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Among various notions of critical points available for nonsmooth functions, the approach
via the ‘weak slope’ has considerable appeal. This property is less restrictive than that based
on the ‘strong’ slope of DeGiorgi–Marino–Tosques, but remains purely metric in nature.
Within variational analysis, this class of critical points is intermediate between those
associated with the Clarke and the limiting subdifferentials. However, recognizing such
points for concrete functions seems challenging. We present a basic topological
characterization for the simplest nontrivial case: piecewise affine (and, more generally,
‘definable’) functions of two variables.

Keywords: nonsmooth critical point; weak slope; subdifferential
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1. Nonsmooth critical points

Throughout this article, we consider a continuous function f :Rn
!R. We begin by

considering some purely metric notions of critical points.
We denote the closed ball of radius �40 centered at a point x 2 Rn by B�(x). We

recall the following definitions from Degiovanni–Marzocchi [11], Katriel [15] and
Ioffe–Schwartzman [14].

Definition 1.1 We call the point x Morse regular from below for the function f if, for some
numbers �, �40, there is a continuous function

� : B�ðxÞ � ½0, �� ! Rn

such that all points u 2 B�ðxÞ and t 2 ½0, �� satisfy the inequality

f ð�ðu, tÞÞ � f ðuÞ � �t:
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If there is a number �40 and such a function � that also satisfies the inequality

�ðu, tÞ � u
�� �� � �t,

then we call x ‘deformationally regular from below’. (We can arbitrarily fix one of the

numbers � or �, so we usually set �¼ 1.) Finally, we call x ‘deformationally critical from

below’ if it is not deformationally regular from below. The supremum of the possible ratios

�/� is called the ‘weak slope’ of f at x.
Clearly, the set of points that are Morse or deformationally regular from below is open.

It is also clear that deformational regularity implies Morse regularity, and so, any Morse

critical point is deformationally critical. An example of a deformationally critical point

that is not Morse critical is given by the function f(t)¼ t3.
The function � in the above definition is called a ‘deformation’. Deformations are

among the principal technical tools in classical critical point theory. In the classical smooth

setting, the existence of a suitable deformation in a neighbourhood of a point at which the

function has a nonzero derivative is one of the central technical facts. For an early use of

the deformation idea for nonsmooth functions, see [8,14]. Subsequent developments along

this line include [7].
We note that the property of deformational regularity is unaffected by well-behaved

local homeomorphisms. Specifically, we have the following result.

PROPOSITION 1.2 (regularity and homeomorphisms) Suppose that the point x 2 Rn is

Morse (respectively deformationally) regular from below for the function f :Rn
!R, and that

the map G :Rn
!Rn is a homeomorphism (respectively, a Lipschitz homeomorphism) of a

neighbourhood of x. Then, the point G(x) is Morse (respectively deformationally) regular

from below for the function f � G�1.

Proof Assume the existence of a deformation � as in Definition 1.1. We construct a new

deformation  on a suitable domain by setting

 ðv, tÞ ¼ Gð�ðG�1ðvÞ, tÞÞ:

Then we have

f ðG�1ðvÞÞ � f ðG�1ðð ðv, tÞÞÞÞ ¼ f ðG�1ðvÞÞ � f ð�ðG�1ðvÞ, tÞÞ � �t:

If f is deformationally regular and G is a Lipschitz homeomorphism with the local

Lipschitz constant �0, then we also have

k ðv, tÞ � vk ¼ Gð�ðG�1ðvÞ, tÞÞ � GðG�1ðvÞÞ
�� ��
� � �ðG�1ðvÞ, tÞ � G�1ðvÞ

�� ��
� ��0t,

completing the proof. g

By contrast with this approach, let us call the point x ‘strongly critical from below’ if

f ðuÞ � f ðxÞ � oðku� xkÞ for u near x:

In the terminology of De-Giorgi–Marino–Tosques [12], f has (strong) slope zero at x.
Clearly, any local minimizer is strongly critical. Less obvious is the following fact.

4 A.D. Ioffe and A.S. Lewis
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PROPOSITION 1.3 (local maximizers) Any local maximizer is Morse critical from below.

Proof Suppose the point x is a local maximizer and yet is Morse regular from below.

Using the notation of Definition 1.1, we can suppose without loss of generality that x¼ 0

and f(u)� f(0) whenever kuk� �.
Suppose kuk� � and �(u, ��kuk)¼ 0. Then we have

f ð0Þ ¼ f ð�ðu, �� kukÞÞ � f ðuÞ � �ð�� kukÞ � f ðuÞ � f ð0Þ,

so equality holds throughout. In particular, we deduce kuk¼ �. But this implies the

contradiction 0¼�(u, 0)¼ u.
We have therefore shown that �(u, ��kuk) 6¼ 0 whenever kuk� �. But now the map

u� �
�ðu, �� kukÞ

k�ðu, �� kukÞk

is a retraction from B�(0) to its boundary, contradicting the Brouwer fixed point

theorem. g

For continuously differentiable functions f, it is easy to see that all the above notions of

critical point correspond to f 0(x)¼ 0. For nonsmooth f, various definitions of critical point

compete, depending on the context: we next summarize two more of the most important

notions.
We call a vector y 2 Rn a ‘Fréchet subgradient’ of f at the point x if

f ðuÞ � f ðxÞ � yTðu� xÞ þ oðku� xkÞ for u near x:

Thus, x is strongly critical exactly when zero is a Fréchet subgradient there. We call y a

‘limiting subgradient’ if there is a sequence of points ur 2 Rn approaching x and a sequence

of Fréchet subgradients yr at ur approaching y. We denote the set of such limiting

subgradients by @Lf(x), and we call x ‘limiting critical’ at x when 0 2 @Lf ðxÞ.
The function f is ‘locally Lipschitz’ around the point x when, for some �40,

kf ðuÞ � f ðvÞk � �ku� vk for u, v near x:

In this case, the ‘Clarke generalized derivative’ @Cf(x) is the convex hull of the set @Lf(x)
[16]. For concrete functions f, a convenient formula [5] is

@Cf ðxÞ ¼ cl conv lim
r
f 0ðurÞ : ur ! x, ur =2S

n o

(for any zero-measure set S containing all points near x, where f is not differentiable). We

call x ‘Clarke critical’ when 0 2 @Cf ðxÞ.
The following simple result relates the above notions of critical points.

PROPOSITION 1.4 (critical points) The following implications hold for any continuous

function f at any point:

strongly critical) limiting critical

) deformationally critical from below

) Clarke critical

(where the final implication assumes f is locally Lipschitz).

Optimization 5
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Proof The first implication follows directly from the definitions. To see the second
implication, suppose the point x is limiting critical but deformationally regular from
below. There is a sequence of points ur approaching x and a sequence of Fréchet
subgradients yr approaching zero. Using the notation of Definition 1.1, for large indices r
we have kur � xk5 � and kyrk5 �, and hence as t # 0 we have

f ðurÞ � �t � f ð�ður, tÞÞ

� f ðurÞ þ yTr ð�ður, tÞ � urÞ þ oðk�ður, tÞ � urkÞ

� f ðurÞ � kyrk � k�ður, tÞ � urk þ oðk�ður, tÞ � urkÞ

� f ðurÞ � kyrktþ oðtÞ:

Thus kyrk� �þ o(1), which is a contradiction.
The third implication follows easily from well-known properties of the Clarke

generalized gradient: if the point x is not Clarke critical, there exists a unit vector
w 2 Rn such that

lim sup
u!x, t#0

f ðuþ twÞ � f ðuÞ

t
5 0:

Now defining �(u, t)¼ uþ tw satisfies Definition 1.1, so x is deformationally regular
from below. g

As we have mentioned, any Morse critical point is also deformationally critical. But
there is no definite connection between the concepts of Morse and limiting critical points.
The previous example t� t3 shows that a limiting critical point may not be Morse critical.
Example 1.6 below shows the absence of the opposite implication: a Morse critical point
that is not limiting critical.

Returning to the last proposition, we note that even for very simple functions, each of
the converse implications in the proposition may fail. The function f :Rn

!R is piecewise
linear if there are polyhedral cones Kj and vectors aj (for j¼ 1, 2, . . . ,m) such that
[jKj ¼ Rn and f ðxÞ ¼ aTj x for all points x 2 Kj.

Example 1.5 (limiting critical 6) strongly critical) Consider the function f :R2
!R

defined by

f ðy, zÞ ¼
jyj � jzj if jyj � jzj
0 otherwise

� �
:

The origin is not strongly critical, because f(0, z)¼�jzj, but it is limiting critical because
f 0(y, 0) is zero for all y 6¼ 0.

Example 1.6 (Morse critical 6) limiting critical) Consider a function f :R2
!R defined by

f(y, z)¼ jyj � jzj. Now the origin is not limiting critical: a quick calculation shows
@Lf ð0, 0Þ ¼ ½�1, 1� � f�1, 1g. On the other hand, the level set {(y, z): f(y, z)50} is not
connected, and this implies, as we shall see, that the origin is Morse (and therefore
deformationally) critical from below.

Example 1.7 (Clarke critical 6) deformationally critical) Following Campa–Degiovanni
[3], consider the function f :R2

!R defined by f(y, z)¼ jz� jyk� y. The Clarke generalized
gradient at the origin is the square with corners (�1� 1, �1), so the origin is Clarke
critical. However, it is easy to check directly that the origin is not deformationally critical

6 A.D. Ioffe and A.S. Lewis
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from below. Indeed, both the level sets {(y, z): f(y, z)40} and {(y, z): f(y, z)50} are
connected and the set {(y, z): f(y, z)¼ 0} has empty interior: as we shall see, this suffices to
guarantee that the origin is deformationally regular from below.

2. Connected level sets

We refer to [9,13] for definitions and properties of o-minimal structures and definable sets
and functions. The most prominent example is given by semi-algebraic sets and functions.
A set S 	 Rn is ‘semi-algebraic’ if it is defined by some finite boolean combination of real
polynomial inequalities and equations. A function f :Rn

!R is ‘semi-algebraic’ if its graph
(or equivalently, epigraph) is semi-algebraic: in particular, piecewise linear functions are
semi-algebraic. We refer the reader to standard references such as [1,2] for semi-algebraic
geometry.

LEMMA 2.1 (connectedness of definable sets) If the point x lies in the closed semi-algebraic
set S 	 Rn, then for all small �40, the set

u 2 S : ku� xk5 �f g

is path-connected.

Proof The set S 	 Rn decomposes into a finite union of disjoint path-connected sets,
each of which is also closed. The result then follows. g

The following simple result describes a basic topological consequence of deformational
regularity from below, and will suffice for our purposes. More sophisticated
Morse-theoretic results appeared in [6,10].

LEMMA 2.2 (path-connected level sets) Consider a continuous function f :Rn
!R that

is Morse regular from below at the point x 2 Rn, and an open neighbourhood U of x.
If the set L� ¼ fu 2 U : f ðuÞ � f ðxÞg is path-connected, then so is the level set
L5 ¼ fu 2 U : f ðuÞ5 f ðxÞg.

Proof Consider any two points u1, u2 2 L5 . By assumption, for each index i, there is a
continuous path pi : ½0, 1� ! L� satisfying pi(0)¼ x and pi(1)¼ ui. Using Definition 1.1,
observe that for some ti40 we have

�ðpiðsÞ, tÞ 2 U for all s 2 ½0, 1�, t 2 ½0, ti�:

Indeed, if this failed, then there would exists sequences sr 2 ½0, 1� and tr # 0 satisfying
�ðpiðs

TÞ, trÞ =2U. By continuity, any cluster point �s of {sr} would then satisfy
pið�sÞ ¼ �ðpið�s, 0Þ =2U, which is a contradiction.

Let t3¼min{t1, t2} and consider the following paths:

t��ðu1, tÞ, as t increases from 0 to t3;

s��ðp1ðsÞ, t3Þ, as s decreases from 1 to 0;

s��ðp2ðsÞ, t3Þ, as s increases from 0 to 1;

t��ðu2, tÞ, as t decreases from t3 to 0:

These paths connect u1 to �ðu1, t3Þ,�ðu2, t3Þ, u2, in turn, all in the set L5, so the
result follows. g

Optimization 7
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The following result justifies our claim in Example 1.6 (Morse critical from below 6)
limiting critical).

PROPOSITION 2.3 (regular points and level sets) Given a continuous function f :Rn
!R,

consider a point x 2 Rn that is Morse regular from below.

(i) If f is definable, then for all small �40 the set

u 2 Rn : f ðuÞ5 f ðxÞ, ku� xk5 �
� �

is path-connected.

(ii) If x¼ 0 and f is positively homogeneous, then the level set

fu : f ðuÞ5 0g

is path-connected.

Proof For the first part, apply Lemma 2.1 to the set fu 2 Rn : f ðuÞ � f ðxÞg (which is
closed and definable), followed by Lemma 2.2. For the second part, note that the level set
{u: f(u)� 0} is obviously path-connected, so again we can apply Lemma 2.2. g

3. Piecewise linear functions on the plane

The following is our technical result, on which the main theorems of the next section are
based. Recall that a function f :Rn

!R is ‘piecewise linear’ if there are polyhedral cones Kj

and vectors aj (for j¼ 1, 2, . . . ,m) such that [jKj ¼ Rn and f ðxÞ ¼ aTj x for all points x 2 Kj.

THEOREM 3.1 (critical points of piecewise linear functions) Consider a function f :R2
!R

that is continuous and positively homogeneous. If the origin is Morse regular from below, then
the two open cones where f is strictly positive and strictly negative are both path-connected
and their closures together cover R2: more precisely, there exist two angles �15�2 in the
interval [0, 2�) such that, in polar coordinates, we have

f ð½r, ��Þ

5 0 if �1 5 �5 �2

¼ 0 if � ¼ �1 or �2

4 0 otherwise:

8><
>:

If furthermore f is piecewise linear, then the converse is also true. Moreover, in this case zero
is a deformationally regular point of f.

Proof The origin can be neither a local minimizer nor a local maximizer, by our
observations in Section 1, so both the level sets {u: f(u)50} and {u: f(u)40} are nonempty,
and the former is path-connected, by Proposition 2.3 (regular points and level sets).

Consider next any nonzero point u satisfying f(u)¼ 0. If u was a local minimizer, then by
positive homogeneity, so would be the point �u, for all �40. Thus each of these points
would be Morse critical from below, contradicting the assumption that the origin is Morse
regular from below. The claimed form for the level sets of f now follows.

To prove the second statement, we build the desired deformation. The function f is
piecewise linear, so the set where its gradient is discontinuous is a finite union of rays

8 A.D. Ioffe and A.S. Lewis
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generated by distinct points x0, x1, . . . , xn on the unit circle. Without loss of generality,

these points have arguments 0 ¼ �0 5 �1 5 � � � 5 �n 5 2� respectively, in polar coordi-

nates. We denote the argument of any nonzero u 2 R2 by arg u. By adding more rays if

necessary, we can suppose �jþ1� �j5�/2 for each index j. By assumption, there exist

vectors a0, a1, . . . , an 2 R2, such that, for each j,

f ðxÞ ¼ aTj x if �j � arg x � �jþ1,

where we define �nþ1¼ 2� (and, correspondingly, xnþ1¼ x0). In other words, we have

covered the plane R2 by closed convex cones

Kj ¼ fx 6¼ 0 : �j � arg x � �jþ1g [ f0g ¼ Rþxj þ Rþxjþ1

spanning an acute angle at the origin, and on each of which f is linear. After adding more

rays if necessary, by our assumption on the level sets of f, we can suppose for some integer

m we have

f ðxjÞ
¼ 0 ð j ¼ 0,mÞ
4 0 ð05 j5mÞ
5 0 ðm5 j � nÞ:

8<
:

Notice, for each j we have

aTj xj ¼ f ðxjÞ and aTj xjþ1 ¼ f ðxjþ1Þ:

Consider next a number �4 0. Providing we choose � sufficiently small, then, for

m5j5n, the vector hj¼ xjþ1� �xj satisfies

aTj hj ¼ f ðxjþ1Þ � � f ðxjÞ5 0,

so the unit vector gj ¼ jhjj
�1hj satisfies aTj gj 5 0. Notice that the half-line xjþRþgj

intersects the ray Rþxjþ1: indeed, we have

xj þ �
�1 hj
�� ��gj ¼ ��1xjþ1: ð1Þ

Now define a (discontinuous) unit vector field F: R2
!R2 by setting F(0)¼ xn, and for

nonzero u 2 R2,

FðuÞ ¼

�x1 if arg u4 �n or arg u � �1
�kuk�1u if �1 � arg u � �m�1
�xm�1 if �m�1 � arg u5 �mþ1
gj if �j � arg u5 �jþ1 for m5 j5 n
xn if arg u ¼ �n:

8>>>><
>>>>:

Then our desired deformation � : R2 � Rþ ! R2 is defined uniquely by the property that,

for each point u 2 R2, the trajectory t � �ðu, tÞ solves the initial value problem

dz

dt
¼ FðzÞ, zð0Þ ¼ u ð2Þ

Optimization 9
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(where henceforth derivatives with respect to t are taken on the right). In other words,

from any initial point u, the point �(u, t) follows at unit speed a piecewise linear trajectory

whose direction at any point is given by the field (Figure 1).
Proving the required properties of the deformation is elementary, if a little lengthy.

Arguing from the last observation, the first desired property of the deformation,

k�ðu, tÞ � uk � t, for all u 2 R2, t � 0,

follows immediately. To check the second desired property, namely

f ð�ðu, tÞÞ � f ðuÞ � �t ð3Þ

for some �40, notice

d

dt
f ð�ðu, tÞÞ ¼ f 0 �ðu, tÞ;

d

dt
�ðu, tÞ

� �
¼ f 0 �ðu, tÞ;Fð�ðu, tÞÞð Þ

(where f 0(�; �) denotes the directional derivative). We therefore need to check

that f 0(u, F(u))5�� for all points u 2 R2. We consider the five cases in the definition

of the field F in turn: clearly it suffices to show that f 0(u, F(u)) is uniformly negative in

each case.

Case 1 Suppose u 2 KnnRþxn. By assumption, we can write x0¼ �x1þ	xn with �, 	40.

Clearly u� tx1 2 Kn for all small t� 0, so

f 0ðu,FðuÞÞ ¼ �aTn x1 ¼ �a
T
n

1

�
ðx0 � 	xnÞ ¼

	

�
f ðxnÞ5 0:

On the other hand, suppose that u 2 int K0. Then

f 0ðu,FðuÞÞ ¼ �aT0 x1 ¼ �f ðx1Þ5 0:

Figure 1. Deformation trajectories inside the unit disk.

10 A.D. Ioffe and A.S. Lewis
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Case 2 Suppose 0 6¼ u 2 Kj where 1� j�m� 2. We can write u¼ �xjþ	xjþ1 for some �,
	� 0 not both zero. Clearly u� tkuk�1 2 Kj for all small t� 0, so by convexity,

f 0ðu,FðuÞÞ ¼ �aTj kuk
�1u

¼ �aTj �xj þ 	xjþ1
�� ���1 �xj þ 	xjþ1� 	

� �min f ðxjÞ, f xjþ1
� 	� � �

�þ 	
xj þ

	

�þ 	
xjþ1

����
����
�1

� �min f xj
� 	

, f xjþ1
� 	� �

5 0:

Case 3 If u 2 ðint Km�1Þ [ ðKmnRþxmþ1Þ, the argument is completely analogous to

Case 1.

Case 4 Suppose u 2 KjnRþxjþ1, where m5j5n. Clearly uþ txj 2 Kj for all small t� 0, so

f 0ðu,FðuÞÞ ¼ aTj gj 5 0

by our choice of the number �.

Case 5 If u 2 Rþxn, then

f 0ðu,FðuÞÞ ¼ aTn xn ¼ f ðxnÞ5 0:

This completes the proof of property (3).

It remains to prove that the deformation � is continuous. Since kF(u)k¼ 1 for all u, we

immediately deduce that �(u, �) has Lipschitz constant one for any fixed u:

k�ðu, sÞ � �ðu, tÞk � js� tj for all s, t � 0:

It therefore suffices to show that �(�, t0) is continuous for any fixed t0� 0.
Notice that � is positively homogeneous:

�ð
u,
tÞ ¼ 
�ðu, tÞ for all u 2 R2, t,
 � 0:

To see this, without loss of generality suppose 
40 and define a new function

 : R2
�Rþ!R2 by

 ðu, tÞ ¼
1



�ð
u,
tÞ:

Then  (u, 0)¼ u for all u 2 R2, and

d

dt
 ðu, tÞ ¼ �tð
u,
tÞ ¼ Fð�ð
u,
tÞÞ ¼ Fð
 ðu, tÞÞ ¼ Fð ðu, tÞÞ

so  solves the initial value problem (2), and hence coincides with �.
The restriction of the function �(�, t0) to the set [m�2j¼1 Kj is continuous, since for points u

in this set we have

�ðu, t0Þ ¼
ð1� kuk�1t0Þu ðkuk � t0Þ
ðt0 � kukÞxn ðkuk � t0Þ:

�

Optimization 11
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We next prove � is continuous relative to the set U�Rþ, where

U ¼ fu 2 R2 : u 6¼ 0, �m�1 5 arg u � �ng:

To see this, we consider the trajectory passing through the point xmþ1. More precisely,

consider the continuous function g: R!U defined by

�ðtÞ ¼
xmþ1 � txm�1 ðt � 0Þ
� xmþ1, tð Þ ðt � 0Þ:

�

By definition, for all points u 2 U we know arg FðuÞ 2 arg uþ ð0,�Þ and jFðuÞj ¼ 1. Since

g0(t)¼F(g(t)), we deduce

d

dt
arg �ðtÞ4 0 whenever �ðtÞ 2 U:

Using Equation (1), we see that the trajectory g(t) hits the ray Rþxn at time

�t ¼
1

�

Xn�1
j¼mþ1

khjk:

So, on the interval (�1, t], the function t� arg g(t) is strictly increasing, with

lim
t#�1

arg �ðtÞ ¼ �m�1 and arg �ð �tÞ ¼ �n,

so there is a continuous, strictly increasing inverse function

� : ð�m�1, �n� ! ð�1, �t�, with arg �ð�ð�ÞÞ ¼ � ð�m�1 5 � � �nÞ:

Any point u 2 U therefore satisfies arg g(�(arg u))¼ arg u, so

u ¼
kuk

k�ð�ðarg uÞÞk
�ð�ðarg uÞÞ:

Now we can use positive homogeneity to see, for all (u, t) 2 U� Rþ, the relationship

�ðu, tÞ ¼
kuk

k�ð�ðarg uÞÞk
� �ð�ðarg uÞÞ,

k�ð�ðarg uÞÞk

kuk
t

� �

¼
kuk

k�ð�ðarg uÞÞk
� �ðarg uÞ þ

k�ð�ðarg uÞÞk

kuk
t

� �
:

The right-hand side is clearly continuous, so our claim follows. A similar, easier argument

shows that � is also continuous relative to the set

ðRþþxn [ intðKn [ K0ÞÞ � Rþ:

It remains only to show that �(�, t0) is continuous at any point on the rays Rþx1 and

Rþxm. By positive homogeneity, we can focus on the points xm (the argument for x1 being

similar) and zero. The following lemma is helpful.

12 A.D. Ioffe and A.S. Lewis
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LEMMA 3.2 Consider sequences of numbers pr!þ1 and {qr} and any t� 0. Then we have

qr
pr
! 1)

1

pr
�ðprt� qrÞ ! �ðxm�1, tÞ

qr
pr
! 0)

1

pr
�ðprt� qrÞ ! �ð0, tÞ:

Proof By definition, we have

� xm�1, tð Þ ¼
ð1� tÞxm�1 if t � 1

ðt� 1Þxn if t � 1,

�

�ð0, tÞ ¼ txn:

On the other hand,

�ðprt� qrÞ

¼ xmþ1 � ðqr � prtÞxm�1 if t �
qr
pr

¼ �ð�tÞ þ ðprt� qr � �tÞxn if t �
ðqr þ �tÞ

pr

2 �½0, �t� otherwise:

8>>>><
>>>>:

Dividing through by pr and taking the limit, noting that the path �½0, �t� is bounded, now

proves the result. g

Proceeding with the proof, consider now a sequence of points ur! xm�1. We want to

show �ður, tÞ ! �ðxm�1, tÞ, for any t� 0. By considering subsequences, we can suppose

either that ur 2 Km�2 for all r or that ur 2 U for all r. The first case is already proved above,

so consider the second case. As above, we then have

�ður, tÞ ¼
kurk

k�ð�ðarg urÞÞk
� �ðarg urÞ þ

k�ð�ðarg urÞÞk

kurk
t

� �
: ð4Þ

Since ur!xm�1, we have �m�15arg ur! �m�1, so �(arg ur)!�1. Notice

�ð�sÞ

s
! xm�1 and

�ðsÞ

s
! xn as s!1: ð5Þ

If we now apply Lemma 3.2 with

pr ¼
k�ð�ðarg urÞÞk

kurk
and qr ¼ ��ðarg urÞ, ð6Þ

our desired result follows.
Finally, consider a sequence of nonzero points ur! 0. We want to show

�ður, tÞ ! �ð0, tÞ, for any t� 0. By considering subsequences, we can restrict to three

cases: �1� arg ur� �m�1 for all r, or ur 2 U for all r, or arg ur 2 ð�n, 2�Þ [ ½0, �1Þ for all r.
The first case is proved above. On the other hand the second and third involve similar

arguments, so suppose ur 2 U for all r.
Using Equations (4) and (6) again, we have

�ður, tÞ ¼
1

pr
�ðprt� qrÞ:

Optimization 13
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Property (5) and the fact that g(s) 6¼ 0 for all s 2 R guarantees that pr!1, and,
furthermore, that s=k�ðsÞk is bounded above, so qr=pr ! 0. The desired result now follows
by Lemma 3.2. g

4. Main theorems

Since the notion of deformationally regular from below is purely local, we immediately
arrive at the following characterization for continuous ‘piecewise affine’ functions of two
variables (from which we understand a decomposition of R2 into a finite disjoint union of
points, line segments and open polygons on each of which the function f agrees with an
affine function).

THEOREM 4.1 (piecewise affine functions on R2) Suppose the continuous function
f :R2

!R is piecewise affine. Then a point �x 2 R2 is deformationally regular from below if
and only if, for all small �40, the strict local level sets

fx 2 B�ð �xÞ : f ðxÞ5 f ð �xÞg and fx 2 B�ð �xÞ : f ðxÞ4 f ð �xÞg

are both path-connected and their closures together cover the neighbourhood B�ð �xÞ.

We can push the basic result of Theorem 3.1 in a different direction, for definable
functions.

THEOREM 4.2 (definable functions on the plane) Suppose the definable function f :R2
!R

is continuous near �x. Then �x is Morse regular from below if and only if there is a �40 such
that the strict local level sets

fx 2 B�ð �xÞ : f ðxÞ5 f ð �xÞg and fx 2 B�ð �xÞ : f ðxÞ4 f ð �xÞg

are both path-connected, and their closures together cover a neighbourhood of �x.

Proof Again we only have to prove that the conditions imply Morse regularity. We can
assume of course that �x ¼ 0 and f ð �xÞ ¼ 0. It suffices to show the existence of a definable
homeomorphism � of a neighbourhood of zero in R2 onto a further neighbourhood of
zero such that �(0)¼ 0 and the restriction of g ¼ f �� on a small neighbourhood of zero is
piecewise linear. In this case the sets, extending g by homogeneity to all of R2, we see that
the sets {x: g(x)50} and {x: g(x)40} are path-connected. Indeed, suppose g(xi)50, for
i¼ 1, 2. Then for some �40 and zi¼�(�xi) we have kzik5 � and f(zi)¼ g(�xi)50. By
assumption there is a continuous path z(t) joining z1 and z2 and such that kzðtÞk5 � and
f(z(t)50 for all t. Then x(t)¼��1(z(t) is a continuous path joining x1 and x2 and
completely lying in {x: g(x)50}.

Next, consider any x such that k�ðxÞk5 �. Then z¼�(x) belongs to the closure of
either {z: f(z)50} or {z: f(z)40}. But then xmust belong to the closure of the image of one
of these sets under ��1, that is, to the closure of either {x: g(x)50} or {x: g(x)40}.

Thus g satisfies all assumptions of Theorem 3.1, which means that zero is a regular point
of g. Let � be the corresponding deformation, that is, for some �40, we have

gðuÞ � gð�ðu, tÞÞ � �t

for all small u and small t� 0. Set  ðv, tÞ ¼ �ð�ð��1ðvÞ, tÞÞ. Then

f ðvÞ � f ð ðv, tÞÞ ¼ gð��1ðvÞÞ � gð�ð��1ðvÞÞ, t � �t

and we conclude that zero is a Morse regular point of f as claimed.

14 A.D. Ioffe and A.S. Lewis
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Thus, we need to prove the existence of the desired homeomorphism. To this end we

first recall some basic facts concerning simplices and simplicial complexes in Rn.
A simplex S in Rn of dimension k� n is the convex hull of kþ 1 affinely independent

points x1, . . . , xkþ1 (that is, such that none of them is a convex combination of the others)

called vertices of the simplex. A simplex whose vertices form a proper subset of

{x1, . . . , xkþ1} is a face of S. A finite collection �¼ {Si} is a ‘simplicial complex’ if faces

of any element of � also belong to �. The union of all elements of � is often called the body

of �. We shall not make a distinction between a simplex and its body and shall use the same

symbol for both. (Observe that in our definition simplices and complexes are closed sets.)
The basic fact we need to construct a desired homeomorphism is the following

triangulation theorem [9, Theorem 4.5]. g

THEOREM 4.3 (triangulation theorem) Let f be a continuous definable function on Rn with

a bounded domain and closed graph. Then there is a simplicial complex � 	 Rnþ1 and

a definable homeomorphism �: �!Rn onto the domain of f such that g ¼ f �� is a

piecewise affine function.

More precisely the theorem says that the restriction of g to any simplex of � is an affine

function.
Return to our proof. Taking, if necessary, the restriction of f to a closed bounded

neighbourhood of zero, we can guarantee that the graph of f is closed, so the triangulation

theorem can be applied. Let � 	 R3 and � be the corresponding complex and

homeomorphism. We can assume that 0 2 � and �(0)¼ 0.
Observe that the triangulation theorem is a global result. What we need is a local

homeomorphism but from a neighbourhood of zero inR2 rather than from a complex inR3.
As we need a homeomorphism of a small neighbourhood of zero, we are interested in

simplices of � containing zero. There is no loss of generality in assuming that zero is a

vertex of any of them. Let l1, . . . , lk be one dimensional simplices containing zero, that is

li¼ [0, xi], and let S1, . . . ,Sm the two-dimensional simplices containing zero. By definition,

every li is a face of a certain Sj.
We claim that actually every li is a face of exactly two simplices Sj. Indeed, assume, e.g.

that l1 is a face of S1 only. Then �(l1) belongs to the boundary of �(S1). On the other

hand, for a small �40 the point �(�x1) belongs to the interior of the domain of f and

hence of �(�). This means that there is a sequence ðukÞ 	 �nS1 such that �(uk) converge

to �x1. We may assume that all uk belong to some Sj, j 6¼ 1 and therefore there is a u 2 Sj

such that �(u)¼ �x1, in contradiction with the fact that � is one-to-one. It is also clear that

no li can be a face of three two-dimensional simplices (in which case, any relative interior

point of li would have a small neighbourhood whose intersection with � would contain a

disc with a half disc glued to part of its – diameter – a configuration that cannot be

homeomorphic to a domain in R2).
Thus we have to conclude that k¼m and by renumbering the simplices we may assume

that li and liþ1(mod k) are faces of Si for i¼ 1, . . . , k. Now we can easily conclude the proof.
Let us divide the unit circle in R2 into k equal parts. Let x1, . . ., xk be the points of the

partition. Consider the following mapping � from R2 to R3:

�ð0Þ ¼ 0,�ðxiÞ ¼ zi, ði ¼ 1, 2, . . . , kÞ

and �( � ) is a linear mapping on every cone generated by pairs of adjacent xi.
Then � ¼ � � � is the desired homeomorphism.
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