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DUALITY RELATIONSHIPS FOR ENTROPY-LIKE
MINIMIZATION PROBLEMS*

J. M. BORWEINT AND A. S. LEWISE

Abstract. This paper considers the minimization of a convex integral functional over the positive cone
of an L, space, subject to a finite number of linear equality constraints. Such problems arise in spectral
estimation, where the objective function is often entropy-like, and in constrained approximation. The
Lagrangian dual problem is finite-dimensional and unconstrained. Under a quasi-interior constraint
qualification, the primal and dual values are equal, with dual attainment. Examples show the primal value
may not be attained. Conditions are given that ensure that the primal optimal solution can be calculated
directly from a dual optimum. These conditions are satisfied in many examples.
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1. Introduction. A number of authors have recently considered dual approaches
to the solution of optimization problems of the form

inf J @ (x(t)) dt
(EP) '
subject to Ax=b,
x=0, xe L,(T).

Here, (T, dt) is a o-finite measure space, 1=p=0, ¢:R- (—00, 0] is convex, and
A:L,->R" is continuous. Such problems arise in a number of areas. When (for p <00),
¢(x)=(1/p)x” we obtain the constrained L, approximation problem (see [Micchelli,
Smith, Swetits, and Ward, 1985]). These problems appear in the theory of constrained
interpolation [Irvine, Marin, and Smith, 1986], and also as a result of using the L,
norm as the objective function in spectral estimation problems (see, for example,
[Goodrich and Steinhardt, 1986] and [Ben-Tal, Borwein, and Teboulle, 1988a]). A
number of different objective functions can be used. Typically, they are “entropic” in
form, for instance ¢(x) = —log x [Burg, 1975] and ¢(x) = x log x [Johnson and Shore,
1984]. A survey of common objective functions may be found in [Ben-Tal, Borwein,
and Teboulle, 1988b]. For simplicity of exposition we will only consider the autonomous
case, where the function ¢ does not depend explicitly on the variable ¢. The non-
autonomous case is a simple extension.

Let us denote the function ¢ +8(:|R;) by ¢, (where 8 denotes an indicator
function [Rockafellar, 1970]). Assuming ¢, is a normal convex integrand in the sense
of [Rockafellar, 1968], we can write the Lagrangian dual problem as

sup b™A —L(¢+)*((ATA)(t)) dt

(DEP)
subject to A eR”",
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where * denotes convex conjugation and A" :R" > L,(T) ((1/p)+(1/q)=1) is the
adjoint map. It is known (see, for example, [ Ben-Tal, Borwein, and Teboulle, 1988b])
that under a suitable constraint qualification the values of (EP) and (DEP) are equal,
with dual attainment.

Suppose now that ¢, is closed and essentially strictly convex, so, by [ Rockafellar,
Thm. 26.3, 1970], (¢,)* is essentially smooth. (We defer precise definitions to a later
section.) Suppose that A is optimal for (DEP). Assuming that (ATX)(t)e
int (dom (¢.)*), and that we can differentiate through the integral, we then obtain

(1.1) b—A(((¢)*)((ATX)(+)) =0.
If we now set £(1) = ((¢4)*)' ((ATA)(1)), t € T, then by [Rockafellar, Thm. 23.5, 1970],
(ATX)(1) €8 (%(1)), ae.,

50 ¢ (%(1))+(p)*((ATX)(2)) =%(t)(ATX)(¢), almost everywhere and, since (. )* is
increasing, X =0. Thus, by (1.1) x(¢) is feasible for (EP) and, integrating over T, has
the same objective value as the dual and hence is optimal (by weak duality).

The question of when the above assumptions are justified has, to the authors’
knowledge, never been addressed in the published literature on the subject. Since the
derivation of primal solutions is of paramount importance, this question is clearly
extremely significant. The aim of this paper is therefore to give these matters a rigorous
treatment. We begin by deriving the basic duality result from the theory developed in
[Borwein and Lewis, 1988]. We then give some examples to show how the above
assumptions can fail. This will motivate our rigorous treatment of the derivation of
primal solutions.

2. Duality. We will begin by deriving the fundamental duality result.

DerFINITION 2.1 [Borwein and Lewis, 1988]. Let (X, 7) be a topological vector
space, with convex C < X. The quasi-relative interior of C (7 —qri C) is the set of those
x € C for which cl P(C —x) is a subspace.

(Here, cl PB denotes the closed cone generated by B.) Note that if X is normed,
the weak and norm quasi-relative interiors coincide.

Example 2.2 [Borwein and Lewis, 1988]. Let T be a o-finite measure space,
1=p=o, (1/p)+(1/g)=1and let X =L,(T), Y=L,(T). Then

a(X,Y)—qri X, ={x|x(t)>0a.e.}.

LeEMMA 2.3. Let X be a topological vector space with convex C,, C,< X satisfying
cl C;=cl C,. For any xe C;N C,, xeqri C, if and only if x € qri C,.

Proof. The result follows immediately from the fact that clP(C,—x)=
cdP(C,—x). 0

The following duality result may be found in [ Borwein and Lewis, Cor. 4.10, 1988].

THEOREM 2.4. Let X be locally convex, f: X - (—00, 0] convex, A: X ->R" con-
tinuous and linear, beR", and P<R" a polyhedral cone. Consider the following dual
pair of problems:

inf f(x)
(CM) subject to Axeb+ P,
xeC,
max b'A—(f+8(-|C))*(A™X)

(DCM)
subject to A€ P”.
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If there exists a feasible X € qri ((dom f) N C) for (CM), then the values of (CM) and
(DCM) are equal (with attainment in (DCM)).

To use the above result in our case we need to compute the conjugate of certain
integral functionals. We will need the following result concerning normal convex
integrands.

THEOREM 2.5. Let T be a finite measure space, 1=p =00, and suppose :R -
(—oc0,00] is closed, convex, and proper. Define 1,:L,(T)—(—c0,00] by I,(x)=
[ ¢(x(¢)) dt. Then (I,)*: L,(T)~ (-, c0] is given by (I,)*=[, ¢*(y(1)) dt.

Proof. For the proof see the corollary to Theorem 2 in [ Rockafellar, 1968]. 0O

We can now derive the required duality result.

COROLLARY 2.6. Suppose T is a finite measure space, 1 =p =00, ¢ :R— (—00, 0]
with ¢, closed and convex, a;e L,(T) fori=1,- -+, n, and b eR". Consider the following
dual pair of problems:

inf J ¢ (x(2)) dt

(EP,) subject to J x(t)a;(t) dt=b;, i=1,-:+,n,
T
x=0, xeL,(T),

max b —J (¢+)*[ Y /\iai(t)] dt
(DEP,) ’ =
subject to A eR".
Suppose further that the following constraint qualification holds:
(CQ) There exists a feasible X for (EP,) with X€ o(L,, L,)—qri (dom I, N (L,).).

Then the values of (EP,) and (DEP,) are equal (with dual attainment).

Suppose furthermore that (0,0) = dom ¢. Then (CQ) is equivalent to requiring the
existence of a feasible X € dom I, with £(t)>0 almost everywhere. In particular, if
esssup x <+oo0 and ess inf x >0 then x e dom I,,.

Proof. In Theorem 2.4, set X = L,(T) with the o(L,, L,) topology, f=1,, C=
(L,)+, A defined by (Ax); =(x, a)=[,x(t)a;(t) dt fori=1,- -, n, and P={0}. Then
f+8(:|C)=1,,, so by Theorem 2.5, (f+8(+|C))*=1I,x. Also, P*=R", and A"\ =
Y, A, so the duality result follows.

If (0, ©) = dom ¢ then the set K ‘= {x € L,|ess inf x>0} is contained in dom I, N
(L,)+. To see this, observe that if x € L., with ess inf x>0, then there exist M, ¢ >0
with € = x(t) = M, almost everywhere. Since (0, ©0) = dom ¢, ¢ is continuous on (0, o),
by [Rockafellar, Thm. 10.1, 1970], and so the set ¢[ &, M] = R is compact. Thus, ¢ (x(-))
is bounded on T, and so x e dom I,.

Now K is dense in (L,).. (the proof essentially follows [Rudin, Thm. 3.13, 1966]).
Thus, we have

c K<cl(domI,N(L,)+)
<l (L))
=(L,):
=cl K,

so ¢l (dom I, N(L,).)=(L,)+. Applying Lemma 2.3 it follows that if £ € (dom I,)N
qri (L,)+ then X e qri ((dom I,) N (L,)+), and the result follows by Example 2.2. 0
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In the case where the measure space is nonatomic and totally finite, we can handle
nonconvex objectives (as observed by the referee). Suppose that ¢, is lower semicon-
tinuous (not necessarily convex), but that ¢* and ¢** are proper. Then, with A as
before, if we define

h(b)= inf{J’ ¢, (x(1)) dt|Ax=b, xe L,},

the domain of h is convex, and h is a convex function. This is a consequence of the
Liapunov convexity theorem [Holmes, p. 108, 1975]. In fact if we define the value
function of the regularized problem,

h(b)= inf{J ¥*(x(t)) dt|Ax=b, xe Ll},

then whenever the constraint qualification is satisfied at b, in other words be
A(qri (dom 1)), we have h(b) = h(b). This follows from [Rockafellar, Thm. 3H, 1976],
and the fact that the constraint qualification forces h to be lower semicontinuous at
b. In conclusion, our results apply equally well to ¢ as to ¢**. See also [loffe and
Tihomorov, 1968] for similar ideas.

In some common cases the constraint qualification is particularly easy to check.
The next result gives conditions under which the constraint qualification is no more
arduous than primal consistency. Note that in most applications the a;’s are actually
continuous (at least piecewise).

DerINITION 2.7 [Borwein and Lewis, 1988]. A set of measurable functions a;:
T->R,i=1,---,n, on a measure space T are called pseudo-Haar if they are linearly
independent on every nonnull subset of T.

ProposITION 2.8. Consider the measure space [«, B]< R, with Lebesgue measure,
and suppose a;:[a, B]1—> R are analytic and linearly independent. Then they are pseudo-
Haar on [a, B].

(A real function f defined on an open interval in R is called analytic if it is
represented locally by an absolutely convergent power series at any point in the interval,
cf. [Bochner and Martin, 1964].)

Proof. We will show that if a real function f is analytic on an open interval
T > [ e, B], and is not identically zero on [«, 8], then it has at most finitely many zeros
on [a, B]. The result then follows immediately.

Suppose f has infinitely many zeros on [a, B8]. By compactness, there exists a
sequence x; > Xo€[a, B] as i>00, with f(x;)=0, x; # x,, for i=1,2,---. Since f is
analytic, for some 8>0 there is an absolutely convergent power series f(x)=
Z;O:o ¢, (x —x0)", for x € N5(x,). Suppose the ¢,’s are not all 0, and let c,, be the first
nonzero coefficient. Then

o)

Sx)=(x ~xO)'"{cm t(x=x) L calx —xo)"_"‘_l},

n=m+1

for x € Nj(x,). Since the series ¥\ ., ¢,(x—x,)" ™" converges absolutely on N;(x,),

by a standard power series result it converges uniformly on Nj,»(x,), so in particular
it is continuous at x,. We then have

0=(x; —x0) "f(x;)

= Cm+(xi_x0) Z Cn(xi_xo)ngm_la
n=m+1

and letting i > o0 implies c,, =0, which is a contradiction.
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Thus, ¢, =0 for all n, so f(x) =0 on N;(x,). But 0 is an analytic function on the
domain T which agrees with f on N;(x,), so by [Bochner and Martin, Thm. 4, Chap.
11, 1964], f=0 on T. This is a contradiction. 0

The following result shows essentially that if the constraint functions a; are
pseudo-Haar and (EP,) is consistent for any 1= p =0 then there is in fact a feasible
X in the norm interior of (L.). In the case when (0, )< dom ¢, X clearly satisfies
the constraint qualification, so the result shows that the constraint qualification is
always satisfied for a consistent primal (providing 0 is not the only primal feasible
solution).

THEOREM 2.9. Suppose (T, u) is a finite measure space and 0= x € L,(T) is nonzero
(1=p=00). Suppose further that a;e L,(T), i=1,- - -, n, are pseudo-Haar. Then there
exists a y € Lo(T) and € >0 with y(t) = ¢ almost everywhere and {(x, a;) =(y, a;), each i.

Proof. Since 0# x=0, there exists T, T with w(7T;)>0 and a §>0 such that
x(t)= & almost everywhere on T;. We claim that

(2.10) {(J ua; d,u,>fl

Suppose not. Since the left-hand side is clearly a subspace, there exists A # 0 such that
YA J'Tl ua; du =0, for all u € L(T,). This implies Y, Aa;(t) =0 almost everywhere
on T;, which contradicts the fact that the a;’s are pseudo-Haar. Thus, (2.10) holds.

Now define
{<[ Ha ) u€ Lo(Th), [lulo< 5/2}.
T i=1

Since, by (2.10), PC =R", it follows that 0 € int C [Rockafellar, Cor. 6.4.1, 1970].
Let us now define a sequence of functions (x,,) = L(T) by

m, if x(t)>m,

ue L Tl)} =R"

1
x, (1) =g X A =x(0)=m,

1 1

-, if x(t)<—.

m m
For p <oco we have

||xm—x||§§J x(t)”d;u+j
{tlx()>m} {tlx(1)<1/m}

and in the case p =0, clearly ||x,, — x| =1/m, for m large. Thus, ({x,, — X, a;))7=1 >0
as m- 00, and so, since 0e€int C, for m > 1/8 sufficiently large, ({x,, —x, a;);—,€ C. It
then follows that (x,, — x, a;) = (v, a;),eachi=1, - - -, n, forsome v € L(T) with | v|o <
8/2 and v(t) =0 almost everywhere on Tj.

Finally, set y =x,,—v. Then ye L.(T), and almost everywhere on T3, y(t)=
Xn()=Z1/m. On T, we know x(t)=686>1/m almost everywhere, so x,(t)=
min {x(t), m} =8, almost everywhere. Since v(t)=6/2 almost everywhere it follows
that y(t) = 5/2 almost everywhere on T,. The result now follows. 0

For a given set of constraint functions a;, i=1, - - -, n, the question of for what
b’s the problem (EP,) is consistent is known as the extendibility problem. Simple
conditions are known, for example, when T =[0, 1] with Lebesgue measure and
a;(t)=t""" (one of the “classical” moment problems), and for the case when T =[—, 7]
with Lebesgue measure and {a,(0), - - -+, ax1(6)}={1, cos 6,sin 6, - - -, cos k6, sin k@}
(the trigonometric moment problem). See, for example, [Karlin and Studden, 1966]
and [Ben-Tal, Borwein, and Teboulle, 1988b] for more information.

1

p
(—) du—>0, as m- oo,
m
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ProposiTiON 2.11. If ¢ is strictly convex on dom ¢, then any optimal solution
to (EP,) is unique.

Proof. If ¢. is strictly convex on dom ¢, then so is I,, on dom I, . To see this,
suppose x;,x,edom I, , with x; #x,, and 0<y<1. By strict convexity of ¢.,
Yo+ (x1(2)) + (1= ¥) P+ (x2(1)) = @ (yx,(£) + (1 — y)x,(2)), with strict inequality on a
nonnull set. It follows that yI, (x;)+(1—y)I;,(x,) <I,, (yx,+(1—v)x,). The result
now follows. 0

3. Examples. In the course of the derivation of a primal solution described in § 1,
the crucial step was differentiating through the integral in the dual objective function
to obtain (1.1). The following example shows clearly the sort of difficulties that can
occur.

For 1 = p <2, consider the convex integral functional I': L,[0, 1] (—00, c0] defined
by

I(x)= *J’ logx(t) dt, x(t)>0 a.e.,

0
+00, otherwise.

By [Rockafellar, Thm. 22, 1974], yeal(x) if and only if y(t)ea(—log)(x(t))=
{—1/x(t)}, almost everywhere, for x(¢) >0 almost everywhere. With a slight abuse of
notation, let us denote the function that is identically equal to one by 1. Then
8I(1) ={—1}, so I has a unique subgradient at 1.

Now define heL,[0,1] by h(t)=1/vt. For any £>0, 1—¢/V/t=0 on a
set of nonzero measure, so I(1—(e/vt))=+0c0. Thus, the directional derivative
I'(1; —h)=+oc0.

On the other hand, we have

1 ! €
'(1; k) =lim—{ — +—= .
I'(1; h) 1513.18{ L log(l ﬁ) dt}

It is straightforward to check that as £|0, (1/¢)log (1+(e/V1))1(1/V1), so by the
monotone convergence theorem, I'(1; h) =~ (1/v/1) dt = -2.

Thus, I has no Gateaux derivative at 1 although it has a unique subgradient there.
The choice of space is clearly important here. In the case p=o00, we have le
|| - llo—int (dom I), and it is easy to see that I is || - |lo-continuous at 1. Thus, in this
case the Gateaux derivative does exist: VI(1) = —1 (see, for example, [Holmes, 1975]).

Simple examples show that even when the constraint qualification is satisfied we
cannot necessarily expect primal attainment in (EP,).

Example 3.1. Consider the following semi-infinite linear program:

1

inf j x(t) dt
0
1

subject to J tx(t) dt=1, x=0, xeL,0,1].

0
In this problem ¢ (x) = x, s0 (¢+)*(¥) =supy=o {xy —x} = 8(y|(—0, 1]). Thus, the dual
problem is

1
max )\—J S(At](—o0,1]) dt
0

subject to A €eR.

The optimal dual solution is clearly X =1, giving value 1. The constraint qualification
is clearly satisfied by X(¢) =2, so the primal value is also 1, by Corollary 2.6. However,
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since x(t)> tx(¢) almost everywhere, [, x() dt> [; tx(t) dt =1 for any feasible x, so
the optimal value is not attained (for any 1= p =00).

The above behavior can be observed even when the function ¢ is essentially
strictly convex.

Example 3.2. Consider the following problem:

inf LZW (ﬁ) dt

2

subject to J x(t)sintdt=1, xz0, xelL,[0,27].

0

In this case ¢(x)=1/x, x>0, and o otherwise. Thus, (¢,)*(y) =sup.-o {xy —(1/x)},
so by differentiation,

—2v -y, y= Oa
0o, otherwise.

(6:)*(») ={

The dual problem therefore becomes

2
max A —j (—2v—Asint) dt

0
subject to —Asint=0 a.e. on [0,27], AeR.

The only dual feasible solution is A =0, so the dual value is 0. The constraint
qualification is satisfied by

Oo=t<mw

T=Et=2m,

A 1,
x(t) = {l
2,
since

27
I x(t) sin tdt =[—cos 0](,’+% [—cos 012" =1.
0

Thus, the primal value is also 0, by Corollary 2.6, or direct computation. However,
this value clearly is not attained.

In both of the above examples the function (¢, )* is differentiable on the interior
of its domain, but the manipulation described in the introduction is manifestly invalid
since there exists no primal optimal solution. Our last example shows how attainment
in the primal problem can depend on the choice of space for the primal variables.

Example 3.3. Consider the following problem:

inf Ll (.x(l_t)> dt

subject toJ tx(t) dt=1, xz0, xelL,0,1].

0

In a similar fashion to Example 3.2, the dual problem is
1
max A —J (—2v—At) dt
0

subject to —At=0, a.e. on [0, 1], AER.
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This is equivalent to max {A +3/—X|A = 0}. By differentiation, the optimum occurs at
A =—3%, giving a dual value of 5.

The constraint qualification is again satisfied by, for instance, X(¢) =2, almost
everywhere on [0, 1]. The primal value is therefore also 3. The manipulation described
in the introduction (differentiating the dual objective function) may now be performed,
at least formally, to obtain X(¢) =3/2V¢. It may be checked that X satisfies the primal
constraint and has value 3. Thus, it is optimal, at least for 1 = p <2, and by Proposition
2.11 it is the unique primal optimal solution. However, x& L,[0, 1] for 2=p =0, so
for these values of p there exists no primal optimal solution (otherwise we would
obtain a contradiction to Proposition 2.11). Note finally that the question of primal
attainment for this problem is not affected by the addition of the extra constraint
I(], x(t) dt =3, since X remains feasible. This provides a counterexample whose con-
straints are in the form of a standard moment problem.

4. Primal solutions. We shall now give a rigorous treatment of conditions ensuring
the existence of a primal optimal solution. We begin with some simple results aimed
at identifying the domain of the functional I;x.

PropPoOsSITION 4.1. The function (¢.)*:R - (—0, 0] is monotone increasing.

Proof. The result follows immediately from the definition:

(p)*(y)= sup {yx —p(x)}. O

LEMMA 4.2. Suppose ¢ :R - (—00, 0] with ¢, closed, convex, and proper. Define
d=1im,_ . (¢(x)/x) (this limit exists). Then cl (dom (¢, )*)= (-0, d].

Proof. Define ¢(x)= ¢, (x)—y(x). Then by [Rockafellar, Cor. 13.3.4, 1970], y €
cl (dom (¢,)*) if and only if (0")(z) =0, for all z. By [Rockafellar, Thm. 8.5, 1970],

($07)(z) = }‘E’L‘o Y(v+ Ai) —¢(v)

b (v+Az) =@ (v)—yAz

= lim
A >0 A
) (¢+(D+Az) v+/\z>
= lim -yz
A—>c0 v+Az A
=(d—y)z,

for any vedom ¢, and for z>0. For z<0, ($07)(z)=+c, and (40%)(0)=0.
Thus, ($07)(z)=0, for all z if and only if y=d. The result now follows by
Proposition 4.1. O

LEMMA 4.3. Suppose ¢ is as in Lemma 4.2. The functional I 4, y«: Loo( T) - (—00, 0]
is || - ||o-continuous at any y € L(T) for which ess sup y <d.

Proof. There exist M >0 and &€ > 0 suchthat —M = y(t) = d — ¢, almost everywhere
on T. By Lemma 4.2, int (dom (¢)*) = (-, d), so (¢.)* is continuous on this set,
by [Rockafellar, Thm. 10.1, 1970]. It follows that (¢.)* is uniformly continuous on
[-2M, d —(&/2)]. Thus, if y, > y uniformly on T, (¢.)*(y,(2)) > (¢)*y(t) uniformly,
and so I,+(y,) > Isz(y), as required. Alternatively, it is sufficient to observe that I, is
bounded above on some neighborhood of y [Holmes, 1975]. 0

We will use the following ideas from [Rockafellar, 1970].

DEFINITION 4.4. A proper convex function f:R" - (—00, ] is essentially strictly
convex if f is strictly convex on every convex subset of {x|3f(x)# ¢}.



DUALITY FOR ENTROPY MINIMIZATION 333

Note that if n =1, f is essentially strictly convex if and only if f is strictly convex
on dom f. This follows from the fact that if f:R" > (—00, ] is convex, the only way
in which it can fail to be strictly convex on dom f is if it is actually affine on some
line segment. To see this, suppose f is not strictly convex on dom f Without loss of
generality suppose f(0)=f(x,)=0 for some x,#0, and that for some 0<A,<1,
f(Aoxo) =0. Convexity implies f(Ax,) =0 for all 0= =1, so suppose we have strict
inequality for some A, and without loss of generality suppose 0 <A < A,. We then have

0= f(AoxXo)
S

Al
( )f(/\ 0)+( )f(xo)

<0,

which is a contradiction. Thus, f(x) =0 on [0, x,].

However, if f is essentially strictly convex then it is certainly strictly convex on
ri (dom f) < {x|3f(x) # ¢}, and the above argument then shows it must be strictly
convex on dom f (provided n=1).

DEFINITION 4.5. A proper convex function f:R" - (=00, 0] is essentially smooth
if f is differentiable on int (dom f) # ¢, and ||Vf(x;)| > © whenever (x;) < int (dom f')
with x; > some x in the boundary of dom f.

THEOREM 4.6. If f:R" > (—00, 0] is closed, proper, and convex, then f'is essentially
strictly convex if and only if f* is essentially smooth.

Proof. For the proof see [Rockafellar, Thm. 26.3, 1970]. 0

The following result gives conditions for dual solutions to be unique.

THEOREM 4.7. Consider the problem (DEP,) of Corollary 2.6. Suppose {a,, - - -, a,}
is linearly independent and ¢, is essentially smooth. Then any optimal solution is unique.

Proof. Suppose A'# A? are both optimal solutions of (DEP,). The two functions
Y1, Mai(t) e dom (¢,)* almost everywhere, j = 1, 2. Since the a;’s are linearly indepen-
dent, they differ on a nonnull subset of T, T; say. By Theorem 4.5, (¢,)* is strictly
convex on dom (¢.)*, so if we set A>=2A"+2A2 then

(«m)*( x A?a.-(t)) =2 (m)*( T A}a,-m) + <¢+>*<,§1 A%aim),

almost everywhere, with strict inequality on T;. It follows that A* is an improvement
on A' and A%, which is a contradiction. [

We are now ready to prove our main result. We shall be concerned specifically
with the dual pair (EP;) and (DEP,), so the primal variable will lie in L,(T). In this
result we shall give conditions allowing us to obtain the primal optimal solution by
differentiating the dual objective function at the optimum, as described in the introduc-
tion. This function involves the convex functional Iy : Lo(T)—> (=0, c0], whose sub-
gradients lie in L¥(T). We shall use the results in [Rockafellar, 1971] to decompose
such subgradients into their singular and continuous (lying in L,(T)) parts. Finally,
we shall find a condition ensuring the singular part vanishes, which will lead to the
desired conclusion. The result could alternatively be proved by a direct differentiation
argument (see [Ben-Tal, Borwein, and Teboulle, 1988b]), but we shall use the ideas
from our proof again in the last section.
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THEOREM 4.8. Consider the dual pair of problems (EP,) and (DEP,). Suppose that
all the assumptions of Corollary 2.6 are met, and that ¢.. is strictly convex on dom ¢. .
Let X be dual optimal. Suppose finally that the following assumption is satisfied:

é(x)
x

n
>esssup Y, Aa;.

i=1

(4.9) d = lim

X—>00

Then the unique primal optimal solution is given by
x(t)= ((¢+)*),( gl Xiai(t))'

Proof. By Corollary 2.6 we know that the primal and dual values are equal, with
dual attainment. Let us denote the constraint map by A: L,(T) - R”, so (Ax); =(x, a;),
each i. The adjoint map A" :R" - L(T) is therefore defined by A"A =Y]_ Aa;. It is
thus R"—| ||« continuous, so we can define A" :L¥*(T)>R", and we will have
ATy = A

The dual objectlve function is —g(A), where g:R" > (-0, 0] is defined by g(A) =
-b"A + Id, (A™A), and since A is dual optimal, Oeag(A) However, Y  Aa€
range (A") and I, is continuous at this point, by (4.9) and Lemma 4.3. It follows by
[Borwein, Thm. 4.1, 1981] or [Rockafellar, Thm. 19, 1974] that dg(A)=
—b+A™ 3I,:(AT1), and so there exists g €ly:(ATA) = LE(T) with A" @ =b.

By definition of the subgradient, forall y € Loo(T), @(y — ATA) = Lx(y) — I;s(ATX).
Thus, =0, since if not, we could find a y=A"X with @(y—A"1)>0, implying
I,+(A"™X) <I,:(y), which contradicts the fact that (¢,)* is monotone increasing by
Proposition 4.1.

We can now apply [Rockafellar, Cor. 1B, 1971] to deduce the existence of a
ze L,(T) and a singular component ve€ L¥(T) such that @ =z+v, where z(t)e
a(<j>+)*((ATA)(t)), almost everywhere and v attains its maximum over dom I+ at ATX.
However, we know A” X €int (dom I,+), from which it follows that » =0 (alternatively,
see [Rockafellar, Cor. 2C, 1971]). Furthermore, we know (AT A)(¢) € int (dom (¢,)*),
almost everywhere, and from Theorem 4.6 we know (¢ )* is essentially smooth. Thus,
ze L (T), z=0, Az=b, and z(t) = ((¢+)*)'((ATA)(¢)), almost everywhere. In par-
ticular, z is primal feasible.

Finally, since ¢, is closed,

¢+ (z(1))+(d)*((ATX)(1)) = 2()(ATX)(1), ae.,
by [Rockafellar, Thm. 23.5, 1970]. Integrating over T gives
I (z2)+ I,s(A"X)=(z, AT})
=(Az)"x
=b"},
so z has the same objective value as the dual value, so it is optimal by weak duality.
Uniqueness follows by Proposition 2.11. 0

5. Special cases. The last result of the previous section (Theorem 4.8) showed
that under suitable conditions, if the dual optimal solution A satisfied the condition
that ess sup Y., A;a; < d, where d was defined to be lim, . (¢(x)/x), we could obtain
the unique primal solution by differentiating the dual objective function. If d = co then
this condition is clearly no restriction. However, if d <oo then condition (4.9) may
fail; this is the case, for instance, in Example 3.2. In this final section we shall consider
conditions on ¢ that ensure a priori that condition (4.9) will hold.
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We begin by defining another constant associated with ¢. Assuming ¢. is essen-
tially strictly convex, we know by Lemma 4.2 that cl (dom (¢.)*) = (—0, d], and that
(¢p+)* is essentially smooth by Theorem 4.6. Let us define (assuming d <o)

(5.1) c=1lim (d - y)((¢-)")'(»).
y1d
LEMMA 5.2. Suppose ¢.. is essentially strictly convex and essentially smooth. Then
(5.3) c=1lim (d — ¢’ (x))x.

Proof. By [Rockafellar, Thm. 26.5, 1970], ¢ is one-to-one from int (dom ¢.) to
int (dom (¢.)*) = (-0, d), continuous in both directions, and ((¢,)*)' = (¢,)"". Note
that since d <o, (k, ) < dom ¢, for k sufficiently large, so expression (5.3) is well
defined. Furthermore, ¢/ (x) increases to d as x increases to co, continuously, using
I’Hoépital’s rule and the convexity of ¢.. Thus, we have

c= th; (d=y)((¢:)")'(»)

=lim (d - ¢/.(x))((¢4)*) (¢*(x))

xToo

=lim (d - ¢’(x))x,

as required. 0

We will now restrict our attention to the case where the underlying measure space
T is a compact real interval with Lebesgue measure. We will need the following lemma.

LEMMA 5.4. Suppose he Cla, B], h(t,) =0 for some a = t,= B, and h is Lipschitz
(or in particular, continuously differentiable) at t,. Then 1/h & L[, B].

Proof. Suppose first that h is continuously differentiable at t,. Define a function
g:[a, B]>R by

h(t)/(t—to), t#t09

g(t)={h'(to), t=t,.

By L’Hépital’s rule, g is continuous, so by compactness, |g(t)|= M for all t€[a, 8],
for some M. Since h(t) = (t—ty)g(t) forall te[a, B], |h(t)|= M|t —ty, so h is Lipschitz
at 1.

Now assume h is Lipschitz at t,, so |h(t)|= M|t —t,, for all t€[a, B]. Thus,

1 1
———=>—— Vite[a,Bl, t#l.
h(0= M~ "'l Bl 1

Since clearly 1/|t — to| ¢ L[ @, B], the result follows. 0

For the last step in the above argument, it is critical that the underlying measure
is Lebesgue measure (or at least is greater than some positive multiple of Lebesgue
measure). The underlying space is important, too. Consider, for example, T =
[-1,1]x[—1, 1]< R? with Lebesgue measure. Then 1/||¢|| € L,(T).

THEOREM 5.5. Let T=[a, B], with Lebesgue measure, and each a; be locally
Lipschitz (or in particular, continuously differentiable), i=1, - - -, n. Consider the dual
pair of problems (EP,) and (DEP,). Suppose that all of the assumptions of Corollary 2.6
are met, and that ¢ is strictly convex on dom ¢... Suppose that

n

(5.6) there exists u € R" with Y, wa;(s)<d Vsela, B],
i=1
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where d ‘= lim .« (¢(x)/x), and if d <o define ¢ :=lim ;4 (d = y)(($.)*)'(y). Suppose
that either d =00 or d <o0 and ¢>0. Then the unique primal optimal solution is given
by (1) =((¢.)¥) (X1, Mia;(t)), where X is a dual optimal solution.

Proof. Just as in the proof of Theorem 4.8, we know that 0 dg(A), where g(A) =
—b A +1,:(A"X). We can write (5.6) as

range (A7) Ncont (I:) # ¢,

by Lemma 4.3, so it follows by [Rockafellar, Thm. 19, 1974] or [Borwein, Thm. 4.1,
1981] that 6g(A)=—b+ A" 3I,+(A"A). Thus, there exists &€ al,«(A1). Applying
[Rockafellar, Cor. 1B, 1971] just as in the proof of Theorem 4.8, it follows that there
exists ze L,(T) with z(t) €3(p.)*((ATX)(t)), almost everywhere.

The next step is to observe that since (¢, )* is essentially smooth (by Theorem
4.6), 3(¢.)*(d) = ¢. To see this, recall that as y1d, ((¢)*)'(y)1 00, by the definition
of essentially smooth, and the fact that, by Lemma 4.2, cl (dom (¢,)*)=(—00, d].
If uea(ep,)*(d) then u(y—d)=(¢)*(y)—(¢4)*(d), for all y. By the mean
value theorem, given any M >0 there exists y<d with (¢, )*(d)—(¢)*(y)=
(1)) (z)(d—y)=M(d—y), for some y<z<d. It follows that u= M, which is a
contradiction as M was arbitrary.

Since z(t)€a(¢.)*((ATX)(t)) almost everywhere, it follows that (A" 1)(t)<d,
almost everywhere, and so z(t) = ((¢.)*)'((A"X)(1)), almost everywhere. We know
from Theorem 4.8 that if esssup A”A<d then X=z is the unique primal optimal
solution, as required. Since the a;’s are continuous on [«, B8], the only alternative is
(ATX)(t,) = d, for some a =t,=B. We will show that, in this case, z cannot possibly
lie in L[, B], giving a contradiction. This will complete the proof.

Assume therefore that for some a =t,=B, Y, Aa;(t) = d <co. By the definition
of ¢, there exists £ >0 such that (d —y)((¢)*)'(y)=¢/2>0, for all d >y=d —e. By
the continuity of the a;’s, there exists >0 such that Y7, A,a;(t)=d —e, for all
|t — 15| = 6. Thus,

A»=«¢»ﬂ(§xﬂuﬁ

C
T2d =Y, ha()’

for all |t —to|= 8. But by Lemma 5.4, the right-hand side is not integrable (on either
[to— 8, ty] or [ty, to+8]), so z& L[, B]. This completes the proof. 0

Note in particular that condition (5.6) will always hold if one of the a;’s is a
nonzero constant function.

We will conclude with a number of examples of typical objective functions ¢,
taken from [Ben-Tal, Borwein, and Teboulle, 1988b]. Some of these objectives are
taken from the literature, others are new. For each function we give the numbers d
and ¢ of Theorem 5.5. It is easy to check that ¢, is closed and essentially strictly
convex in each case.

Examples 5.6.

. —log x, x>0,
() ¢.(x) = {oo, x=0,
_ _l_log(_y)a y<0, — —
@001 iy d=0, c=1.
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x log x —x, x>0,
(ii) ¢+(x)= Oa .)C:O,
0, x<0,
(p)*(y)=¢, d=00
1
P > 3
(i) bt (x) = px, x=0, (with 1<p<o0),
w, x<0,
1
(¢)*(») =2 e, d =co.
) e*—1, x=0,
(iv) ¢+(x)—{oo’ <0,
wyy_lylogy—y+1,  y=1, d—oo
(¢)*() {0’ o
yx—x7
—_, x=0,
(v) d(x)= { 1—-y (with 0<'y<1,l—l=1>,
00, x<0, v ¥
(i-5)
(@0 =4 \' "y’ Y=
0, otherwise, d=¢, c=o00.
(vi) 6.(x) {k—\/kz-xz, 0=x=k
vi =
M 00, otherwise,
k(V1+y*-1) y=0
* = ? ’ d =00
(¢)*() {0’ o
xlogx—(1+x)log (1+x), x>0,
(vii) ¢+(x)=10, x=0,
0, x <0,
_[-log(1—-¢), y <0, _ _
(d>+)*(y)—{oo’ y=0, d=0, ¢ =00,
l x>0
(viii) $i(x)={ x’ ’
00, x=0,
-2v-y y=0
* = ’ ’ = =
(¢)*(2) {OO, o d=0, c=0.

In all of the above examples, ¢ is strictly convex on its domain, and except in cases
(iii), (iv), and (vi) it is also essentially smooth. With the exception of case (vi),
(0,00)c dom ¢, so the constraint qualification will simply require the existence of a
feasible X edom I,, with x(¢)>0, almost everywhere. In the case of (vi) it can be
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checked using the results of [ Borwein and Lewis, 1988] that the constraint qualification
requires the existence of a feasible X with 0<X(¢) <k, almost everywhere. Example
(viii) shows, as we would expect, that the assumptions of Theorem 5.5 fail for
Example 3.2.

Suppose finally that (¢, )* is actually continuously differentiable on (oo, d), as is
the case in all of the above examples. With the assumptions of Theorem 5.5 it then
follows that the unique optimal solution of (EP,), X, is actually continuous on T, so
it certainly lies in L, for any 1=p=oco. Thus, x will in fact be the unique optimal
solution for (EP,), for any 1=p =00, and also for the analogous problem posed in

Cla, B].
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