0. 

We shall prove analogous results to these. 

Proposition 2.12. Let X be locally convex and C c X be convex. I f  qri C # 0 then 

cl(qri C ) -  cl C. 

Proof. Clearly cl(qri C) c cl C. Pick ~ c qri C, and suppose x ~ C. By Lemma 2.9, 

A~ + (1 - A)x c qri C, for all 0 < A <~ 1. Letting A ~ 0 it follows that x c cl(qri C). Thus 

C c cl(qri C), so cl C c cl(qri C), which completes the proof. [] 

Theorem 2.13. Let X be locally convex and C, D c X be convex, i f  C N int D # 0, 

then (qri C) f] (int D) = qri(C c~ D). 

Proof. Let ~ ~ C c~ int D. Note first that qri(C c~ D) c i n t  D. To see this, suppose 

0 c qri(C c~ D), but 0 ~ int D. Then we can separate (Holmes, 1975): for some nonzero 
~bcX*, ~b(x)~<0, for all x c D .  In particular, O~Nc~o(O) ,  but ~ c C c ~ D  and 

d~(x) < 0, since ~ c in t  D. Thus - O  ~ Nc~D(O), so N~,~p(O) is not a subspace, which 

is a contradiction by Proposition 2.8. 

Now suppose 0 c C c~ int D. Then Nc,~D(O)= No(O), since if ~ c Nc~D(O) then 

for any x c  C there exists e > 0  with ex~ Cc~D, so 4~(ex)<~O, and thus ~b(x)<~0: 

therefore cbcNc(O). It follows that ( i n t D ) c ~ q r i ( C c ~ D ) = ( i n t D ) c ~ ( q r i C ) ,  by 

Proposition 2.8. The result now follows. [] 



J.M. Borwein, A.S. Lewis/ Partially finite convex programming I 21 

Corollary 2.14. Let X be locally convex and D ~ X be convex. I f  int D ~ (0 then 

qri D = int D. 

Proof. Put C = X  in Theorem 2.13. [] 

The next result gives a geometric interpretation of the idea of a quasi relative 
interior point. First, a definition from Peressini (1967). 

D e f i n i t i o n  2 .15 .  Let  C ~ X be convex, and x c C. T h e n  x is a nonsupport point of 
C if every closed supporting hyperplane to C at x contains C. 

Proposition 2.16. Let  X be locally convex and C ~ X be convex. Then the quasi relative 

interior o f  C is exactly the set o f  nonsupport points o f  C. 

Proof. By Proposition 2.8, ~ q r i  C if and only if for some 4, c X * ,  4 , ( x - ~ ) ~ < 0  
for all x ~ C, with strict inequality for some ~ c C, and this ~b then defines a closed 
supporting hyperplane to C at £ which does not contain 2. [] 

The importance of the quasi relative interior of  a set, as we have noted already, 
is that it is often nonempty even when C has empty interior. Our next main result 
gives conditions ensuring qri C ~ fJ. We begin with two lemmas. 

Lemma 2.17. Let X be be a separable normed space. Then every subset o f  X *  is 

tr( X * ,  X)-separable.  

Proof. Let C ~ X*. The unit ball B x .  is o-(X*, X ) - c o m p a c t  by the Banach-Alaoglu 
Theorem (Jameson, 1974) and ~ (X* ,  X)-metr izable  (Jameson, 1974, 27.8). It fol- 
lows that nBx .  is ~r(X*, X)-separable ,  since a compact  metric space is separable 
(Jameson, 1974, 10.3). Since every subset of a separable metric space is separable, 
(nBx . )ca  C is ~r (X*,X)-separab le  (Jameson, 1974, 6.15), and therefore C =  
U~=,  ((nBx.) ca C) is or(X*, X)-separable .  [] 

We recall the following definition from Jameson (1974). We say that a set C c X 
is (7-) CS-closed if for any A,, >t0 with ~ o ~  A, = 1 and any xn ~ C, n = 1, 2 . . . .  , for 
which ~N=~ A,x,  z .  some ~, ~ c C. Clearly every CS-closed set is convex. In a Banach 

space, all convex sets which are closed, open, finite-dimensional or G~'s are CS- 
closed (see Borwein, 1981). 

Lemma 2.18. Suppose (X,  ,c) is a topological vector space with either 

(a) (X, ~-) separable and complete metrizable, or 

(b) X = Y* with Y a separable normed space, and "; = or(Y*, Y) .  

Suppose that C c X is 7-CS-closed. Then there exists a T-dense sequence ( X , ) l  c C 

and an>O,  n = l ,  2 , . . . ,  with ~n~_l c~ ,= l  such that ~nN~anXn~-~some x c C  as 

N ~ .  
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Proof. (a) C is separable, since a subset of  a separable metric space is separable 
(Jameson, 1974, 6.15). Pick (X,) l  dense in C. Let p be a pseudo-norm on X such 
that the metric (u, v) ~ p(u - v) generates the topology ~- (Schaefer, 1971, 1.6.1). 
Then p is clearly continuous, so for each n we can pick 0</3 ,  <2  " such that 
p( /3 , x , )<2- ' .  The s e q u e n c e  (~nm__l/3mXrn)l is Cauchy, so by completeness 
Z ~ : i / 3 ~ x ~ - ~ s o m e  ~ as n ~ .  Now put c~, ,=(Z,~, /3 , )  t/3 .... so a ~ > 0  for each 
m, Z ~ : ,  a~ = 1 and Z" ,~=~ amX,,-~ some 2 =  (~,=~/3,) ~2. By CS-closure, ~ c  C. 

(b) By Lemma 2.17, C is ~(Y*,  Y)-separable, Pick (x , )~ ,  ~r(Y*, Y)-dense in 
C. Choose 0 < / 3 , < 2 - "  such that /3 ,  nx, l ] .<2  " for each n. 

Then (Z2=~ f l ,X , ) l  is Cauchy and (Y*, ]]. [[.) is complete, so E~,--,/3,,x,~ I1-11., 

some ff as n-->~. Now put a m = ( ) ~  1/3, )-1/3,,, so a m > 0  for each m, Z : = l  a,, 
=1,  and Z",,:~a,~xm IH., some £=()~,~ ~/3,)-~ff, as n ~ .  It follows that 

n o-( Y*, Y) 
~m:~ a,~x,,, , ~, as n-* ~ ,  and by CS-closure :~ ~ C. [] 

Theorem 2.19. Suppose (X, T) & a topological vector space with either 
(a) (X, .r) a separable Frdchet space, or 
(b) X = Y* with Y a separable normed space, and ~" = o-( Y*, Y). 
Suppose that C ~ X is CS-closed. Then ~--qri C # 0. 

Proof. In either case (X, ~-) is locally convex, and by Lemma 2.18 there exists dense 
(X,)l in C and c~,>0, n = l ,  2 , . . . ,  w i t h X , = l c ~ , = l  such that X , = l c ~ , , x , , ' S c C  
as N -  ~.  We claim 5 c qri C. 

Suppose & c Nc(f;),  so ~b(x-5)  ~< 0, for all x ~ C. In particular, &(xn) ~< ~b(5) for 
each n. Suppose that &(x,,) < &(5), for some m. Then we would have 

N 

lira & ~ a ,x ,  
N ~ c o  n ~ l  

(since ~b continuous) 

( lim a,,&(Xm)+ • a,~b(xn 
N ~ o o  n = l  

n ~ m 

n~ rn 

N 

: ~(~) lira E a ,  
N~oo  n = l  

= 4 , ( ~ ) ,  

which is a contradiction. It follows that 4)(x,) = (2) for each n, and since (xn)~ is 
dense in C and & is continuous, &(x) = &(~), for all x G C. Therefore -& c Nc(~) ,  
so Nc(:~) is a subspace. Proposition 2.8 now gives the result. [] 
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We conclude this section with an example which illustrates the computation of 
a quasi relative interior, and which is useful for constructing counterexamples. 

E x a m p l e  2 . 2 0 .  Define a convex set C c C2(N) by 

c := {x ~ 6111xll, ~ 1}. 

Then 

qri C = C\{x e g2l Ilxll, = 1, x.  = 0 Vn > some N} .  

Proof. Suppose 2 c  (7. For any yc {z, ye No(2) if and only if (x-2, y)<~O for all 
x c C ,  o r  

sup{,,~ x,Y,,l~lx,,[~l, xcg2}=Y/2,Y,,. 

This is equivalent to [[ y]]~ = (2, y), and in this case 

II ylloo= E 2~y~ ~ E  12~l ly.I ~ Ilylloo 2 I~.l = Ily11~11211, ~ II yLo, 
n n n 

(2.1) 

implying equality throughout. 
Now suppose 2¢  qri C, so certainly there exists O¢ y 6 No(2). It follows from 

(2.1) that 112111 = 1 and that l y,[ = l[ y]l~ > 0 whenever 2, ~ 0. Since y c ~2 we must 
have 2n = 0 for all n sufficiently large. 

Conversely, suppose 2 c E~ with 112111 = 1 and 2n = 0 for all n > N. Define y c {2 
by y, = sign 2,, where 

1, t > 0 ,  

s i g h t =  0, t = 0 ,  

-1 ,  t < 0 .  

Then IlYll~= 1 and (2, y) = Y~, 2 ,y ,  =5~, [x,I = Llxlll = 1, so by (2.1), yc No(2). 
However, ( 0 - 2 ,  y ) = - l < 0 ,  so -y~Nc(2).  Thus by Proposition 2.8, 

qri (7. [] 

2~  

Now consider the following example. Let A : {1 ~ {2 be the (continuous) injection 
(notice Ilxl]2<~ [IXlll always). Let B be the unit ball in {~. By Corollary 2.14, 
qri B = int B, so A(qri B ) =  {x ~ {2l [[Xlll < 1}. But as the above example shows, 

qri(AB) = {x e {2[llxll, < 1} ~ {x ~ 6111x II, = 1 and x, ¢ 0 infinitely often}. 

In particular (1/2")~ c qri(AB)\A(qri B), so A(qri B ) #  qri(AB). Thus Proposition 
2.10 fails to extend to the case where A has infinite-dimensional range. 
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On the other  hand,  Proposi t ion 2.7 will extend, providing the spaces involved are 

locally convex. 

Proposition 2.21. Let  X and Y be locally convex with C c X convex and A : X - ~  Y 

continuous and linear. Then A(qri  C) a qr i (AC) .  

Proof. Suppose 2 c q r i  C, so by Proposi t ion 2.8, No(Y)  is a subspace. Suppose 
~b c N A c ( A ~ ) ,  so ( a ( A x - A 2 ) < ~ O ,  for all x ~  C, or AT~b ~ Nc (~ ) .  Then -Arab  c 

N o ( 2 )  also, or -~b c N A c ( A 2 ) .  Thus N a c  (A2) is a subspace,  so by Proposit ion 2.8, 

A ~ c q r i ( A C ) .  [] 

Example 2.20 also generates the following counterexample  to the conjecture that 

qri C1 c~ qri C2 a qri(Cl c~ C2) (cf. Theorem 2.13). Let X = {2(~), and define :~ := 

( 1 / 2 " ) ~ c  {2. Set C~ := {x I Ilxll~ ~ 1} and C2: = {c~ff I c~ c R}. Then from Example 2.20 
it is easy to see that q r i C ~ n q r i C z = { c ~ Y l - l < ~ a ~ < l } ,  whereas q r i ( C ~ C 2 ) =  

{c~ff[-1 < a < 1}. Thus in particular,  ~ c  (qri C~ n qri C2)\qr i (Cj  c~ C2). 

3. Examples of  quasi relative interiors in vector lattices 

We now turn to the computa t ion  o f  the quasi relative interior o f  some specific sets 

which will play a large role in what  follows. We begin with the case where C is a 

cone. We will be particularly interested in the case where C is the positive cone in 

a normed vector lattice. We begin therefore with some lattice-theoretic ideas (see 

Schaefer, 1974 and Peressini, 1967). 
We shall use the following definitions from Peressini (1967). We shall write the 

lattice operat ions as x v y and x ^ y for  the supremum and infimum of  x and y 

respectively. As usual, x + = x v 0, x -  = ( - x )  +, and Ix] = x v ( - x ) .  Let X be a vector 

lattice. A subspace I o f  X is an ideal if y c I whenever  x c 1 and ]Yl ~< Ix] • I f  X is 
the direct sum of  two subspaces,  I and J ( X  = I O J )  then this sum is order direct 

if x ~> 0, x = x~ + x2 with xl c / ,  x2 e J implies x~, x2 ~> 0; this is always the case if I 

and J are ideals (Schaefer, 1974, II.2.7). X is Archimedean if nx <~ y for all n ~ N 

implies x<~ 0, and (stronger) X is (countably) order complete if the supremum of  

every (countable)  majorized subset of  X exists in X. A subset B of  X is order 

bounded if B is contained in some order interval Ix1, x2] = { x c X lxl <~ x <~ x2}, and 
a linear functional  & : X ~ N is order bounded if it maps order  bounded  sets in X 

to order  bounded  sets in N. The space o f  all order  bounded  linear functionals on 

X, ordered by the cone o f  all positive linear functionals,  is called the order dual of  

x (x~). 
A net {x~ [c~ c K} in X order converges to xoc  X if it is order  bounded  and there 

exists a net {y ,  l a c K }  in X with infy~ = 0  and [x~-xol<~y~<~y~ for all c~ <~/3. A 

linear functional  ~b : X ~ N is order continuous if the net {tb(x,) I c~ c K} order  con- 

verges to 0 in [2 whenever  {x~ [c~ c K} order  converges to 0 in X. I f  in this definition 
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we replace 'net '  by ' sequence '  then we call q5 sequential ly  order continuous. The 
speces of  all order  cont inuous and sequential ly order  cont inuous  linear funct ionals  
(ordered by the cone of  posit ive l inear functionals)  we denote  by xb0 and X b 
respectively. Clear ly xbo ~ X b. I f  X is Arch imedean  then X b c X b (Peressini,  1967, 
I5.15), and in this case Xo b and xbo are ideals in X b (Wong and Ng, 1973, 10.17). 

Similar definitions of  order  convergence  and order  cont inui ty  may  be found  in 
Schaefer  (1974), in terms of  filters ra ther  than nets. It should  however  be noted that  
Schaefer ' s  definitions may  not be equivalent  to ours if X is not order  comple te  (see 
Schaefer ,  1974, p. 141). The definit ion of  order  cont inui ty in Wong and Ng (1973) 
again  differs slightly f rom ours, but coincides at least when X is Arch imedean .  

Finally, a vector  lattice X equ ipped  with a norm I1" n is called a normed lattice if  

]xl<~ [y] implies [Ix n <~ n yn; if  ( x ,  H" H)is comple te  then X is a Banach  lattice. Any 
no rm ed  lattice is Archimedean .  We denote  the topological  dual of  (X, 11" II) by X* .  
X+ will always denote  the posit ive cone in X. 

Proposit ion 3.1. Let  X be a vector lattice. Then X b is an order complete vector lattice, 

with lattice operations given by ( for  x >~ O) 

(q~l V •2)(X) = sup{t~I(X1)-~ ¢2(X2) IX, d-X2 = X, X,, X2 ~> 0}, 

(~bl ^ 0 2 ) ( x ) =  in f{Ol (x l )+  (a2(x2) lx ,+x2  = x, x , ,  x2 ~> 0}. 

Proof.  Schaefer  (1974, II.4.2). [] 

Proposition 3.2. Let  X be a normed lattice. Then X *  is an ideal in X b, and an order 

complete Banach  lattice under its dual  norm and  ordering. Furthermore,  i f  X is actually 

a Banach  lattice then X * =  X b. 

Proof.  Schaefer  (1974, II.5.5). [] 

I f  X is a vector  lattice and M is a subspace  of  X, o rdered  by the cone X+ c~ M, 
then let us denote  the lattice opera t ions  in M by x~ ^Mx2 and x~ vMx2 (if they 
exist), for x~, x2c M. Recall that  M is a sublattice of  X if x~ ^ x2, xl v x2~ M for 
all x~, x2 6 M. 

Lemma 3.3. I f  X is a vector lattice and  M c X a sublattice, then x 1 A X 2 = X 1 A M X2 

and  x~ v x2= xl  v ~ x 2 ,  f o r  all x~, x 2 c  M. 

Proof. By definition, x~ ^ x2 c M, and xl A X2 <~ Xl, X2 SO certainly Xl A x2 ~M Xl, x2. 
Suppose  x c M  and x ~<Mx~, x2. Then  x<~x~,  x2, so x < ~ x ~ ^ x 2  and therefore  
x <~MXl^X2.  It follows that  Xl ^Mx2 exists and equals X~AX2. Similarly 
f o r x ~ v x 2 .  [] 
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Proposition 3.4. Let X be a vector lattice and M an ideal o f  X. Then M is a sublattice 

of X. 

Proof. Easy to verify (Schaefer, 1974, p. 56). [] 

Theorem 3.5. Under evaluation, every normed lattice X is lattice isomorphic to a 

normed sublattice o f  its bidual X**.  

Proof. Schaefer (1974, 11.5.5, Corollary 2). [] 

A 

Notice in particular that this implies x ÷=  (:~)+, where : X  ~ X** denotes the 
evaluation map. 

Recall that if (X, Y) is a dual pair of  vector spaces, and S c X is a convex cone, 
then the dual cone S + c  Y is given by 

S + : = { y ~  Yl(x ,y)>~O for all x ~  S}. 

Definition 3.6. Suppose (X, Y) is a dual pair of  vector spaces, with X and Y partially 
ordered by convex cones Sx and Sy respectively. We call ((X, Sx), (Y, Sy)) a dual 

lattice pair if Sy = S x ,  (X, Sx) is a vector lattice, and ( Y, S y )  is a sublattice of the 
order dual of  (X, Sx),  X b. 

Examples 3.7. 
(i) X a normed lattice, Y = X*,  with the lattice cones. 

(ii) Y a normed lattice, X = Y*,  with the lattice cones. 

In both cases ( X, Y)  is a dual lattice pair. 

Proof. (i) Propositions 3.2 and 3.4. 
(ii) Regarded as a subspace of  X*  = Y**, Y is a sublattice of X* by Theorem 

3.5, and X* is a sublattice of X b by Propositions 3.2 and 3.4. The result follows. [] 

I f  (X, Y) is a dual lattice pair then the lattice operations in Y are given by the 
formulae of Proposition 3.1, by Lemma 3.3. 

We shall now show that, in a normed lattice, the quasi relative interior of  the 
positive cone is identical with the quasi-interior defined in Schaefer (1974). In a 
partially ordered vector space (X, S) (where S is the positive cone) we denote the 
order interval {x Ix1 <~ x <~ x2} by [xl ,  x2]. The following definition may be found in 
Peressini (1967). 

Definition 3.8. Let (X, S) be a partially ordered topological vector space. Then e c S 
is a quasi-interior point of S, e ~ qi S, if cl P [ - e ,  e] = X. 

Theorem 3.9. Let  (X,  Y )  be a dual pair. Consider X with the o-(X, Y)  topology, and 

suppose S is a closed convex cone partially ordering X,  Consider the following properties 

for  a point e ~ S: 

(i) cl P[O, e] = S. 
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(ii) cl P [ - e ,  e] = X (e ~ qi S).  
(iii) cl P (S  - e) = X (¢:~ e ~ qri S, when X = cl(S - S)). 

Then we have the following: 

(a) ( i ) ~ ( i i )  i f  e l ( S - S ) = X .  

(b) (ii) ~ ( i i i ) .  

(c) ( i i i ) ~ ( i )  i f  ( (X,  S) ,  (Y ,  S+)) is a dual lattice pair. In particular, i f  X is a 

normed lattice then qi X+ = qri X+, and i f  X = Y* is the dual o f  a normed lattice Y, 
then or( Y*,  Y )  - qi X+ = tr( Y*, Y) - qri X+.  

Proof. 
(a) X = cl(S - S) = el(el P[0, e] - cl •[0, e]) = cl(P[0, e] - •[0, e]) = cl P [ - e ,  e]. 

(b) [ - e ,  e] = S -  e gives the result. 

(c) Suppose e c qri S, but  that (i) fails: for some ~ ~> 0, ~ cl P[0, el. It follows 

by separation that  for some y c Y, (£, y) > (x, y), for all x c cl P[0,  e]. For  this y we 

must  have (x, y) ~< 0, for all x c [0, e], so (e, y+) = sup{(x, y ) [ x  c [0, el} <~ 0, by Propo-  

sition 3.1 and Lemma 3.3. Hence we have ( x -  e, y+) >~ O, for all x~>0, whence  
(x, y+)~> 0, for all x c cl P (S  - e) = X. Thus y+ = 0, or y ~< 0. But we know £ ~> 0 and 

(2, y ) >  0, which is a contradiction.  

The final statement follows from Examples  3.7, the fact that  weak and no rm 

closures o f  convex sets in a normed space are identical and since in both cases 
X = S - S .  [] 

Further, more technical condit ions for the equivalence o f  these and various other  
notions may be found  in Peressini (1967, p. 184). 

The following result makes the quasi relative interior o f  the positive cone o f  
various c o m m o n  vector lattices particularly easy to compute ,  cf. Schaefer (1974, 
II.6.3). 

Theorem 3.10. Let  X be locally convex, partially ordered by a convex cone S with 
cl(S - S) = X,  and suppose X *  is partially ordered by S +. Then e ~ qri S i f  and only 

/f ~ ( c X * * )  is strictly positive on X*:  ¢fl(e) > 0 for  all ~ ~ S+\{0}. 

Proof.  Suppose first that  e c qri S, but  that  for some nonzero  th c S +, &(e) = 0. Then 

- & ( x  - e) ~ 0, for all x c S, so - &  ~ Ns(e ) .  By Proposi t ion 2.8, & c Ns(e ) ,  so 4~(x - 
e) ~ 0, for all x c S, or &(x) ~ 0, for all x c S. But & ~ S +, so &(x) = 0, for all x ~ S, 

whence ~ ( x ) =  0, for  all x c e l ( S - S ) =  X. Thus 4~ = 0, which is a contradict ion.  
Conversely,  if e~  qri S then by Proposi t ion 2.8, for some 4~ ~ X *  we have - ~ ( x -  

e) ~ 0, for all x ~ S, with strict inequality for some ~ c S. It follows that & ~ 0, and 

that &/> 0. Also, if th(e) > 0 we would  have -&(½e - e) > 0, which is a contradict ion,  

so 4~(e)= 0. Thus ~ is not strictly positive on X*.  []  

We now give as examples the quasi relative interiors o f  the positive cones in some 
of  the s tandard normed  lattices. 
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Examples 3.11. All spaces are real, and unless specified otherwise, we work with respect 

to the norm topology. 

(i) X = L p ( T, tx ) with ( T, IX) a or-finite measure space and 1 <~ p < oe, 

qri(X+) = {x Ix ( t )  > 0 a.e.}. 

(ii) X = L~'( T, tx ) with ( T, tx ) a o--finite measure space, 

[[" I[ - qri(X+) = {x less i n f x  > 0}, 

cr(L ~', L ' )  - qri(X+) = {x Ix ( t )  > 0 a.e.}. 

(iii) X = {2(N), the square summable  functions on R, 

qri(X~ ) = 0 .  

(iv) X = Co(T)  with T locally compact, the continuous functions vanishing at 

infinity, 

{x Ix( t )  > O, Vt  c T}, i fTcountab le  at oe, 
qri(X~) = (3, otherwise. 

(v) X = Cb(T) with T completely regular, the bounded continuous ~mctions,  

qri(X+) = {x I inf  x > 0}. 

(vi) X = M ( T )  with T compact Hausdorff,  the regular Borel measures, 

11" [I - qri(X+) = ~, i f  T is uncountable, 

t r ( M ( T ) ,  C ( T ) )  - qri(X+) = {/x ~> O[support tx = T}. 

(vii) X = c0(N), the null sequences, 

qri(X+) = {x [ xi > 0 for  each i}. 

(viii) X = c(N), the convergent sequences, 

qri(X+) = [ x  i n f x i >  0}.  

Proof.  Many of  these examples may  be found  in Schaefer  (1974, p. 98) (applying 
Theorem 3.9). 

(i) (LP(T, Ix))* = Lq(T, Ix), where ( 1 / p ) + ( 1 / q )  = 1 (see for instance, Holmes,  
1975). 
Now apply Theorem 3.10. 

(ii) The first result follows from Corol lary 2.14. The second part  follows from 
Theorem 3.10, since (X, o-(X, Y))* = Y. 
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(iii) Exact ly  as (i): {2(R) is reflexive, and it is easy to see there can exist no 
strictly posi t ive linear functionals.  

(iv) See Schaefer  (1974). 
(v) See Schaefer  (1974). 

(vi) For  the first part ,  see Schaefer  (1974). For  the second part,  by T h e o r e m  
3.10, we need to show that  a measure  Ix ~> 0 is strictly posit ive as funct ional  on C ( T )  

if  and only if suppor t  Ix = T, in other  words  if and only if Ix(TI) > 0 for  all n o n e m p t y  
open  T, c T. 

Clearly, if suppor t  IX = T and x E C ( T)+ with x ( t )  > 0 for  some t, then by cont inui ty  
~r x dIx > 0, so/. t  is strictly positive. On the other  hand  suppose  Ix(T~) = 0 for  some 
nonempty  open T~ c T. Then by Urysohn ' s  L e m m a  (Jameson,  1974, 12.2) we can 
construct  a nonnegat ive ,  nonzero x c C ( T )  which vanishes on T~, and then 5r x dIx = 
0, so Ix is not  strictly positive. 

(vii) (eo(~))* = g~(N) (Holmes ,  1975), and the result follows by T h e o r e m  3.10. 
(viii) Follows f rom Corol lary  2.14. [] 

Notes. (a) Example  (i) includes the case X = gr(N),  1 <~p < co: 

qri(X+) = {x I xi > 0 for  each i}. 

(b) With regard to (iii), in fact if (7, Ix) is not or-finite then 

qri(LP(T, Ix)+)=O, l < ~ p < e c  (Schaefer,  1974). 

(c) (iv) and (v) both  include the case X = C ( T )  with T compac t  Hausdor t t .  
(d) With regard to (vii) and (viii), notice that  qri((c0)+) # qri(c+) c~ co. 

We now turn to the second impor tan t  special case which we wish to consider.  

Theorem 3.12. Let (X,  Y )  be a dual pair, with S a convex cone partially ordering X 

and e c S. Define a set F c X m by 

In the or(X, Y )  topology, if, 3~br some ( 2 1 , . . . ,  ~2m) c F, 

cl P[O, 9~] = cl P[O, e] for  each i = 1 . . . .  , m, (3.2) 

then ( ~ , . . . , xm) c qri F. I f  ((22, S),  ( Y, S+) ) is a dual lattice pair then the converse 

is also true. 

Proof.  Suppose  (3.2) holds and ( y ~ , . . . ,  Ym) ~ N~-(~I, •. •, ft,,), so ~'[ '~ (xi-ff~,  y)<~ 
0, for all ( x ~ , . . . ,  xm)c  F. For any 1 <~j, k<~ m with j # k, setting x~ =ff~ for  i ¢ j ,  k 

gives that  for  all xj, xk >/0 with xj + xk = ~j + xk, (xj - ffj, yj) + (xk - xk, Yk) ~< 0. We can 
rewrite this as ( x j -  ffj, Yi-Yk) <~ 0, for all xj c [0, ffj + xk], or (x, y j -yk)<~ O, for  all 
x c [ - ~ j , ~ k ] .  Thus (x,){i-yk)<~O, for  all x ~ [ 0 , ~ k ]  and (x, yj-yk)>~O, for  all x c  
[0, £j], and by (3.2) both  these inequali t ies must  also hold for all x c [0, e]. This 
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gives (x, yj) = (x, Yk), for all x e [0, el. Since j and k were arbitrary it follows that 

ZT=l (Xi--'~i, Yi):-(~r~ l (x i -Yci ) ,Yl )  =0,  for all ( x l , . . .  ,Xm)~  F, so - ( y ,  . . . .  ,ym)c  
N r ( ~ , . . . ,  Ym) also. Thus ( f f~ , . . . ,  ~,,) e qri F, by Proposition 2.8. 

Conversely, suppose ((X, S), (Y, S+)) is a dual lattice pair and that (3.2) fails: 
for some i, cl P[0,~i] c cl P[0, e] strictly. It follows from the bipolar theorem that 
[0, e ] °c  [0, )?/]° strictly, so for some y c Y, (x, y) ~< 0 for all x c [0, 2i], but (Xo, y ) >  0, 
for some Xo e [0, e]. Thus (xi, Y+)~< 0 and (e, y+)> 0. 

Now set fij =0  f o r j ¢  i, fii : -Y+. Then ~j"-i ( x j - Y j ,  f i j ) = ( x i - £ i ,  -y+)  ~< 0, for all 
xi ~> 0, so ()51, . . . ,  tim) c N~(~I . . . .  , )Cm). However, setting xj = 0, fo r j  ¢ i and x~ = e, 

r r l  

Y~j=t (x~-)~i, -37J) = (e-)ci ,  Y+) > 0, so - ( f , , . . . ,  Ym) ~ N F ( ) C l ,  • - • , )era). Thus by 
Proposition 2.8, ( ~ , . . . ,  97r,) ~ qri F. [] 

The last two results identify examples where points in the quasi relative interior 
of the set F of (3.1) can be easy to recognize. 

Corollary 3.13. Let F be as in Theorem 3.12. Then for  any A1, . . . ,  A , ,>0  with 

Z~'-I Ai = 1, (A le , . . . ,  Ame) e qri F. 

Proof. Clearly cllP[0, A/e]=clP[0 ,  el, for each i, so the result follows by 
Theorem 3.12. [] 

Corollary 3.14. Let F be as in Theorem 3.12 and suppose ( ( X,  S), ( Y, S+) ) is a dual 
lattice pair. Suppose fur ther  that e e qri S. Then (x l ,  • • •, Xm) C F lies in qri F i f  and 

only i f  ~i e qri S, for  each i. 

Proof. By Theorem 3,9, cl P[0, x] = S if and only if x c qri S. The result now follows 
by Theorem 3.12. [] 

4. Fenchel duality 

We now come to the principal result of  this paper, a Fenchel duality theorem from 
which all our duality results will be derived. We begin with a simple weak duality 
result, followed by the main theorem. The significance of quasi relative interiors in 
the constraint qualification will then be made apparent. We shall also derive a 
subgradient formula and a minimax theorem from the main result. 

Throughout this section we shall adopt the following notation. A convex function 
f :  X-+ ]-oo, oo] is proper if it is not identically +co. 

X is a locally convex topological vector space, 

g : X -+ ]-oo, oo], convex, proper, 
(4.1) 

h : ~n ~ ]_oo, oo], convex, proper, 

A : X ~ ~" continuous, linear. 
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The following simple weak duality result is wel l -known (see 

Rockafellar ,  1967). We include its p roo f  for completeness.  

Proposition 4.1. With the notation of (4.1), 

inf{g(x) + h (Ax)]x  c X}  >~ sup{-g*(ATA ) - h*(-A ) I A ~ R~}. 

Proof. 

31 

for example 

For  all x ~ X, A c R n we have, f rom the definition o f  the Fenchel conjugate,  

g(x)  + g*(ATA ) + h(Ax)  + h * ( - a )  1> ( aVa) (x )  - A T(Ax) = O, 

either 
or 

Then 

Theorem 4.2. With the notation of (4.1), suppose 
(i) r i(A dom  g) c~ r i (dom h) ~ fl 

(ii) r i(A dom g) c~ dom h ¢ f~, and h polyhedral. 

inf{g(x) + h (Ax ) l x  e X} = max{-g*(AVA)  - h * ( - A ) ]  A c Rn}, 

appropriately read when -eo. 

Proof. Let 

tx = inf{g(x) + h (Ax ) l x  c X}  

= inf{g(x) + h(y)  ly = Ax, x ~ X, y ~ ~"} 

= inf{h (y)  +P(Y)IY c ~n} 

where we define p ( y )  := inf{g(x) lAx = y, x c X}. 

Now p : R " + [ - e % 0 0 ]  is convex. To see this, suppose  0 < y < l ,  p ( y l ) < ~  and 

P(Y2) < ]3. Then for some x~, x2c X with Ax~ = y~, Ax2 = Y2, we have g(xO < ~ and 

g(x2) <f t .  But then 

(1 - y)c~ + yfl > (1 - y)g(xO + yg(x2) 

/> g((1 - y)xl  + yx2) 

>i inf{g(x) lAx = (1 - y)y~ + ~'Y2} 

--p((1  - v)y~ + vy2). 

It follows that p is convex (Rockafellar,  1970, 4.2). 

The next result is the fundamenta l  Fenchel  duality theorem from which all our  

duality results will be derived. The p r o o f  follows directly f rom the finite-dimensional 

Fenchel  result in Rockafel lar  (1970), and produces  a duali ty theorem requiring a 

constraint  qualification which does not  appear  to be in a useful form. However ,  as 

will be made clear by the corollary fol lowing the next theorem, using our  results 

on quasi relative interiors we can express the constraint  qualification in a much  
more  practical way. 

so g ( x ) + h ( A x ) > ~ - g * ( A V A ) - h * ( - A ) .  Taking the inf imum over x ~ X  and the 
supremum over A c R n gives the result. [] 
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We also have dora p = A d o m  g. Fur thermore  

p*(A) = s u p { A V y - p ( y ) ] y  6 ~n} 

= sup{A Ty _ g(x)  lAx = Y, Y c R n, x ~ X }  

= sup{AT(Ax) - g(x )]x  c X }  

= g*(ArA) ,  

for all A c ~". 

Now by assumpt ion there is an ~ d o m g  with A ) ~ r i ( A d o m g ) c ~ d o m h =  

r i (dom p)c~ dom h, so # < oc. By Proposi t ion 4.1 we can without  loss of  generali ty 
assume/x  > -co.  

Suppose p(A2)  = -co.  Then there would exist a sequence (xi)~ 'c  X with Ax; = A~c, 
for each i, and g ( x ; ) ~ - o o  as i~oo .  But then we would  have g(x ; )+h(Ax; )=  
g(x~) + h(A~) ~ -oo, as i -~ cc (since A)~ ~ dom h), and this contradicts ~ > -oo.  Thus 

p(A2)  is finite with A£~  r i (dom p), and by Rockafel lar  (1970, 7.2), this is sufficient 

to ensure p is proper.  

Now the assumptions say 

either (a) r i ( d o m p ) n r i ( d o m h ) # 0 ,  

or (b) r i (dom p) n dom h ¢ 0, and h polyhedral .  
We can therefore apply the classical Fenchel  duality theorem (Rockafellar,  1970, 

31.1) to obtain 

/x = inf{g(x) + h ( A x ) l x  ~ X }  

= in f{p(y)  + h ( y ) l y  e R n } 

= m a x { - p * ( A ) -  h * ( - A )  [A oR"}  

= - m a x { - g * ( A T A ) - h * ( - A ) [ A c N n } .  [] 

This result may essentially be found  in Rockafel lar  (1967), using per turbat ional  

p r o o f  techniques (cf. Borwein and Lewis, 1991). 

Comment. Suppose in fact that, in the notat ion of  the above theorem, we have that 

there exists a )9 c int(A dora g) c~ dora h = in t (dom p) c~ dom h. This holds in par- 

t icular if A is onto and A( in t (dom g)) ch dora h # 0. Define h b y / ~ ( y )  = h ( - y ) ,  so 
h * ( - A ) = / ~ * ( A ) .  The dual objective funct ion is given by k=p*+f~*=(p[Dh)* 
(Rockafellar,  1970, 16.4) ( ' • '  denotes infimal convolution), so 

0 ~ in t ( (dom p) -)9) 

c in t (dom p - dom h) --- in t (dom p + dora/~) = in t (dom(p  ~/~) )  

c i n t (dom(p  []/~)**) = in t (dom k*). 

It then follows by Rockafel lar  (1970, 14.2.2), that k has bounded  level sets. Thus 

any descent method  will stay bounded .  Recession arguments  such as this can be 

used to prove many  of  our  duality results. 
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When q r i ( d o m g ) ¢ 0  we know from Proposition 2.10 that 

A(qri(dom g)), so we obtain the following result. 

Corollary 4.3. With the notation of  (4.1), suppose 

either A(qri(dom g)) c~ ri(dom h) ¢ 0, 

or A(qri(dom g)) c~ dom h ~ 9) and h polyhedral. 

Then 

33 

ri(A dom g) = 

(4.2a) 

(4.2b) 

inf{g(x) + h (Ax)]x  c X }  = max{--g*(ATa ) -- h * ( - a ) [  a e N~}. 

Proof. Theorem 4.2 and Proposition 2.10. [] 

Expressing the constraint qualification in the form (4.2) makes the significance 

of the quasi relative interior clear. In order to check condition (i) in Theorem 4.2 

we would have to compute the image of (dom g) under the map A. On the other 

hand, to check this condition rewritten in the form (4.2a) we simply need to find a 
single point Xo (exactly as in the Slater condition) with x0 c qri(dom g), and Axo 

ri(dom h). It is this simplification which will be exploited in Part II of this work, 

when we consider more concrete models. 

As usual, we obtain a subgradient formula and a minimax theorem as direct 

consequences of the Fenchel result. 

Corollary 4.4. With the notation of  (4.1), for any ~ c X, 

O(g + hA)(2)  ~ Og(2) + A Toh (A2),  

with equality i f  (4.2a) or (4.2b) holds. 

Proof. Take & ~ 0g(2) and/x 6 Oh(A2), so 

¢ ( x - 2 ) < ~ g ( x ) - g ( X ) ,  for all x ~ X, 

and 

~ T ( y - A ~ ) < ~ h ( y ) - h ( A 2 ) ,  for all y ~ ~". 

Therefore (¢ + AXl x ) ( x  - 2) <~ (g + hA)(x)  - (g + hA)(2) ,  for all x 6 X, so ¢ + AT# C 

O(g + hA)(,2). 

On the other hand, suppose (4.2a) or (4.2b) holds and ¢ c O ( g + h A ) ( 2 ) ,  so 
~b(x - ,2) <~ (g + hA)(x)  - (g + hA)(2), for all x c X. It follows that 

(g - 4,)(2) + h(A~) = inf{(g - q~)(x) + h ( A x ) l x  c X }  

= - ( g  - &)*(ATA) - h*(-A ) 

for some A c R", by Corollary 4.3. We then have 

0 = (g - &)(2) + (g - q~)*(ATA ) q- h (A2) + h*( -A)  

( A T A ) ( 2 )  - )t T ( A x  ~) = O, 
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so we have equality. Thus AVh cO(g-~b) (~)=0g( )~) - {4 , } ,  and - h  e Oh(AYO, so 
d)~Og(~)+AToh(Aff) .  [] 

We denote the indicator function of a set C by 6(.  ] C). Recall that dom 6*(. ]C) 
is the barrier cone of C, which, for closed, convex C, is the polar of the recession 
cone of C (Rockafellar, 1970). 

Corollary 4.5. Let X be locally convex, A : X ~ R" continuous and linear, C c X convex 

and D c R" nonempty, closed and convex. Suppose 

A(qri C) c~ ri(dom 6*(. [ D)) # 0. 

Then 

inf sup yV(Ax)  = max inf yV(Ax) .  
x~C yeD ycD x~(" 

In particular, this holds i f  0 c qri C and P A C  = R". 

Define g :=/~(. ] C) and h := 6*(. ] D). Then Corollary 4.3 applies and we Proof. 

obtain 

inf{6 (x I C) + 6*(Ax I O)} -- m a x { - 6 * ( A V y ] C )  - 6 * * ( - y  I O)}. 
x y 

Since D is closed, 6**(. ID)= 6(. I D) (Rockafellar, 1970, 12.2), and the desired 
result follows. 

To see the last part, clearly the result follows if dom 6*(. ] D) = {0}. If this is not 
true then since dom 6*(. I D) is a convex cone in g~" we can find nonzero y such 
that ky c ri(dom ~*(. I D)),  for all k > 0. Since P A C  = ~", for some x c C, A x  = ey 

for some e > 0. By Lemma 2.9, ½x c qri C, but then A(½x) = (½e)y c ri(dom 6*(. [D)), 
so the constraint qualification is satisfied and the result follows. [] 

We will now specialize our Fenchel result to provide duality theorems for the 
convex models we shall use in the remainder of the paper. 

Corollary 4.6. With the notation of  (4.1), suppose C c d o m  g and D c d o m  h are 

convex, and that the following constraint qualification holds: 
either (i) (A qri C) c~ ri D # (3, 
or (ii) ( A q r i C ) c ~ D # O ,  wi thhandDpolyhedral .  

Consider the primal problem 

inf g(x)  + h (Ax)  

subject to A x c  D, 

x ~ C ,  
and the dual problem 

max - ( g + 6 ( . l C ) ) * ( a T h ) - ( h + 6 ( . I D ) ) * ( - h )  

subject to h e r  n. 

Then the primal and dual values are equal (with dual attainment). 
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Proof. In Corollary 4.3, replace g and h by g + 8 ( . I C )  and h + 6 ( ' l D )  
respectively. [] 

The next result gives a duality theorem for the convex model (CM) we shall use 
most frequently in what follows. 

We first need a lemma. Recall that, for a convex cone Q c Nn, the dual cone 
Q+ c R n is given by 

Q+:={yCRnIyTA>~O for all A c Q}. 

Lemma 4.7. Suppose k:Rn ~ ] - o o ,  oe] is convex, and Q c R  n is a convex cone. I f k  is 

differentiable at X c Q then X is optimal for the problem inf{k(A)lA ~ Q} if and only if  
(i) Vk(X) c Q+, and 

(ii) XTVk(X) = 0. 

Proof. By Rockafellar (1970, 27.4), X is optimal if and only if -Vk(X)~ No(X). 
Now y c No(X ) if and only if yT(A --X) ~< 0, for all A c Q. Putting A :=IX, 3~, this is 
equivalent to yTX = 0 and y c -Q+ ,  and the result follows. [] 

Corollary 4.8. Let X be locally convex, f :  X ~ ]-oc, oe] convex, C c d o m f  convex, 
A : X ~ R n continuous and linear, b ~ R n and P c Nn a polyhedral cone. Consider the 

following dual pair of  problems: 

(CM) inf f ( x )  

subject to Ax c b + P, 

x e C ,  

(DCM) max -(f+6(.IC))*(ATA)+bTA 
subject to ,~ ~ P+. 

I f  the following constraint qualification is satisfied, 

(CQ) there exists an ~ c qri C which is feasible for (CM), 

then the values of (CM) and (DCM) are equal (with attainment in (DCM)). 
Suppose further that f +  8(. I C) is closed. I f  X is optimal for the dual, and ( f  + 

8(.  [ C))* is differentiable at AvX with Gateaux derivative ~ c X,  then ~ is optimal for 
(CM), and is furthermore the unique optimal solution. 

Proof. In Corollary 4.6, put h := 0, and D := b + P. Then we have, 

(h + a( .  I D) )* ( -A)  = sup{--ATy -- h( Y)IY ~ D} 

= s u p { - A V y l y - b  ¢ P} 

/ - A V b '  A c P+, 
/ 
toe, otherwise, 

which gives the duality result. 
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Suppose now that f + 6 ( ' l C )  is closed, X is dual optimal, and V ( f +  
6( .  I C ) ) * ( A x e )  = y~ ~ X. By Ekeland and Temam (1976, 1.5.3), O(f  + 
6(. I C))*(ATX) = {~}, so ( f +  6(" I C))*(AT '~)  q- ( f +  6(" [ C))**()~) = (AT)t)(.~). By 
Ekeland and Temam (1976, 1.4.1), ( f +  6(. I C))** = f +  6(. I C), and thus 

( f +  6(. [ C))(X) + ( f +  ~(. I C ) ) * ( A T e )  : (ATA)( '~),  

so X ~ C and f(X) = AT(A'Y) - ( f +  6( .  I C))*(ATA)  • Also, by Lemma 4.7 and the chain 
rule, A , Y - b c ( P + ) + = P ,  and AV(A~-b)=0.  Thus ~ is feasible for (CM), with 
f ( X )  = b XYt - ( f  + 6( .  [ C))*(ATjt) ,  and therefore is optimal. 

Any other optimal x must satisfy 

( f  + 6( .  ] C ) ) ( x )  + ( f  + 6( .  { C))*(ATe) : bTA, 

and JtT(Ax -- b) >i O. Thus 

( f +  6(. [ C))**(x) + ( f +  6(. I C))*(ATA) ~< (ATA)(x) ,  

so x ~ O ( f + 6 ( . [ C ) ) * ( A V j t ) = { g } .  Therefore g is the unique primal optimal 
solution. [] 

Notice that, in particular, i f f  and C are closed then f +  6(. ]C) is closed. 
The above result clearly includes the equality constrained case. To conclude, we 

give a duality theorem for a convex program where we may relax the equality 
constraints. 

Corollary 4.9. With the notation o f  Corollary 4.8, suppose ll " [[ is a norm on W' with 

dual norm H" U,, and that s > O. Consider the following dual pair o f  problems: 

inf f ( x )  

subject to [[ax-b l l<~e ,  

x c C ,  

max - ( f ÷ 6 ( ' [ C ) ) * ( A T A ) + b T A - e ] ] A ] ] ,  

subjectto A oR". 

I f  there exists an ~ c qri C with IIA.~ - b [[ < e then the primal and dual values are equal 

(with dual attainment) .  

P r o o f .  Denote the unit ball {y c N" Ill Y]] ~< 1} by B. Now in Corollary 4.6 put h := 0 
and D := b + eB. Then 

(h + 6 ( . ID ) )* ( -A)  = sup{ -AVyly -b  c eB} 

= - a ~ b  +sup{--aTu [ u ~ eB} 

= - A ~ b +  etla[[,, 

which gives the result, since ri D = b + e(int B). [Z 

If  the norm ll' II is polyhedral (e.g. (~ or {~) then we can relax the constraint 
qualification to llA~ - b[[  <~ e .  
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As we shall see, the convex model (CM) includes a wide variety of  interesting 
problems. We have already seen how to identify the quasi relative interior of  C in 
some common cases. A number of  questions remain. How do we compute the 
function ( f +  6(.  t C))*? When is the primal value attained, when is a primal optimal 
solution unique, and when can we compute it from a dual optimal solution? When 
is a dual opt imum unique? How do we solve the dual problem? These questions 
will be addressed in the following sections. 

One point is worth observing concerning separable problems. Suppose we are 
interested in a problem of the form 

rn  

inf • fi(xi) 
i 1 

subject to ~ Aixi ~ b + P, 
i 

xicCi, i = 1  . . . .  ,m,  

where X ~ , . . . ,  Xm are each locally convex with convex Ci c domf/ ,  convex f :X~ 
]-o~, oo], Ag:XioR" continuous and linear, each i = 1 . . . .  , m. Then it is easily 
checked that the corresponding dual problem is: 

max - ~ ( f  +6(.ICi)*(a~h)+bVh 
i - - I  

subject to h c P + .  

By Proposition 2.5 the constraint qualification requires the existence of a primal 

feasible ( ~ , . . . ,  xn) c lq~_~ qri(C~). 
It is natural to ask whether the duality theorem for the convex model (CM) can 

be extended to cases where the constraint map A has infinite-dimensional range. 
In fact the result can fail even when the objective function is linear, A is surjective 
and C is compact,  as the following example shows. 

Example 4.10. Let d e 82(~)/{~(~) (for example, d,, = ( l / n ) ,  n = 1, 2 , . . . ) .  Consider 
the problem 

inf t 

subject to u - t d = O ,  

]]u[]l~<l, u6{2 ,  [tl~<l, t c R .  

We have X = { 2 × R , f : X ~ R  defined by f (u ,  t ) =  t, A:X-~{~ defined by A(u, t ) =  
u - td, continuous, linear, and convex C c X, C = {(u, t) c {2 ×R[[[ u [[l ~< 1, It I ~< 1}. 
A is clearly surjective and C is weakly compact  (closed and bounded).  

By Example 2.20, (0, 0)~ qri C and is feasible, so the constraint qualification is 
satisfied. In fact it is easy to see that (0, 0) is the only feasible point, so the problem 
has value 0. 
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Now consider the dual problem. The adjoint map AV:g2-~g2x~ is given by 
aVv  = (v, - ( d ,  v)). 

( f  + ,~(. I c )  )*( w, s) -- sup{(u,  w) + t s -  t l llulll < l u c {2, ltl ~ l ,  t c R} 

= l l w l l ~ + l s - l l ,  f o r w c E 2 ,  s ~ R .  

Thus the dual problem is 

max - I lv l l~- l -<d,  v ) - l l  

subject to v ~ t~2. 

Clearly the dual objective function cannot attain the value 0. 

5. Differentiation of  convex functions in vector lattices 

As we shall see in Part II, the dual problems for many of the examples in which 
we are interested involve certain simple, real-valued convex functions on vector 
lattices. The derivation of primal optimal solutions from a dual optimum, the 
existence and uniqueness of primal optima and computational  approaches to solving 
the dual problem will depend on the differentiability of the dual objective function, 
as we saw in Corollary 4.8. In this section we shall therefore be interested in the 
differentiability of  certain convex functions in a normed lattice. 

We shall use the following notation. Suppose that X is a topological vector space 
and f :  X --> ] -c% col is convex. 

of (g)  = {0 c X* Icb (x - g) <~f(x) - f ( 2 )  Vx  c X}, 

o"f( 2) = {¢ c X '  I (b (x - 2) <~f(x) - f (  g) V x  e X} ,  

where X* and X '  are respectively the topological and algebraic duals of  X. Thus 
Oaf(f) is the set of  algebraic subgradients while Of(f )  is the set of continuous 
subgradients. In particular, if (X, Y) is a dual pair then in the or(X, Y) topology, 

4 f ( ~ )  c y. 

I f  f ~ c o r e ( d o m f )  then f has a (linear) Gateaux derivative Vf(2) at 2 if and only 
if Oaf(2)= {Vf(2)}c  X '  (see Borwein, 1984, Proposition 3.2). I f  f is actually con- 
tinuous at 2 then Oaf(g)=0f (2 )  (see Borwein, 1984, Corollary 2.5), so f has 
continuous Gateaux derivative V f ( 2 )  at g if and only if Of(f)  = {Vf(g)}. See also 
Holmes (1975, p. 29, 85). 

The following result will be useful. 

Lemma 5.1. Let X be a topological vector space, and f :  X ~ ]-oo, o0] a positively 

homogeneous convex function. Then for ~b ~ X * ,  ¢ c Of(X) i f  and only i f  oh c Of(O) and 
~b(2) = / ( 2 ) .  
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Proof.  4, c of(Y) if and only if 4,(x - ~) ~ f ( x )  - f ( Y ) ,  for  all x E X. This clearly holds 
if  4, c of(O) and 4,(Y) =f (Y) ,  and the converse follows by putt ing x = 0 and 2Y, and 
using f (0 )  = 0 and f(2Y) = 2f07). [] 

The same result will hold for Oaf 

Proposition 5.2. Let X be a normed lattice. Define g: X -> R by g(x)  = IIxll. For y ~ o, 

Og(,2) = {4' c X*[ 114, [I, = 1, O 0  7) = IIYlI}, 

Og(O) = {4, c x ' I l l  4, II, <~ 1}. 

Proof.  Immedia te  from the definition of  the dual norm I1" II, and Lemma 5.1. [] 

Proposition 5.3. Let X be a normed lattice, x ~ ]]x+ll is a continuous, convex function. 

Proof.  For  x~, x y c X  and 0~<A<~I we have Ax~>~Ax,, 0 and ( 1 - A ) x ~  >~ ( 1 - A ) x y ,  
0, so adding we obtain A x + + ( 1 - A ) x ~ > ~ ( A x , + ( 1 - A ) x y )  +. Since X is a normed  
lattice this gives 

l[(AXl + (1 -a)xy)+l l  ~ Ilaxt + (1 - a)x~ll 

<~ a IIxTil + ( 1 -  A)llx +11, 
which shows the convexity. 

The continuity follows from the continui ty of  the lattice operations,  see Schaefer  
(1974, II.5.2). [] 

Corollary 5.4. Let X be a normed lattice. Define f : X - ~ R  by f ( x ) =  ]lx+U. Then 

Of(x) • O, for all x c X. 

Proof.  Proposi t ion 5.3 and Holmes (1975, p. 84). [] 

Proposition 5.5. Let X be a normed lattice. Define f : X ~ N  by f ( x ) =  [Ix+l]. For 
Y ~ -X+, 

of(Y) = {4, c X * I 4  , >~ O, ll4, II, = l ,  4 , (y- )  --- 0, 4,(~+) = Ily+ll}. 

For Y <~ O, 

Of(Y)={4,cX*14,>~O, H4,11,<~ 1, 4,(Y) = 0}. 

Proof.  Since f is positively homogeneous ,  by Lemma 5.1 4, ~ Of(Y) if  and only if 
4, c Of(O) and 4,(Y) =f (Y) .  Now O ~ Of(O) if  and only if 4,(x) ~< IIx+[[, for  all x c X, 
which is equivalent  to 4,/>0 and 114,11.<~ 1. Thus 4,c0f(~2) if  and only if 4,>~0, 

114,11, ~ < 1 and 4 ,0c)=  II)ull. This implies Ily+ll = 4 , 0 ~ + - y - )  ~ < 4,(g+)<~ 114,11,11g+ll ~< 
I[)~+ll, so we have equality throughout ,  which gives the result. [] 
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When x is not negat ive one can be more  precise. 

Proposition 5.6. Let X be a normed lattice. Definer g : X ~ ~ by f ( x )  = ]Ix+H, g(x) = 
IIxl] for all x c X. Then for £ ~ - X + ,  Of(g) -- Og(2 +) r~ {6 ~ X * I 6  ~> 0, 6 ( £ - )  = 0}. In 
particular, for Yc ~ -X+,  if the norm I1" II is differentiable at ~+ then f is differentiable 
at £ with the same derivative. 

Proof.  The fo rmula  for Of(:f) follows f rom Proposi t ion 5.2 and Proposi t ion 5.5. 
Also, if  g is differentiable at £+ then Og(£ +) is a singleton. Therefore  since Of(~) # 0 
(Corol lary  5.4) we must  have Of(~)= {Vg(.g+)}. [] 

Examples  5.7. As before,  f ( x )  = [Ix+H, for  x c x .  
(i) X=LP(T, I~) .  By Holmes  (1975, p. 170), for  x # 0  we have 

vl lx l lp  = Ilxll ,- l lP 

Thus by Proposi t ion 5.6, for x ~ - X + ,  f is differentiable: 

Vf(x)  = ]]x+ll],-p(x+) p-1. 

(ii) X=L~(T ,  tt). From Proposi t ion  5.5 it follows that  for any x, and  6 ~  
L~(T ,#) ,  6 c O f ( x )  if  and only if 

= 1  a.e. where x ( t )  > 0, 

6 ( t )  = 0  a.e. where x ( t )  < 0, 

c [0 ,  1] a.e. where x( t )  =0. 

Thus f is differentiable at x if  and only if ] x ( t ) l > 0  a.e., in which case 7 f ( x ) =  

X~tlx(t)>o}. 
(iii) X = L~(T, i t ) ,  with the weak* topology.  By Proposi t ion  5.5, for  6 c L~(T, p.), 

and  x ~ - X ~ ,  6 = Of(x) if and only if 6 ~> 0, ~T 6 d/~ = 1, 6 (t) = 0 a.e. where x ( t )  < 0, 
and ~T 6 x+ d/~ = ess sup x +, which is equivalent  to 6 ~> 0, 61T~ = 0 and ~T~ 6 d ~  = 1, 
where Tx = { t ~ T Ix(t) = ess sup x}. It fol lows that  if  x ( t )  < ess sup x a.e. then of(x) = 
~. Also, f is never  differentiable at x if (T, /~)  is nonatomic .  

(iv) X = C ( T ) ,  with T a compac t  Hausdor f f  space. For x c X ,  define T~= 
{t ~ T Ix( t )= max~x( r )} .  By Proposi t ion  5.5, for  - x ~  X+,  using the Riesz Rep- 
resentat ion Theorem (Rudin,  1966), 

Of(x) = {6 ~ M ( T )  16 ~> 0, 6 (T)  = 1, suppor t  6 ~ T~}, 

(in other  words,  probabi l i ty  measures  suppor ted  on T~). Thus for  x ~ - X + ,  f is 
differentiable at x if  and only if T~ is a singleton, {to} say, in which case Vf (x)  = 3,0, 
a unit  mass concent ra ted  at to. Such points  are called peak points. 

We now turn our  at tention to the convex  funct ion x ~ 0(x+),  where 0 is some 
posi t ive l inear funct ional  on X. 
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Proposition 5.8. Let (X,  Y )  be a dual pair, with X a vector lattice and Y partially 

ordered by (X+) +. Suppose Yo c Y, Yo >~ O, and define h : X ~ R by h ( x ) = (x +, Yo). Then 
h is a positively homogeneous convex function with, for  any x c X,  

o h ( x ) = { y c  Y l O ~ y < ~ y o , ( X - , y ) = O , ( x + , y o - y ) = O } .  

I f  Y is an ideal in X b then O a h ( x ) = o h ( x ) .  

Proof. h is clearly positively homogeneous .  Take xl ,  x2 c X and 0 ~  < A ~< 1. Then 
Ax-~>~Axl, 0 and ( 1 - A ) x ~ > ( 1 - A ) x 2 ,  0, so ( A x l + ( 1 - A ) x 2 ) + < ~ A x + + ( 1 - A ) x ~ ,  

and hence, since Yo ~> 0, ((Axl + (1 - A)x2) +, Yo) ~< A (x + , Yo) + (1 - A )(x2~, Yo). Thus h 
is convex. 

N o w  y c Oh(O) if and only if ix, y) <~ (x +, Yo), for all x c X, which is equivalent to 

y c [0, yo]. Thus, by Lemma 5.1, y c Oh(x) if and only i f y  c [0, Yo] and (x, y) = (x +, Yo). 
But then 

i x+, Yo) >~ ( x+ Y) >~ (x, y) = ix  +, Yo), 

so we have equality throughout ,  which gives the result. 

N o w  for 05 ~ X ' ,  05 c 0ah(0) if and only if 05(x)<~ ix +, Yo), for all x ~ X. This is 

equivalent to 05>~0 and Yo-05 ~>0. Thus 05 c X  b and 0~< q5 ~<yo, so 05 c Y as Y is 
an ideal. Therefore 0ah(0)= Oh(O). It follows that O"(x)= Oh(x) for all x c X. []  

Proposition 5.9. Let X be a normed lattice, 0 c X * ,  0 >1 O, and define h : X  ~ by 

h (x )  = O(x+). Then h is a continuous convex function and Oh(x) # 0 for  all x c X.  

Proof.  We know h is convex by Proposi t ion 5.8, and cont inuous  by Schaefer (1974, 
II.5.2). Its subdifferentiability follows by Holmes (1975, p. 84). [] 

We now int roduce some notat ion f rom Schaefer (1974). Let X be a vector lattice 
and suppose O 6 X  b, 0>10. The absolute kernel of  0, N ( O ) = { x c X l O ( ] x l ) = O } ,  is 

an ideal in X. I f  0~, 02 c X b, 01, 02/> 0, then 

N ( 01 v 02) = N ( O,) c~ N ( 02), (5.1) 

N(Oi ^ 02) ~ N ( O , ) +  N(02) .  (5.2) 

In the following result, ^ : X ~ X** denotes the evaluat ion map. 

Theorem 5.10. Let X be a normed lattice and suppose 0 <~ x l ,  x2 ~ X. Then in the lattice 

X * ,  N(~I  ^ x2) = N ( ~ I )  + N(~2).  Specifically, for  any 0 <~ 0 c X *  with O(xl ^ x2) = 0, 

there exist 0 ~ 01, 02 c X *  with 0 = 04 + 02, 01(Xl) = 02(x2) = O. 

Proof.  For  any x e X, ~ ~ ( X * )  b, by Proposi t ion 3.2. Suppose  first that  xl ^ x2 = 0. 

Suppose 0 ~  < 0 c X*,  and define h : X  ~ E by h(x )  = O(x+). By Proposi t ion 5.9, there 

exists 02 c Oh (xl - x2), and by Proposi t ion 5.8, 0 <~ 02 <~ 0, 02(x2) = 0 and (0 - 02)(xl) = 
0. Setting 01 = 0 - 02 gives the result. 
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Now in the general  case, we have ( X  1 - -  X2) + A ( X  1 - -  X2)  = 0, SO by the above,  for  
any 0 ~ 0 c N ( ~ l  A X2), there exist 0~, 02 > 0 with 0 = 01 + 02 and 01((x~ - x2) +) = 

02((x~ - x 2 ) - )  = 0. But (01 + 02)(xl ^ x2) -- 0, so 01(Xl A X2) = 02(Xl ^ X~) = 0. But (xl - 

x2)  + + (x~ ^ x2) = x~, so 01(x~) = 0. Similarly 02(x2) = 0, which gives the result. [] 

Theorem 5.10 is actually a special  case of  the fol lowing result of  Schaefer  (1974, 
II.4.11). Recall  that  we denote  the space of  all sequent ia l ly  order  cont inuous l inear  

forms on a vector  lattice Y by Yo b. 

Theorem 5.11. Let  Y be a countably order complete vector lattice, and suppose 0 <~ 4)~, 

4)2E yb .  Then N(4)1 ^ 4)2)  = N ( 4 ) l ) +  N(4)2): f o r a n y  O~ y c  Y, with (4)1 ^ 4)2)(Y) = 0 ,  
there exist 0 <- y~, Y2 ~ Y with d)~(y~) = 4)2(Y2) = O, and Yl + Y2 = Y. 

P r o o f .  The p r o o f  follows Schaefer  (1974, II.4.11). [] 

For  0~<y c Y, we denote  the principal ideal genera ted  by y by Yy = U~_~ n [ - y ,  y] 
(Schaefer,  1974, p. 57). We can now determine when  the funct ion x ~ O(x +) is 

differentiable.  

Corol lary 5.12. Let  (X,  Y)  be a dual pair, with Y a countably order complete vector 

lattice and X a sublattice o f  yb .  For O<~yo ~ Y, define convex h : X - + N  by h ( x ) =  

(x +, Yo). Then Oh(x) ~ O, for  all x c X.  
Suppose fur ther  that Y is an ideal in X b. Then h is differentiable at x i f  and only i f  

([xl, y ) > 0  for  all nonzero y c [ 0 ,  yo] in which case there is an order direct sum 

decomposition 

and 

Yvo=( YyoC~ N ( x  +) )Q(  Yyor~ N ( x  )), 

Vh(x)  = P~;o~S(x-)(Yo), 
where 

PK, o~N(~-): Y,o-~ Yy,,c~ N ( x - )  

is the natural projection. 

P r o o f .  B y  P r o p o s i t i o n  5 .8 ,  h is  convex with 

Oh (x)  = {yl  c Y]y ,  + Y2 = Yo, 0 <~ Yl ~ N ( x - ) ,  0 <~ Y2 c N(x+)}.  

By Theorem 5.11, N ( x  +) + N ( x - ) =  N(X+A x - ) =  N ( 0 ) =  Y, so o h ( x ) ~  O, for  all x. 

I f  (Ixl, y) > 0 for  all nonzero  y e [0, Y0], then {0} = N ( I x  I) n Yyo = N ( x + )  n N ( x - )  c~ 

Yyo by (5.1). Then 

oh(x )  = {Pr ,  o~N(~ )(Yo)}- 
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Since Y is an ideal in X b, o"h(x)= Oh(x) by Proposition 5.8, so h is differentiable 

with the stated derivative. 
Suppose on the other hand that for some nonzero )~c [0, Yo], (Ix],)5)= 0, so 

~ N ( x - )  c~ N(x+). By Theorem 5.1 1, there exist 0 ~ Yl C N(X-)  and 0 <~ Y2 ~ N ( x  +) 
with y~+y2=yo-~. It then follows that both y~+35 and y~cOh(x), so h is not 
differentiable at x. [] 

We shall discuss more concrete interpretations of the lattice theoretic ideas in 
this result at the end of this section. 

Another similar convex function which arises in the dual problems in which we 
are interested is k : X "  -> R, defined by k(x~ . . . .  , x~) = 0 (V~'_~ x~), for some positive 
linear functional 0. 

Proposition 5.13. Let (X, Y) be a dual pair, with X a vector lattice and Y partially 
ordered by (X+) +, Suppose O<~yo c Y, and define k:Xm-->N by k ( x l , . . . , x m )  = 
(V~-I xi, yo), Then k is a positively homogeneous convex function with, for any 
(x~,...,x,,)cX", 

Ok(x~,...,xm) 

= Y l , . . . , Y m ) ¢  ym yi=Yo,Yi~O, Xk--Xi, y i =0,  Vi . 
i = 1  1 

I f  Y is an ideal in X u then Oak(x1 . . . .  , Xm) = o k ( X l , . . .  , Xm). 

Proof. For (u~, . . . ,um) ,  ( v l , . . . , v , , ) ~ X  m and O~<A~<I, AU~<~AVkUk and 

(1 -A)v i<~(1 -A)  Vk vk, for each i, so Vi (Aui+(1-A)vi)<~AVi u i + ( 1 - A )  Vi vi. 
Thus since Yo ~> O, 

k( ;~(u~, . . . ,  u m ) + ( 1 - ; ~ ) ( v , , . . . ,  vm))<~Ak(u, , . . . ,  u m ) + ( 1 - A ) k ( v , , . . . ,  vm), 

so k is convex. Also k is clearly positively homogeneous. 
For m = l  the result is trivial, so suppose m > l .  Now for (yl,...,ym)C ym, 

( Y l ,  • • • , Ym) c Ok(O) if and only i f ~  l (xi, Yi) ~ ( V k  Xk, Yo), for all ( X l ,  • • • , Xm) ~ X m. 
Putting x~ := Xo, each i implies ~i Yi = Yo, and setting x~ = Xo if i = j  and 0 otherwise 
gives (Xo, yj)<~ (x~, Yo), for all Xo c X, which implies yj/> 0, for each j. Thus 

Ok(O)= { ( y ~ , . . . ,  ym)¢ ym ~iy ~ =Yo, Y, I>0 Vi}.  

The same proof  shows that 

Thus when Y is an ideal in X b, Oak(O)~ ym, so 0ak(0)= ok(O). 
Now by Lemma 5.1, for ( Y l , . . . ,  Ym) C ym,  ( Y l , "  " . ,  Ym) C o k ( x 1 , . . . ,  Xm) if and 

only if (y~ . . . .  ,ym)~Ok(O) and ~(x~,y i )=(VkXk,  yo}. But then ~(x~,y~)<~ 
~ ( V k x k ,  yi)=(VkXk, Yo)=~i(x~,y~), so we have equality, which gives (VkXk-- 
xi, y~)= 0, for each i. The result follows. 
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Finally, when  Y is an ideal in X b, O"k(O)=Ok(O), so O a k ( x l , . . . , X m )  = 

Ok(x~ . . . . .  xm). [] 

In an ana logous  fashion to (5.2) and Theorem 5.10, one has: 

Proposit ion 5.14. Let  Y b e  a vector lattice, with ~bl . . . .  , q5 m C y b  (m > 1). Then 

for  each i =  1 , . . . ,  m. 
I f  Y is countably order complete and 4)1 . . . . .  d)m c yb  then we have equality in (5.3) 

and Y = ~ ' l  N ( V k  ¢bk - 0i), with positive elements having positive sums. Furthermore, 

i f  I c y is an ideal, then 

¢bk-cbi > 0  onI ,  e a c h i = l , . . . , m ,  (5.4) 
i 

i f  and o n l y / f  I =@~=l  ( I n  N ( V k  ~bk- thi)) is a direct sum o f  ideals. 

Proof. 

so (5.3) follows. 

I f  Y is countab ly  order  comple te  and 4~, • • •, (~m C yb ,  then by Theorem 5.11, 

= x(o) 

=Y. 
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Finally, Y.~'~(Ic~N(Vk~b~--4~i))  is a direct sum if and only if Ic~ 

N(l~/k# , c~g -- Oi]) = I C~ N(~/g 4~k -- 4~) C~ ~i#i  N ( V g  ~ - 4~i) = {0}, for each i, which  
is easily seen to be equivalent  to ]~/k#i ~ -- Oil > 0 on L [~ 

Not ice  that  if  ! =@i~' ~ Ii is a direct sum of  ideals then,  by Proposi t ion II.2.7 in 
Schaefer  (1974), for  any 0~<yc  I there exist 0<~yic  li with ~ 7 _ ~ y i = y  (in other  
words,  the sum is order  direct). 

We can now determine when the funct ion ( x ~ , . . . ,  x~)  ~ O(Vk xk) is differenti- 
able. For  0~<y~ Y, we denote  the pr incipal  ideal genera ted  by y by  Yy = 

~ = ~  n [ - y ,  y] (Schaefer,  1974, p. 57). 

Corol lary 5.15. Let (X, Y)  be a dual pair, with Y a countably order complete vector 

lattice and X a sublattice o f  yb  . For 0 <~ Yo ~ Y, define convex k : X ~ ~ ~ (m > 1) by 

k(xj  . . . .  , x m ) = ( V k  xk,yo). Then o k ( x l , . . . , X m ) # O ,  ( x l , . . . , x , , ) c X  m. Moreover, 

i f  Y is an ideal in X b then k is differentiable at (x l ,  . . . , x,,) i f  and only i f  

for  all nonzero yc [O ,  yo], for  each i= l , . . . , m ,  in which case Yyo= 

~ 7 _ l ( Y v o c ' ~ N ( \ / k x k - - x i ) )  is an order direct sum, and (Vk(x~ . . . .  ,Xm))i = 

Pr, o~N~V . . . . . .  )(Yo), each i where Pr, o~N~ v . . . . . .  ~: Yyo-~ Y y o ( ~ N ( V k x g - X i )  is the 
natural projection. 

Proof.  By Proposi t ion 5.13, k is convex with 

F rom Proposi t ion  5.14 it follows that  o k ( x 1 , . . . ,  xm) # O, for all (xl . . . .  , xm) c X m. 
I f  (5.5) holds then I V k ~ . x ~ - x i l > O  on Yy,,, for  each i = 1  . . . . .  m, so k has a 

unique cont inuous  subgradient  lying in Y'~, by Proposi t ion 5.14. When  Y is an 
ideal in X b this is, by Proposi t ion 5.13, the unique algebraic  subgradient ,  and  so k 

is di t terentiable at (x~, . . . ,  x,,) with the stated derivative. 
On the other  hand,  suppose  (5.5) fails, so for some i and some nonzero .fi ~ [0, Yo], 

fiicN([Vk~iXk--Xi]). Then by Propos i t ion  5.14, y i ~ N ( \ / k X k - - x i )  and fiic 
~i#~ N ( V k  xk - x~), so by Theorem 5.11 there exist 0 <~ fij ~ N ( V k  xk - xj), j # i with 

, j # i  y j  ~--- f f i  . 

N o w  by Proposi t ion  5.14 we can find O<~yj ~ N ( V  k x k - x j )  for  each j, such that  
r n  

~ j ~ Y j = Y o - Y i ,  since this point  is non-negat ive.  It then follows that  bo th  
( u ~ , . . . ,  urn), ( v ~ , . . . ,  vm) ~Ok(x~ . . . . .  xm), where  ui =yi+fig, uj =yj for  j # i, and  
vi = Yi, vj = y j  +)~j, for  j # i, so k is not  differentiable at ( x ~ , . . . ,  xm). [] 

The  two differentiabili ty results, Corol lar ies  5.12 and 5.15, are expressed in lattice 
theoret ic  notat ion.  To conclude this sect ion we shall in terpret  this nota t ion  for  more  
concrete  Banach  spaces. 
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Theorem 5.16. Let X be a normed lattice. Then for all x c X, ~ c X**  is order continuous 
on X*.  

Proof. Wong and Ng (1973, 11.18). [] 

Theorem 5.17. Under either of  the following two conditions, Y is an order complete 
vector lattice, X is a sublattice o f  ybo (and hence of  yb), and Y is an ideal in Xb  : 

(i) X a normed lattice and Y = X*.  

(ii) Y a Banach lattice with or( Y, Y*)-compact order intervals, and X = Y*. 

Proof. First note that in both cases Y is Archimedean, so Yb o~ yb, by Peressini 
(1967, 1.5.15), and is actually an ideal, by Wong and Ng (1973, 10.17). 

(i) By Proposition 3.2, Y is order complete and y b =  y , =  X**. By Theorem 
3.5, X is a sublattice of X * * =  yb, and by Theorem 5.16, X ~ Yobo. The result now 
follows, as yobo is an ideal in yb, and Y = X* is an ideal in X b by Proposition 3.2. 

(ii) By Proposition 3.2, Y*= yb, and we know Ycbo is an ideal in yb. By Wong 
and Ng (1973, 13.5), Y is order complete and y * c  yb o. Thus X -  Y*= y b =  yobo. 
Also, X b = ( y , ) b  = y**, by Proposition 3.2, and Y is an ideal in Y** (see Schaefer, 
1974, 11.5.10). [] 

Definition 5.18. A dual pair (X, Y) is called a countably regular lattice pair if X is 
a countably order complete vector lattice with Y a sublattice of  Xo b, and X an ideal 
in yb. 

Any countably regular lattice pair is a dual lattice pair (Definition 3.6). By Theorem 
5.17 if either Y is a normed lattice with X = Y* or X is a Banach lattice with 
o-(X, X*)-compact  order intervals and Y = X*, then (~k, Y) is a countably regular 
lattice pair. 

Examples 5.19. Examples of Banach lattices Y with ~r(Y, Y*)-compact order 
intervals: 

(i) Y =  co(T) for any index set T. 
(ii) Y reflexive (for instance Y = L P ( T ,  Iz) or {P(T) for 1 < p < o o  and (T, IX) a 

measure space). 
(iii) Y an AL-space (Schaefer, 1974, II.8.1). For instance LI(T, #) ,  {~(T) for a 

measure space (T,/x), and M ( T )  for a compact Hausdorff space T. 
(iv) More generally than (iii): Y weakly sequentially complete. 

Proof. Schaefer (1974, p. 92). [] 

The Banach lattices L~(T, Ix), g ~ ( T )  and C ( T )  (with T infinite) do not have 
weakly compact order intervals, since if they did, their unit balls would be weakly 
compact which would imply they were reflexive (Holmes, 1975, p. 126). 
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The only classical dual pair (X, Y) for which Theorem 5.17 (and Corollaries 5.12 
and 5.15) fails to apply is (X, Y) = (M(T),  C(T)), where T is a compact Hausdorff 

space (uncountable). 
We conclude this section by illustrating Corollaries 5.12 and 5.15 for the cases 

(X, Y) = (LP(T, IX), Lq(T, ix)), with 1 ~< p ~< co, and (C(T), M(T)). By Theorem 5.17 

both dual pairs satisfy the conditions of  the Corollaries 5.12 and 5.15. 
Let T be a compact Hausdort t  space, and suppose (X, Y ) =  (C(T), M(T)). I f  

O<~yocM(T), then (x ,y)=Srx( t )dy( t )>O, for all 0 # y ~ [ 0 ,  yo] if and only if 

ST x(t)u(t) dyo(t) > 0, for all u c LI(T, IX) with 0<~ u(t) ~< 1 yo-a.e., by the Radon-  
Nikodym Theorem (Rudin, 1966), and this clearly holds if and only i fx ( t )  > 0, y0-a.e. 

For xc  C(T), denote the set of  zeros of  x by Z ( x ) = { t c  T[x(t)=O}. Then for 
O<~xcC(T), y e N ( x )  if and only if ~Tx(t) dlyl(t)=O, which is equivalent to 

support (y)  c Z(x). 
Since Yyo= U n ~  n[-yo, yo], it follows again by the Radon-Nikodym Theorem 

that Yyo= {yc M( T)ldy/ dyo c L~( T, tx)}. Thus 

Y"°c~N(x)={v~M(T)ldYcL°~(T' lx) '~yo=Oa'e '°nZ(x)°} '"  dyo 

It follows that if Yyo = @ r~_~ ( yyo c~ N(xi)) is a direct sum of  ideals then support(yo) = 
U'/~ Z(xi), and Z(xi)c~ Z(xj)= 0 for i ¢ j  (up to sets of  yo-measure 0), and so 

py, oc~N(xO(Yo)={oO on Z(xi),  
o n  Z ( x , )  c. 

Finally, condition (5.5) may be interpreted as: the set { x l ( t ) , . . . ,  xm(t)} has a 

unique largest element yo-a.e. 
Now let us consider the case (X, Y) = (U'(T, I~), L°(T, ix)) with (T,/x) a measure 

space and 1 <~ p ~ oo. For x c LP( T,/z), define Z(x) = {t c r lx(t) = 0} (defined up to 

a set of  ix-measure 0). I f  O ~ x c L P ( T , t  x) and O<~yocL"(T, Ix), then (x,y)= 
Ir x(t)y(t) dp~(t) > 0 for all 0 ~ y c [0, Yo] if and only if Z(x) c Z(yo). To see this, 
suppose for some 0 ¢ y 6  [0, yo], ~rx(t)y(t)dtx(t) =0.  Then for some To ~ T with 
/x(To)>0, y ( t ) > 0 ,  /x-a.e. on To, so ToCZ(x) but to~Z(yo). On the other hand, 

if for some To= T with ix(To)>0,  x ( t ) = 0 ,  tx-a.e, on To but yo ( t )>0 ,  p.-a.e, on 

To, then IT x(yogro)d/x(t)= 0. 
Similarly, y c N(x) if and only if ~r x(t)ly(t)l d /x ( t )=  0, which is equivalent to 

(z(y))~Z(x). 
Clearly we have Yyo = {uyol u ~ L~( T, #)}. Thus Yyo c~ N(x)  = {uyo] u c L~( T, ix), 

Z ( u ) ° c  Z(x)}. It follows that if Yyo=@~_~ (Yoc~ N(x~)) is a direct sum of ideals 
m 

then Z(yo) °=  U~=~ Z(x~), and tx(Z(x~) c~ Z(xj)) = 0 for i ¢ j ,  and so 

Pv, o ~ N(x~)(Yo) = YoXz(~,). 

Finally, condition (5.5) may be interpreted as: the set {x~( t ) , . . . ,  x,,(t)} has a 

unique largest element on Z(yo) °, /x-a.e. 
In Part II  we will see these lattice notions in action. 



48 

References  

J.M. Borwein, A.S. Lewis/  Partially finite convex programming I 

A. Ben-Tal, J.M. Borwein and M. Teboulle, "A dual approach to multidimensional Lp spectral estimation 
problems," SIAM Journal on Control and Optimization 26 (1988) 985-996. 

A. Ben-Tal, J.M. Borwein and M. Teboulle, "Spectral estimation via convex programming," to appear 
in: Systems and Management Science by Extremal Methods: Research Honoring Abraham Charnes at 
Age 70 (Kluwer Academic Publishers, Dordrecht, 1992). 

J.M. Borwein, "Convex relations in analysis and optimization," in: S. Schaible and W.T. Ziemba, eds., 
Generalized Coneavity in Optimization and Economics (Academic Press, New York, 1981) pp. 335-377. 

J.M. Borwein, "Continuity and differentiability properties of convex operators," Proceedings of the 
London Mathematical Society 44 (1982) 420-444. 

J.M. Borwein, "Subgradients of convex operators," Mathematische OperationsJbrschung und Statistik, 
Series Optimization 15 (1984) 179-191. 

J.M. Borwein and A.S. Lewis, "Practical conditions for Fenchel duality in infinite dimensions," in: J.-B. 
Baillon and M.A. Th6ra, eds., Fixed Point Theory and Applications (Longman, Harlow, UK, 1991) 
pp. 83-89. 

I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976). 
R.B. Holmes, Geometric Functional Analysis and Applications (Springer, New York, 1975). 
L.D. lrvine, S.P. Marin and P.W. Smith, "Constrained interpolation and smoothing," Constructive 

Approximation 2 (1986) 129-151. 
G.J.O. Jameson, Topology and Normed Spaces (Chapman and Hall, London, 1974). 
K.O. Kortanek and M. Yamasaki, "Semi-infinite transportation problems," Journal of Mathematical 

Analysis and Applications 88 (1982) 555-565. 
T.J. Lowe and A.P. Hurter Jr., "The generalized market area problem," Management Science 22 (1976) 

1105-1115. 
A.L. Peressini, Ordered Topological Vector Spaces (Harper and Row, New York, 1967). 
R.T. Rockafellar, "Duality and stability in extremum problems involving convex functions," Pacific 

Journal of Mathematics 21 (1967) 167-187. 
R.T. Rockafeller, Convex Analysis (Princeton University Press, Princeton, N J, 1970). 
H.H. Schaefer, Topological Vector Spaees (Springer, New York, 1971). 
H.H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin, 1974). 
Y.-C. Wong and K.-F. Ng, Partially Ordered Topological Vector Spaces (Clarendon Press, Oxford, 1973). 


