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Abstract. The popular BFGS quasi-Newton minimization algorithm under reasonable condi-
tions converges globally on smooth convex functions. This result was proved by Powell in a landmark
1976 paper: we consider its implications for functions that are not smooth. In particular, an analo-
gous convergence result holds for functions (like the Euclidean norm) whose minimizers are isolated
nonsmooth points.
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1. Introduction. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method for
minimizing a smooth function has been popular for decades [9]. Surprisingly, however,
it can also be an effective general-purpose tool for nonsmooth optimization [5]. For
twice continuously differentiable convex functions with compact level sets, Powell [10]
proved global convergence of the algorithm in 1976. By contrast, in the nonsmooth
case, despite substantial computational experience, the method is supported by little
theory. Beyond one dimension, with the exception of some contrived model examples
[6], the only previous convergence proof for the standard BFGS algorithm applied to a
nonsmooth function seems to be the analysis of the two-dimensional Euclidean norm
in [5].

As an illustration, consider the nonsmooth convex function f : R2 → R defined
by f(u, v) = u2+ |v|. A routine implementation of the BFGS method, using a random
initial point and an Armijo-Wolfe line search [5], apparently always converges to the
unique optimizer at zero. Figure 1.1 plots function values for a thousand runs of BFGS
for this function, against both iteration count and a count of the number of function-
gradient evaluations, including those incurred in each line search. Precisely, the initial
Hessian approximation is the identity, the Armijo-Wolfe line search (from [5]) uses
Armijo parameter 10−4 and Wolfe parameter 0.9, and the initial function value is
normalized to one. Although the output compellingly supports convergence, a general
theoretical result, even for this very simple example, does not seem easy.

The computational results for this example even suggest a linear convergence rate.
For comparison, the bold line overlaid on the first panel corresponds to one particular
sequence of BFGS iterates (2−k, 25 (−1)k2−2k) generated by an exact line search [6].
The next section includes a more detailed description.

By contrast, analogous experiments with the steepest descent method — exactly
the same algorithm and line search, and a random initial point, but using the steepest
descent step −∇f instead of the BFGS quasi-Newton step — produce very different
results (Figure 1.2). For the function f(u, v) = 3u2+|v|, for example, steepest descent
essentially always converges to a nonoptimal point (u, 0) with u 6= 0. We explain
this behavior in the Appendix.1 The failure of the method of steepest descent for
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1For the original function, f(u, v) = u2 + |v|, a misleading artifact of a bisection-based line

search (see [5]) is convergence of steepest descent to the optimal point (0, 0), because the iterates
accidentally land and remain on the axis u = 0.
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Fig. 1.1. BFGS method for f(u, v) = u2 + |v|. A thousand random starts, using inexact
line search, and initial approximate Hessian I. Semilog plots of function value f(uk, vk), initially
normalized. Panel 1: against iteration count k. (Bold line plots 2−2k.) Panel 2: against function
evaluation count, including line search.

Fig. 1.2. Steepest descent for f(u, v) = 3u2 + |v|. A thousand random starts, using inexact line
search. Semilog plots of function value, initially normalized, against iteration count.

nonsmooth optimization is well-known: a simple example is [5, p. 136], and a famous
example (stable to initial conditions) is [4, p. 363].

Nonetheless, Powell’s theory does have consequences even in the nonsmooth case.
Loosely speaking, we prove, at least under a strict-convexity-like assumption, that
global convergence can only fail for the BFGS method if a subsequence of the iterates
converges to a nonsmooth point — a point at which the function is not differentiable.
A variation of the same technique shows, for example, for the function f(u, v) =
u2 + |v|, that BFGS iterates cannot remain a uniform distance away from the line
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v = 0. While intuitive, results of this type are also reassuring, and in fact suffice to
prove convergence on some interesting examples, such as the Euclidean norm on Rn

(generalizing the result for n = 2 for an exact line search in [5]).

2. BFGS sequences. Given a set U ⊂ Rn, we consider the BFGS method for
minimizing a possibly nonsmooth function f : U → R. We call a sequence (xk) in
U “BFGS” if the BFGS method could generate it using a line search satisfying the
Armijo and Wolfe conditions. More precisely, we make the following definition.

Definition 2.1. A sequence (xk) is a BFGS sequence for the function f if
f is differentiable at each iterate xk with nonzero gradient ∇f(xk), and there exist
parameters µ < ν in the interval (0, 1) and an n-by-n positive definite matrix H0 such
that the vectors

sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk)

and the matrices defined recursively by

Vk = I − sky
T
k

sTk yk
and Hk+1 = VkHkV

T
k +

sks
T
k

sTk yk
(2.1)

satisfy

Hk∇f(xk) ∈ −R+sk (2.2)

f(xk+1) ≤ f(xk) + µ∇f(xk)T sk (2.3)

∇f(xk+1)T sk ≥ ν∇f(xk)T sk (2.4)

for k = 0, 1, 2, . . ..
Notice that this property is independent of any particular line search algorithm

used to generate the sequence (xk): it depends only on the sequences of functions
values f(xk) and gradients ∇f(xk). Conceptually, in the definition, the matrices Hk

are approximate inverse Hessians for the function f at the iterate xk: the equations
(2.1) define the BFGS quasi-Newton update and the inclusion (2.2) expresses the fact
that the step sk is in the corresponding approximate Newton direction. The inequali-
ties (2.3) and (2.4) are the Armijo and Wolfe line search conditions respectively, with
parameters µ and ν respectively. By a simple and standard induction argument, they
imply that the property sTk yk > 0 then holds for all k, ensuring the matrices Hk

are well-defined and positive definite, and that the function values f(xk) decrease
strictly. Any implementation of the BFGS method for a convex function f using an
Armijo-Wolfe line search will generate a BFGS sequence of iterates, assuming that
those iterates stay in the set U and that the method never encounters a nonsmooth
or critical point. (An implementation should terminate if it encounters a smooth crit-
ical point. Behavior in the event of encountering a nonsmooth point depends on the
implementation, but in numerical examples like those described above, that event is
rare, as we discuss later.)

Example: a simple nonsmooth function. Consider the function f : R2 → R
defined by f(u, v) = u2 + |v|. (We abuse notation slightly and identify the vector
[u v]T ∈ R2 with the point (u, v).) Then the sequence in R2 defined by(

2−k ,
2

5
(−1)k2−2k

)
(k = 0, 1, 2, . . .)
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is a BFGS sequence, as observed in [6, Prop 3.2]. Specifically, if we define a matrix

H0 =

[
1
4 0
0 1

2

]
,

then the definition of a BFGS sequence holds for any parameter values µ ∈(0, 0.7] and
ν ∈ (µ, 1). In this example, the “exact” line search property ∇f(xk+1)T sk = 0 holds
for all k, and the approximate inverse Hessians are

H1 =

[
1
2 0
0 1

4

]
, Hk =

1

6

[
5 (−1)k21−k

(−1)k21−k 23−2k

]
(k > 1).

Example: the Euclidean norm. Consider the function f = ‖·‖ on R2. Begin-
ning with the initial vector [1 0]T , generate a sequence of vectors by, at each iteration,
rotating clockwise through an angle of π

3 and shrinking by a factor 1
2 . The result is a

BFGS sequence for f , as observed in [5]. Specifically, if we define a matrix

H0 =

[
3 −

√
3

−
√

3 3

]
,

then the definition of a BFGS sequence holds for any parameter values µ ∈
(
0, 23
]

and any ν ∈ (µ, 1). Again, the exact line search property ∇f(xk+1)T sk = 0 holds
for all k. In this case the approximate inverse Hessians have eigenvalues behaving
asymptotically like 2−k(3±

√
3) (see [5]).

3. Main result. The following theorem captures a key global convergence prop-
erty of the BFGS method.

Theorem 3.1 (Powell, 1976). Consider an open convex set U ⊂ Rn containing
a BFGS sequence (xk) for a convex function f : U → R. Assume that the level set
{x ∈ U : f(x) ≤ f(x0)} is compact, and that

∇2f is continuous throughout U . (3.1)

Then the sequence of function values f(xk) converges to min f .
To better suit our basic technique, our statement of Powell’s result differs slightly

from the original, in which the function f was defined throughout Rn, with Hessian
continuous on the given level set. To see how our stated version follows from the
original, denote the given level set by K ′, and the closed unit ball in Rn by B.
By compactness, there exists a constant δ > 0 such that the compact convex set
K = K ′ + δB is contained in the open set U . By convexity, f is L-Lipschitz on K
for some constant L > 0. Hence there exists a convex Lipschitz function f̂ : Rn → R
agreeing with f on K, specifically the Lipschitz regularization defined by

f̂(y) = min
x∈K
{f(x) + L‖y − x‖} (y ∈ Rn). (3.2)

We can now apply Powell’s original result, with the function f replaced by f̂ , and
Theorem 3.1 follows.

Powell’s proof depends crucially on convexity. Among the assumptions, at least
for dimension n > 2 (see [11]), convexity is central. Although the BFGS method
works well in practice on general smooth functions [9], nonconvex counterexamples
are known where convergence fails. Two particularly interesting examples appear
in [2, 8]. Each present bounded but nonconvergent BFGS sequences, the first for a
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polynomial f : R4 → R (but with unbounded level sets), and the second for a C(2)

smooth function with bounded level sets. In the general convex case, on the other
hand, whether the smoothness assumption (3.1) can be weakened seems unclear.

We present here a result analogous to Powell’s theorem. We modify the assump-
tions, strengthening the convexity assumption but weakening the smoothness require-
ment (3.1). Specifically, we only assume smoothness on an open set V containing
the sequence and all its limit points, and over which the infimum of the objective is
unchanged: notably, V might in theory exclude the minimizer. The proof of the result
is a little involved, technically, but the essential idea is simple. We shrink the set V
slightly and intersect it with a level set of f . On the resulting nonconvex compact
set, the function f is smooth, and we can extend it a smooth convex function using
a key tool from [14]. We then apply Powell’s theorem to this new function, and the
result follows.

Similar results to the one below hold for many common minimization algorithms
possessing suitable global convergence properties in the smooth case. Such algorithms
generate sequences of iterates xk characterized by certain properties of the function
values f(xk) and gradients ∇f(xk) (for k = 0, 1, 2, . . .), analogous to the definition
of a BFGS sequence. Providing the algorithm generates function values f(xk) that
must decrease to the minimum value min f for any convex function whose level sets
are compact and whose Hessian is continuous and positive definite throughout those
level sets, exactly the same proof technique applies. Examples of such algorithms
include standard versions of steepest descent [9], coordinate descent (see for example
[7]), and conjugate gradient methods (see for example [3]). Here we concentrate on
BFGS because, in striking contrast to these methods, the BFGS method works well
in practice on nonsmooth functions [5].

Theorem 3.2. Powell’s Theorem also holds with the smoothness assumption
(3.1) replaced by the following assumption: ∇

2f is positive-definite and continuous throughout
an open set V ⊂ U containing the set cl(xk) and
satisfying infV f = min f .

(3.3)

Proof. Recalling the hypotheses of Powell’s theorem, we consider an open convex
set U ⊂ Rn containing a BFGS sequence (xk) for a convex function f : U → R, and
we assume that the level set {x ∈ U : f(x) ≤ f(x0)} is compact. Under assumption
(3.3), we aim to prove that the sequence of function values f(xk) converges to min f .

Assume first that the theorem is true in the special case when U = Rn and the
complement V c is bounded. We then deduce the general case as follows. First, exactly
as in equation (3.2), define a compact convex neighborhood K ⊂ U of the level set,

and a convex Lipschitz function f̂ : Rn → R agreeing with f on K. Now, for any
sufficiently large β ∈ R, the convex function f̃ : Rn → R defined by

f̃(x) = max
{
f̂(x),

1

2
‖x‖2 − β

}
(x ∈ Rn)

also agrees with f on K. The Hessian of f̃ is just the identity throughout the open
set

W =
{
x : f̂(x) <

1

2
‖x‖2 − β

}
.
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Furthermore, this set has bounded complement, and therefore so does the open set

Ṽ = W ∪ (V ∩ intK).

Now notice that (xk) is also a BFGS sequence for the function f̃ , and all the assump-
tions of the theorem hold with f replaced by f̃ , U replaced by Rn, and V replaced
by Ṽ . Applying the special case of the theorem, we deduce

f(xk) = f̃(xk)→ min f̃ = min f,

as required.
We can therefore concentrate on the special case when U = Rn and the set

N = V c is compact. We can assume N is nonempty, since otherwise the result
follows immediately from Powell’s Theorem. The convex function f is then continuous
throughout Rn. It is not constant, and hence is unbounded above. Furthermore, by
the definition of a BFGS sequence, the initial point x0 is not a minimizer, so all the
level sets {x : f(x) ≤ α} are compact. Since N is compact and f is continuous, we
can fix a constant α > f(x0) satisfying α > maxN f .

Since the values f(xk) are decreasing, the sequence (xk) is bounded and hence
the closure cl(xk) is compact. For all sufficiently small ε > 0, we then have

cl(xk) ∩ (N + 2εB) = ∅ and max
N+2εB

f < α.

The distance function dN : Rn → R defined by dN (x) = minN ‖ · −x‖ (for x ∈ Rn) is
continuous, so the set

Ωε = {x : dN (x) ≥ 2ε and f(x) ≤ α}

is compact, and is contained in the open set {x : dN (x) > ε}. On this nonconvex
open set, the function f is convex, in the sense of [14], and C(2) with positive-definite
Hessian. Hence, by [14, Theorem 3.2], there exists a C(2) convex function fε on a
convex open neighborhood Uε of the convex hull convΩε agreeing with f on Ωε. Our
choice of ε ensures

{x : f(x) = α} ⊂ Ωε ⊂ {x : f(x) ≤ α}. (3.4)

Recall that f is a continuous convex function with compact level sets, whence

conv{x : f(x) = α} = {x : f(x) ≤ α}.

To see this, note that the right-hand side set C is convex, so it contains the left-hand
side. On the other hand, C is also compact, so any line containing an element of
C intersects it in a compact line segment with endpoints y and z. By continuity,
f(y) = α = f(z), so in fact C is contained in the left-hand side.

We now return to the inclusions (3.4). Taking convex hulls implies convΩε = {x :
f(x) ≤ α}. (Although superfluous for this proof, [14, Theorem 3.2] even guarantees
that fε has positive-definite Hessian on this compact convex set, and hence is strongly
convex on it.)

We next observe that the level set {x ∈ Uε : fε(x) ≤ fε(x0)} is compact, since it
is contained in the compact level set {x : f(x) ≤ α}. Otherwise there would exist a
point x ∈ Uε satisfying fε(x) ≤ fε(x0) = f(x0) < α and f(x) > α. By continuity of f ,
there exists a point y on the line segment between x0 and x satisfying f(y) = α. But
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then we must have y ∈ Ωε and hence fε(y) = f(y) = α, contradicting the convexity
of fε. Recall also that fε is continuous on {x : f(x) ≤ α}.

The values and gradients of the functions f and fε : Uε → R agree at each iterate
xk, so since those iterates comprise a BFGS sequence for f , they also do so for fε.
We can therefore apply Theorem 3.1 to deduce

f(xk) = fε(xk) ↓ min fε as k →∞.

By assumption, there exists a sequence of points xr ∈ V (for r = 1, 2, 3, . . .) satisfying
limr f(xr) = min f . For any fixed index r, we know xr ∈ Ωε for all ε > 0 sufficiently
small, so we have

min f ≤ lim
k
f(xk) = min fε ≤ fε(xr) = f(xr).

Taking the limit as r →∞ shows limk f(xk) = min f , as required.
The following consequence suggests simple examples.
Corollary 3.3. Powell’s Theorem also holds with smoothness assumption (3.1)

replaced by the assumption that ∇2f is positive-definite and continuous throughout
the set {x ∈ U : f(x) > min f}.

Proof. Suppose the result fails. The given set, which we denote V , must contain
the set cl(xk): otherwise there would exist a subsequence of (xk) converging to a mini-
mizer of f , and since the values f(xk) decrease monotonically, they would converge to
min f , a contradiction. Clearly we have infV f = min f . But now applying Theorem
3.2 gives a contradiction.

Corollary 3.4. Consider an open semi-algebraic convex set U ⊂ Rn containing
a BFGS sequence for a semi-algebraic strongly convex function f : U → R with com-
pact level sets. Assume that the sequence and all its limit points lie in the interior of
the set where f is twice differentiable. Then the sequence of function values converges
to the minimum value of f .

Proof. Denote the interior of the set where f is twice differentiable by V . Stan-
dard results in semi-algebraic geometry [13, p. 502] guarantee that V is dense in U ,
whence infV f = min f , and furthermore that the Hessian ∇2f is continuous through-
out V , and hence positive-definite by strong convexity. The result now follows by
Theorem 3.2.

The open set V in the proof of Corollary 3.4, where the function f is smooth,
has full measure in the underlying set U . Hence, if we initialize the algorithm in
question with a starting point x0 generated at random from a continuous probability
distribution on U , and use a computationally realistic line search to generate each
iterate xk from its predecessor, then we would expect (xk) ⊂ V almost surely. Then,
according to the result, exactly one of two cases hold.

(i) Success: f(xk)→ min f .
(ii) Failure: a subsequence of (xk) converges to a point where f is neither smooth

nor minimized.
Specifically, if case (i) fails, the result implies the existence of a nonsmooth limit point
x̄. The function values f(xk) decrease monotonically to some limit l > min f , and by
continuity, f(x̄) = l.

Extensive computational experiments with BFGS suggest that case (i) holds al-
most surely [5]. However, as we saw in the introduction, this is not generally true for
other algorithms (like steepest descent) for which analogous versions of Theorem 3.2
and Corollary 3.4 hold, and yet for which case (ii) is a real possibility. In the spe-
cial situation described in Corollary 3.3, case (ii) is impossible, so analogous results
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will hold for many common algorithms, like steepest descent, coordinate descent, or
conjugate gradients.

4. Special constructions. Unlike Powell’s original result, Theorem 3.2 requires
the Hessian ∇2f to be positive-definite on an appropriate set, an assumption that fails
for some simple but interesting examples like the Euclidean norm. We can sometimes
circumvent this difficulty by a more direct construction, avoiding tools from [14]. The
following result is a version of Corollary 3.3 under a more complicated but weaker
assumption.

Theorem 4.1. Powell’s Theorem also holds with the smoothness assumption
(3.1) replaced by the following weaker condition:

For all constants δ > 0, there is a convex open neighborhood Uδ ⊂ U
of the set {x ∈ U : f(x) ≤ f(x0)}, and a C(2) convex function
fδ : Uδ → R satisfying fδ(x) = f(x) whenever f(x0) ≥ f(x) ≥
min f + δ.

Proof. Clearly condition (3.1) implies the given condition, since we could choose
Uδ = U and fδ = f . Assuming this new condition instead, suppose the con-
clusion of Powell’s Theorem 3.1 fails, so there exists a number δ > 0 such that
f(xk) > min f + 2δ for all k = 0, 1, 2, . . .. Consider the function fδ guaranteed by
our assumption. Since f is continuous, there exists a point x̄ ∈ U satisfying f(x̄) =
min f + δ, and since fδ(x̄) = f(x̄), we deduce min fδ ≤ min f + δ.

Since (xk) is a BFGS sequence for the function f , it is also a BFGS sequence for
the function fδ. Applying Theorem 3.1 with f replaced by fδ shows the contradiction

min f + 2δ ≤ f(xk) = fδ(xk) ↓ min fδ ≤ min f + δ,

so the result follows.
We can apply this result directly to the Euclidean norm.
Corollary 4.2. Any BFGS sequence for the Euclidean norm on Rn converges

to zero.
Proof. For any δ > 0, consider the function gδ : R→ R defined by

gδ(t) =


δ3+3δt2−|t|3

3δ2 (|t| ≤ δ)

|t| (|t| ≥ δ).
(4.1)

This function is C(2), convex and even. The function fδ : Rn → R defined by fδ(x) =
gδ(‖x‖) is also C(2) and convex, both as a consequence of [12] and via a straightforward
direct calculation. The result now follows from Theorem 4.1.

Analogously, the following result is a more direct version of Theorem 3.2.
Theorem 4.3. Powell’s Theorem also holds with the smoothness assumption

(3.1) replaced by the assumption that some open set V ⊂ U containing the set cl(xk)
and satisfying infV f = min f also satisfies the following condition:

For all constants δ > 0, there is a convex open neighborhood Uδ ⊂ U
of the set {x ∈ U : f(x) ≤ f(x0)}, and a C(2) convex function
fδ : Uδ → R satisfying fδ(x) = f(x) for all points x ∈ Uδ such that
dV c(x) > δ.

Proof. Denote the distance between the compact set cl(xk) and the closed set V c

by δ̄, so we know δ̄ > 0. For any constant δ ∈ (0, δ̄), we have dV c(xk) > δ for all
indices k = 0, 1, 2, . . ., and hence fδ(xk) = f(xk).
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The values and gradients of the functions f and fδ agree at each iterate xk, so
since those iterates comprise a BFGS sequence for f , they also do so for fδ. We can
therefore apply Theorem 3.1 to deduce

f(xk) = fδ(xk) ↓ min fδ as k →∞.

By assumption, there exists a sequence of points xr ∈ V (for r = 1, 2, 3, . . .) satisfying
limr f(xr) = min f . For any fixed index r, we know dV c(xr) > δ for all sufficiently
small δ > 0, so since fδ(x

r) = f(xr), we deduce min fδ ≤ f(xr). The inequality
limk f(xk) ≤ f(xr) follows, and letting r →∞ proves limk f(xk) = min f as required.

We end by proving a claim from the introduction.
Corollary 4.4. Any BFGS sequence for the function f : R2 → R given by

f(u, v) = u2 + |v| has a subsequence converging to a point on the line v = 0.
Proof. Suppose the result fails, so some BFGS sequence

(
(uk, vk)

)
has its closure

contained in the open set

V = {(u, v) ∈ R2 : v 6= 0}.

Clearly we have infV f = min f . For any constant δ > 0, define a function fδ : R2 → R
by f(u, v) = u2+gδ(v), where the function gδ is given by equation (4.1). Then we have
f(u, v) = fδ(u, v) for any point (u, v) satisfying |v| > δ, or equivalently dV c(u, v) > δ.
Hence the assumptions of Theorem 4.3 hold (using the set Uδ = R2), so we deduce
f(uk, vk)→ 0, and hence (uk, vk)→ (0, 0). This contradiction completes the proof.

As we remarked in the introduction, numerical evidence strongly supports a con-
jecture that all BFGS sequences for the function f(u, v) = u2 + |v| converge to zero.
That conjecture remains open.

5. Appendix: failure of steepest descent. In the introduction we claimed
that the method of steepest applied to the function f : R2 → R defined by f(u,w) =
u2 + |w| typically converges to a nonoptimal point with u 6= 0. We here explain that
claim. The argument is motivated by an analogous earlier result [1] for the function
u+ |w|.

We consider any sequence of points xk = (uk, wk) ∈ R2 (for k = 0, 1, 2, . . .)
associated with the method of steepest descent using the Armijo and Wolfe conditions.
More precisely, we assume that Definition 2.1 holds, but with the approximate Hessian
definition (2.1) replaced simply by Hk = I for all iterations k. (In particular, by
assumption, the component wk is always nonzero.) We prove that no such sequence
can converge to the minimizer at zero unless the component uk is zero for some
iteration k.

Suppose the initial value f(x0) is less than the positive constant

δ = min
{1

4
,

1− ν
4ν

,
µ

8(1− µ)

}
.

Since f(xk) is decreasing, we deduce that both components u2k and |wk| are less than
δ for all iterations k. (Notice that any infinite sequence (xk) converging to zero must
eventually enter the region where f is less than δ.)

At each iteration k = 0, 1, 2, . . ., the iterates are related by

(uk+1, wk+1) =
(
uk(1− 2tk), wk − sgn(wk)tk

)
,
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for some scalar tk > 0. To simplify notation, denote the current iterate (uk, wk)
simply by (u,w), and tk by t, and suppose for simplicity w > 0. The Wolfe condition
(2.4) simplifies to

4u2(1− 2t− ν) + sgn(w − t) ≤ ν,

and as a consequence we have t > w: otherwise we deduce t < w < 1
2 , whence

4u2(1− 2t− ν) + 1 ≤ ν,

giving 1− 4u2ν ≤ ν, contradicting our choice of δ.
Next, simplifying the Armijo condition (2.3) gives

t
(
1 + µ+ 4u2(µ− 1 + t)

)
≤ 2w.

Notice

t <
2w

1 + µ/2
,

since otherwise we deduce

1 + µ+ 4u2(µ− 1 + t) < 1 +
µ

2
,

whence

4u2 ≥ µ

2(1− µ)
,

again contradicting our choice of δ. We deduce

wk > 0 > wk+1 > −γwk,

where

γ =
2− µ
2 + µ

∈ (0, 1)

By induction, we now see that the component wk changes sign at each iteration
k, and satisfies

|wk| ≤ γk|w0|, for all k = 0, 1, 2, . . . .

In particular we see wk → 0.
Without loss of generality, suppose u0 > 0. Since

tk <
2|wk|

1 + µ/2
<

1

2

(because |wk| < 1/4) and

uk+1 = uk(1− 2tk),

we deduce by induction that the sequence (uk) is strictly positive and decreasing. In
fact we have

uk+1 > uk

(
1− 4|wk|

1 + µ/2

)
≥ uk

(
1− 4|w0|

1 + µ/2
γk
)
≥ uk(1− γk)
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so

uk ≥ u0

k∏
j=1

(1− γj).

Consequently we have

log uk ≥ log u0 +

k∑
j=1

log(1− γj).

Since the function τ 7→ log(1− τ) is concave on the interval [0, 1), an easy argument
shows that the function τ 7→ 1

τ log(1− τ) is decreasing, so

log(1− τ) ≥ τ

γ
log(1− γ) whenever 0 < τ < γ.

Hence we deduce

log uk ≥ log u0 + log(1− γ)

k∑
j=1

γj−1 ≥ log u0 +
log(1− γ)

1− γ

(summing the geometric series), and so limk uk > 0. We have shown that the sequence
(uk, wk) converges to a nonzero point on the axis w = 0.

REFERENCES

[1] A. Asl and M.L. Overton. Analysis of the gradient method with an Armijo-Wolfe line search
on a class of nonsmooth convex functions. arXiv:1711.08517, 2017.

[2] Y.-H. Dai. A perfect example for the BFGS method. Math. Program., 138:501–530, 2013.

[3] J.C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods for
optimization. SIAM J. Optim., 2:21–42, 1992.
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