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Abstract

Many questions of robust control analysis and synthesis fundamentally involve nonsmooth sets and functions, and their variational properties.

Central examples include distances to instability and uncontrollability, the H1 norm, and pseudospectra. This plenary presentation at the Fifth

IFAC Symposium on Robust Control Design (2006), surveys what current ideas from nonsmooth analysis say about the structure and conditioning

of such functions and sets, and their numerical optimization. The presentation focuses on notions of nonsmooth derivatives and regularity and on

structural tools such as partial smoothness and semi-algebraic techniques, illustrating how each idea helps in analysis and algorithm design. This

survey relies heavily on joint work of the author with J.V. Burke (University of Washington) and M.L. Overton (Courant Institute).
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1. Outline

The mathematical formulation of robust control analysis and

synthesis problems inevitably introduces sets and functions not

amenable to classical calculus and optimization due to inherent

nonsmoothness. The theory of variational analysis and

nonsmooth optimization has matured over the last several

decades into an elegant and powerful toolkit for just such

analysis (Clarke, 1983; Clarke, Ledyaev, Stern, & Wolenski,

1998; Mordukhovich, 2006; Rockafellar & Wets, 1998). This

paper aims to illustrate potential roles for modern variational

analysis in the contemporary theory and computational practice

of robust control. We make no claim to a comprehensive survey.

Instead, in the form of a variety of case studies, and keeping our

mathematical language as informal as possible, we simply

extend an invitation to variational analysis for robust control

specialists.

We begin by considering a list of typical nonsmooth sets and

functions appearing in robust control models. Taking as a first

example the distance to uncontrollability, we illustrate the use

of semi-algebraic ideas in its analysis.

Robust control synthesis often results in optimization models

whose solutions occur at points where the objective function is

nonsmooth. We illustrate using Blondel’s ‘‘chocolate problem’’,

a well-known illustration of the difficulty of simultaneous plant

stabilization (Blondel, 1994). Numerical algorithms for optimiz-

ing the kind of nonsmooth functions appearing in such problems

(or in H1synthesis, to take another example) are not widely

available. We discuss one conceptually simple and easily

implementable method known as ‘‘gradient sampling’’.

Nonsmooth sets and functions appearing in robust control

models are free from many of the pathologies of concern in

the general mathematical theory of variational analysis. Instead

they are highly structured: in particular, while nonsmooth points

are fundamental to the control model, in practice these points

are confined to certain smooth manifolds. We discuss one

particularly important structure (‘‘partial smoothness’’) capita-

lizing on this behavior, useful for analyzing the sensitivity of

optimal designs and the behavior of solution algorithms.

As a final example, we consider ‘‘pseudospectra’’, the sets of

all eigenvalues of matrices in a neighborhood of given matrix.

Pseudospectra are highly effective tools for studying many

properties of nonnormal matrices, and in particular for

understanding the transient dynamics of associated systems

(Trefethen & Embree, 2005). Until recently, their application

has been primarily confined to analysis, using the power-

ful computational tool EIGTOOL (Embree & Trefethen).
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However, studying the variational analysis of the pseudospec-

trum as a set-valued mapping opens up a range of possibilities

for robust pole placement and control synthesis.

Modern robust control analysis and synthesis has been

revolutionized by ‘‘linear matrix inequality’’ techniques (Boyd,

El Ghaoui, Feron, & Balakrishnan, 1994). Such techniques

elegantly transform a rich variety of control problems into

convex optimization models that are in principle computa-

tionally tractable. However, the resulting models involve

subsidiary semidefinite matrix variables that can be very large

in practice, making the resulting semidefinite programs often

challenging or effectively impossible to solve computationally.

The techniques we survey in this work take a completely

different tack, aiming to avoid this challenge by focusing on

the original design variables, and handling the resultant

nonsmoothness directly.

2. Examples of nonsmooth matrix functions

We begin by considering a variety of matrix functions,

commonly appearing in robust control models, and inherently

nonsmooth. We denote the space of complex column n-vectors

by Cn, and on this space jj � jj denotes the usual 2-norm. We

denote the space of n-by-n complex matrices by Mn, and on this

space (and more generally on the space of m-by-n matrices)

jj � jj denotes the associated operator 2-norm (the spectral

norm):

jjAjj ¼ max fjjAujj : u2Cn; jjujj ¼ 1g for A2Mn:

This quantity is just the largest singular value of A.

Notice that we are immediately confronted with non-

smoothness, even in the matrix norm jj � jj. If the largest

singular value of A is not simple (or in other words if the matrix

A�A has a multiple largest eigenvalue), then jj � jj is not smooth

at A. However, being convex, the norm jj � jj is straightforward

to understand using classical convex analysis as developed in

Rockafellar (1970) (see for example Watson, 1992; Zietak,

1993), and to optimize using interior point techniques

(Nesterov & Nemirovskii, 1994). By contrast, our interest in

this work is in nonconvex functions.

A simple but representative example of the kind of

nonsmooth nonconvex function ubiquitous in robust control

is the smallest singular value:

smin ðAÞ ¼ min fjjAujj : u2Cn; jjujj ¼ 1g for A2Mn:

The smallest singular value measures the distance to the nearest

singular matrix, or more generally, for rectangular A, to the

nearest rank-deficient matrix.

Designing a parametrized matrix in order to maximize its

distance to singularity is perhaps a rather artificial problem. Of

more genuine interest (Van & Loan, 1985) is the distance to the

nearest unstable matrix, by which we mean a matrix with an

eigenvalue having an eigenvalue with nonnegative real part. An

easy and well-known result expresses this function, also known

as the complex stability radius, as

rCðAÞ ¼ min fsmin ðzI � AÞ : z2C; Rez> 0g for A2Mn:

Like the smallest singular value, this function is nonsmooth and

nonconvex.

The complex stability radius is a special case of the H1

norm, a key notion in robust control (Zhou, Doyle, & Glover,

1996). The H1 norm of a transfer function

HðzÞ ¼ CðzI � AÞ�1Bþ D ðz2CÞ

(for appropriately sized matrices A;B;C;D) is the quantity

jjHjj1 ¼ max fjjHðzÞjj : z2C; Rez> 0g:

In terms of the variables A;B;C;D, this function is again

nonsmooth and nonconvex. (Setting B and C to be identity

matrices and D ¼ 0 gives the reciprocal of the complex stability

radius.)

Given two appropriately sized matrices A and B, classical

theory (Zhou et al., 1996) shows that the control system ẋ ¼
Axþ Bu is uncontrollable exactly when there exists a point

z2C for which the matrix ½A� zI B � is rank-deficient. An

elementary argument (Eising, 1984) then shows that the

distance to uncontrollability for a matrix pair (A;B) is the

quantity

min fjjðA0;B0Þ � ðA;BÞjj : ẋ ¼ A0xþ B0u uncontrollableg

¼ min fsmin ½A� zI B � : z2Cg;

which once again depends on the variables A;B in a nonsmooth

nonconvex fashion.

If we denote the spectrum of a matrix A2Mn by LðAÞ, then

the asymptotic rate of decay of the dynamical system ẋ ¼ Ax is

determined by the spectral abscissa

aðAÞ ¼ max fRez : z2LðAÞg:

In particular, the matrix A is stable exactly when aðAÞ< 0. Like

the functions above, the spectral abscissa is continuous, non-

smooth and nonconvex, but unlike the previous examples it is

not even Lipschitz.

The last example we consider in this section is a set-valued

mapping rather than a real-valued function. A general tool for

studying robust properties of the spectrum of a matrix A2Mn is

the e-pseudospectrum

LeðAÞ ¼
[

jjX�Ajj�e

LðXÞ

(for given e� 0). When A is not normal (meaning A�A 6¼AA�),
pseudospectra are often more informative for modeling pur-

poses than the spectrum, in particular providing better informa-

tion about the transient behavior of the dynamical system

ẋ ¼ Ax. Often more convenient is the equivalent definition

LeðAÞ ¼ fz2C : smin ðA� zIÞ � eg:

Variational analysis is ideally suited to the study of such

set-valued mappings.
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3. Nonsmooth design and LMIs

Simply put, design synthesis is numerically challenging

because computational minimization of nonsmooth, nonconvex

functions is hard. To take one artificially simple but illustrative

example, consider the problem of choosing a small real

parameter t with the aim of maximizing the distance to

singularity function

smin

1 t þ d 0 0

�t � d 0 0 0

0 0 1 t � d
0 0 �t þ d 0

2
664

3
775;

for a given small constant d> 0. It is not hard to see that the

optimal solution is t ¼ 0. However, we can see from the graph

in Fig. 1 that the function we seek to maximize is not concave,

and is nonsmooth at the optimal solution, making traditional

analysis and computational approaches impossible.

In nonsmooth optimization in general and robust control

synthesis in particular, we confront a variety of challenging

questions:

	 How many local optima does the problem have?

	 How can we recognize local optima?

	 How can we approximate local optima computationally?

	 How sensitive are local optima to small changes in the model

data?

As we mentioned in the introduction, many robust control

problems are ‘‘semidefinite representable’’ (Ben-Tal &

Nemirovski, 2001; Boyd et al., 1994), so computationally

tractable, at least in principle. To take just one example, as a

consequence of the ‘‘bounded real lemma’’, the transfer

function z 7!CðzI � AÞ�1Bþ D (where the matrices A;B;C;D
are real) has H1 norm strictly less than g if and only if there

exists a positive-definite symmetric matrix Y with

ATY þ YA YB CT

BTY �gI DT

C D �gI

2
4

3
5

negative-definite. Suppose the matrices A;B;C;D depend

linearly on design variables that we wish to choose in order

to minimize the H1 norm. We can approach this problem by

simultaneously choosing the subsidiary variables Y and g in

order to minimize g. The optimal solution of the resulting

semidefinite program can be approximated in polynomial

time by interior point techniques. A variety of more general

problems in robust control can be attacked analogously, using

techniques from smooth optimization (see for example

Apkarian, Noll, Thevenet, & Tuan, 2004; Apkarian, Noll,

& Tuan, 2003; Leibfritz, 2001; Leibfritz & Mustafa, 2003;

Leibfritz & Volkwein, 2006). However, if the dimension of

the state space is large, then the matrix Y is correspondingly

large, making the semidefinite programs computationally

challenging.

Suppose instead we consider the H1 norm simply as a

function of the design variables, avoiding the introduction of

subsidiary variables. This function has the substantial

disadvantage of being neither convex nor smooth. On the

other hand, the design variables may be few. Attacking robust

control synthesis problems directly via their nonsmooth models

has gained increasing attention due to the challenge of large-

scale semidefinite programming (Apkarian and Noll, 2006a,

2006b, 2006c; Burke, Lewis, & Overton, 2004a; Burke,

Henrion, Lewis, & Overton, 2006b). How analytically and

computationally challenging is this direct approach?

4. Semi-algebraic techniques

In optimization theory, even smooth functions can behave

badly. For example, given a real parameter d, consider the

problem of minimizing the real function

x 7! x2

�
2þ sin

�
1

x

��
þ dx

As Fig. 2 illustrates, this problem has many local minima, the

optimal solution depends discontinuously on d, and classical

optimization algorithms will fail.

However, the kind of oscillatory pathology driving this

example (and many like it throughout real and variational

analysis) is artificial. To be specific, all the functions we

considered in Section 2 are semi-algebraic. In other words, the

graph of each function is a semi-algebraic set, meaning it can

be decomposed into a finite union of sets, each of which is

defined by finitely many polynomial inequalities. This rich

class of sets is often easy to recognize, and is stable under many

common operations, including, most importantly, projection—

Fig. 1. The distance to singularity. Fig. 2. A nonisolated local minimum.
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a consequence of the Tarski–Seidenberg Theorem (see for

example Benedetti & Risler, 1990).

The oscillations causing difficulties in the example above

cannot occur in semi-algebraic sets and functions. More

generally, a variety of important ‘‘regularity’’ properties that

may fail in general variational analysis nonetheless hold in a

semi-algebraic context. We illustrate with a couple of recent

examples.

Sard’s Theorem in classical analysis shows that if a

function F : Rn!Rm is sufficiently smooth then the set of

solutions x to the equation FðxÞ ¼ y ‘‘typically’’ depends on

the right-hand side y in a ‘‘stable’’ way. (To be precise, the set

of values FðxÞ for which the Jacobian rFðxÞ is rank-deficient

has Lebesgue measure zero.) See Bates (1993) for the most

precise version known for Sard’s Theorem. Versions for

general semi-algebraic real-valued nonsmooth functions exist

(see for example Bolte, Daniilidis, Lewis, & Shiota, 2005;

Bolte, Daniilidis, & Lewis, 2006), but very recently, Sard’s

Theorem was radically and beautifully extended to semi-

algebraic set-valued mappings (Ioffe, 2006), opening up the

possibility of considering systems of nonsmooth equations and

inequalities.

As a second example, we consider Newton’s method for

solving an equation FðxÞ ¼ 0. Traditionally, we assume that

the function F : Rn!Rn is twice continuously differentiable,

in which case the method converges locally quadratically

under a nondegeneracy condition. However, versions of

Newton’s method can work under much less stringent

smoothness assumptions on F, opening up applications to

problems with complementarity or equilibrium conditions: a

good survey is (Facchinei & Pang, 2003). Superlinear

convergence of such nonsmooth Newton methods depends

on semismoothness : the directional derivative of F should

satisfy the condition

F0ðxþ y; yÞ � F0ðx; yÞ ¼ oðyÞ for small y:

This condition holds whenever F is semi-algebraic (Bolte,

Daniilidis, & Lewis, 2007).

Semi-algebraic techniques can be very helpful in a variety of

robust control models. Consider for example the problem

discussed above of the distance to uncontrollability for the

system ẋ ¼ Axþ Bu. To compute this quantity (a problem

solved only rather recently Burke, Lewis, & Overton, 2004b;

Gu, 2000; Gu, Mengi, Overton, Xia, & Zhu, 2006), we must

minimize the function

z 7! smin ½A� zI B �;

over the complex plane. We could ask how many local mini-

mizers this functions may have (Wright & Trefethen, 2002).

Relatedly, how many components might the level set

fz2C : smin ½A� zI B � � eg

have? Using classical techniques from real algebraic geometry,

Burke et al. (2004b) shows that the number of components

cannot exceed 2m2 � mþ 1, where m is the number of rows in

the matrix A.

5. Nonsmoothness and Blondel’s problem

Why exactly does nonsmoothness cause analytic and

computational difficulties in optimization problems in general

and robust control models in particular?

To understand this issue, recall first how we use smoothness

in basic optimization problems. Gradients allow us to recognize

minimizers of smooth functions (see Fig. 3). Furthermore,

Lipschitz functions are differentiable almost everywhere (by

Rademacher’s Theorem—see for example Borwein & Lewis,

2006), as are semi-algebraic functions. Hence, in practice, one

might imagine that nonsmoothness should rarely cause issues.

However, nonsmooth points, although in some sense rare,

are crucial in variational problems, because optimizing a

function value tends to push variables to nonsmooth points. To

see this phenomenon in a control context, we consider a well-

known challenge problem due to Blondel (1994). Part of this

problem asks (in return for a prize of a kilogram of Belgian

chocolate) for stable polynomials p and q (that is, having all

roots with negative real parts) such that the polynomial

rðzÞ ¼ ðz2 � 2dzþ 1Þ pðzÞ þ ðz2 � 1ÞqðzÞ

is also stable, and where the number d is 0.9.

One variational approach to this problem is to fix the degrees

of p and q, and then to vary these polynomials in order to

minimize the abscissa of the polynomial pqr (meaning the

largest real part of a root). If we succeed in forcing the abscissa

below zero, we have solved our problem.

To be concrete, suppose we restrict the polynomial p to be

cubic and the polynomial q to be constant, and try to minimize

the function

að pðzÞ½ðz2 � 2dzþ 1Þ pðzÞ þ ðz2 � 1Þq�Þ;

where a denotes the abscissa function. The function a is non-

smooth, nonconvex, and even nonlipschitz around polynomials

with a multiple root having maximum real part (Burke & Over-

ton, 2001b). Polynomials with multiple roots are, in some sense,

rare. However, numerical computation suggests that, at the

Fig. 3. Critical points.
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optimal solution, the quintic polynomial pqr has a single root of

multiplicity five, making the abscissa highly nonsmooth. Fig. 4

(from Burke et al., 2006b) shows the approximate locations of the

roots at the optimal solution, obtained numerically, for various

values of the constant d. Roots of the optimal polynomial p are

marked with a +; the remaining five, marked 
, are those of the

polynomial r. Local optimality can in fact be verified rigorously

via nonsmooth calculus (Burke et al., 2006b).

6. Nonsmooth analysis and algorithms

Traditional calculus is inadequate for many of the functions

appearing in robust control models. To make progress, we need

nonsmooth tools.

The central idea of nonsmooth analysis, as pioneered in

Clarke (1973, 1983), is to replace the gradient r f ðxÞ of a

Lipschitz function f by the ‘‘generalized gradient’’ or Clarke

subdifferential @ f ðxÞ, which consists of all subgradients :

convex combinations of limits of gradients at nearby points (see

Fig. 5). Nonsmooth analysis has evolved rapidly (Clarke et al.,

1998; Mordukhovich, 2006; Rockafellar & Wets, 1998), but

Clarke’s basic idea will suffice for our development here.

For computational minimization of nonsmooth convex

functions, bundle methods (Lemaréchal, 1975) have proven

highly effective. The bundle idea has been extended to

nonconvex functions (Kiwiel, 1985; Schramm & Zowe, 1992;

Vlček & Lukšan, 2001), although implementation is very

delicate, and publicly available code is scarce. A less

sophisticated idea, both conceptually and for implementation,

grows directly from the definition of the Clarke subdifferential.

This ‘‘gradient sampling’’ approach, suggested in Burke,

Lewis, & Overton (2002), and developed further in Burke et al.

(2004a) and Burke, Lewis, and Overton (2005), approximates

the subdifferential at the current point xold by the convex hull of

the random set

fr f ðXiÞ : X1;X2; . . . ;Xk random near xoldg;

where the sample size k might be twice the dimension of x, for

example. We then compute the shortest element g in this

approximation (via a quadratic program), and update:

xnew ¼ xold � tg;

where the step size t is found by an inexact line search. Under

reasonable conditions (Kiwiel, 2007), iterates converge to a

Clarke-critical point x̄: that is, 02 @ f ðx̄Þ.
Gradient sampling code is freely available (MATLAB code),

and forms part of the HANSO package for general nonsmooth

Fig. 4. Roots for Blondel’s problem.

Fig. 5. The Clarke subdifferential.
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optimization, and the HIFOO package for H1 synthesis

(Burke, Henrion, Lewis, & Overton, 2006a). The method

involves many gradient computations. However, in many

applications, and in robust control in particular, objective

function gradients are cheap to compute, often involving the

eigenvectors associated with an eigenvalue computation needed

to evaluate the objective: typical examples are the complex

stability radius, the H1norm, the distance to uncontrollability,

and the spectral abscissa. The optimization problems associated

with Blondel’s chocolate problem above were solved by

gradient sampling, for example, and Burke et al. (2004b)

describes a gradient-sampling approach for maximizing the

distance to uncontrollability.

7. Recognizing minimizers: regularity

The Clarke subdifferential reduces simply to the gradient for

smooth functions, and furthermore, for continuous convex

functions, it coincides with the classical subdifferential of

convex analysis (Rockafellar, 1970). Thus Clarke’s notion is an

elegant unification of two important classical ideas.

In convex optimization, the critical point condition

02 @ f ðx̄Þ holds exactly when the point x̄ minimizes the

function f . For nonconvex f , minimizers must be critical, but

even in the smooth case the converse obviously fails, and in the

nonsmooth case it can fail badly, as Fig. 6 illustrates.

In the example above, clearly zero is an average of gradients

at points arbitrarily near the point x̄, so 02 @ f ðx̄Þ, and yet x̄ is

actually a ‘‘sharp’’ local maximizer of the function f . One way

to describe the bad behavior in this example is to observe that

the directional derivative of f jumps down as we pass through

the point x̄.

A crucial theoretical idea in nonsmooth analysis is

subdifferential regularity. A Lipschitz function f is regular at

a point x̄ if, for all directions d, its directional derivative f 0ðx; dÞ
is upper semicontinuous as the point x varies near x̄ (precisely

the property that fails in our example). In this case, if x̄ is a

critical point, then it is a local minimizer, at least to first order:

f ðxÞ� f ðx̄Þ þ oðjjx� x̄jjÞ for x near x̄:

Subdifferential regularity has many ramifications in

variational analysis. We restrict ourselves to the comment

that many powerful calculus rules for computing subdiffer-

entials depend on regularity (Rockafellar & Wets, 1998). The

notion extends to nonlipschitz functions: the following result

is a remarkable example, explaining in some part the success

of the gradient sampling method on Blondel’s chocolate

problem.

Theorem 7.1 (Burke and Overton (2001b)).

The polynomial abscissa is regular throughout the space of

monic polynomials. More precisely, on the space of complex

polynomials p of degree n, the function

p 7!aðznþ1 þ pðzÞÞ

is everywhere regular.

The spectral abscissa of a matrix (discussed in Section 2) is

just the abscissa of the characteristic polynomial. As a

consequence of standard nonsmooth calculus rules, the spectral

abscissa is therefore regular at any matrix for which all

eigenspaces corresponding to the abscissa are one-dimensional

(Burke & Overton, 2001a; Lewis, 2003).

Many of the functions ubiquitous in robust control

applications enjoy the important property of subdifferential

regularity. In engineering models, often the easiest way to

recognize when a function f is regular is to write it in the form

f ðxÞ ¼ max s2 S f sðxÞ

for some compact set S and where the function

ðx; sÞ 7! ð f sðxÞ;r f sðxÞ;r2 f sðxÞÞ

is continuous. (A typical example in the robust control context

is the approach of Bompart, Noll, & Apkarian (2006).) Such

subsmooth functions are everywhere Lipschitz and regular

(Rockafellar & Wets, 1998).

Consider the H1 norm, for example. Given a transfer

function

C̄ðzI � ĀÞ�1
B̄þ D̄;

providing the matrix Ā has no purely imaginary eigenvalues, we

can fix a constant k such that the H1 norm of any nearby

transfer function

CðzI � AÞ�1Bþ D

is given by

max fReðu�ðCðsiI � AÞ�1Bþ DÞvÞ
: jjujj ¼ 1 ¼ jjvjj; s2 ½�k; k�g:

Thus the H1 norm is subsmooth, and hence, in particular,

everywhere regular.

Subsmooth functions f in fact have the even stronger

property (to which we return a little later) of prox-regularity :

given any point in the epigraph

fðx; rÞ : r� f ðxÞg;

any nearby point has a unique nearest point in the epigraph.

Prox-regularity of the abscissa function, by contrast, seems to

be an open question.Fig. 6. A nonregular critical point.

A.S. Lewis / Annual Reviews in Control 31 (2007) 167–177172



Author's personal copy

8. Sensitivity and partial smoothness

Robust control synthesis problems share a fundamental

aspect with most practical variational problems: we typically

need to know something of how the model solution varies with

the nominal data of the problem. In optimization theory, such

questions go under the name ‘‘sensitivity analysis’’.

To take a concrete example, we return to Blondel’s problem

from Section 5. Recall that, using our optimization approach,

we seek to minimize the objective function

f dð p; qÞ ¼ að pqrÞ where

rðzÞ ¼ ðz2 � 2dzþ 1Þ pðzÞ þ ðz2 � 1Þq;

over cubic polynomials p and scalars q. We consider the

dependence of the solution on the parameter d.

A reasonable conjecture from the numerical evidence in

Section 5 is that, for all values of the parameter d near 0.9, the

optimal solution results in a polynomial r having a quintuple

root. Having guessed this structure, it turns out to be a

straightforward calculation to find the corresponding solution

exactly (Burke et al., 2006b). Furthermore, notwithstanding the

nonlipschitz nature of the problem, this solution depends

smoothly on d.

Many optimization models display this kind of behavior: the

optimal solution displays some kind of structure, invariant

under small changes to the data (in this case, the quintuple

root); having identified this structure, the problem is greatly

simplified; furthermore, this structured solution varies

smoothly with the problem data. In linear or nonlinear

programming, for example, under reasonable conditions, small

changes to a problem leave unchanged the ‘‘active set’’ (the set

of inequality constraints holding with equality at the solution).

In semidefinite programming, the rank of the optimal

semidefinite matrix typically remains unchanged under small

problem perturbations. Understanding such structure is

important not only for sensitivity analysis, but for the related

convergence theory of solution algorithms.

One broad approach to formalizing the ‘‘structure’’ of an

optimal solution is the partial smoothness property introduced

in Lewis (2003). Fig. 7 illustrates the idea. The idea of

‘‘structure’’ is captured in the definition by membership in a

particular manifold M (by which we mean the solution set of a

smooth system of equations with surjective Jacobian).

A Lipschitz function f : Rn!R is partly smooth relative to

M if its restriction to M is smooth and it is regular throughout M,

and furthermore its directional derivative f 0ðx; dÞ in any given

direction d satisfies the ‘‘sharpness’’ condition

f 0ðx;�dÞ> � f 0ðx; dÞ;

and behaves continuously as the point x varies on M. (An

analogous definition applies to nonlipschitz functions.)

This idea is well suited to sensitivity analysis. Correspond-

ing to a manifold M, consider a partly smooth function

f d : Rn!R, depending in some suitable fashion (see Lewis,

2003) on the parameter d. Suppose at the point x̄, that the

function f satisfies appropriate optimality conditions:

	 Strict complementarity: in directions orthogonal to M, the

function f d grows at least linearly.

	 Second-order sufficiency: restricted to M, the function f d

grows at least quadratically.

Under these conditions, near x̄ the function f d has a Clarke-

critical point xd on the manifold M, and this point varies

smoothly with the parameter d. If the function f d is also prox-

regular (as discussed in the previous section), then the point xd

is actually a strict local minimizer (Hare & Lewis, 2004).

Partial smoothness may be a useful tool not just for

sensitivity analysis but also for understanding the speed of

computational nonsmooth optimization algorithms. The

packages HANSO (for general nonsmooth optimization) and

HIFOO (for H1synthesis) Burke et al. (2006a) use a hybrid

approach, involving both the gradient-sampling technique

outlined above and a smooth quasi-Newton method. Suitably

implemented, the quasi-Newton method is surprisingly

effective on nonsmooth optimization problems, often conver-

ging at an apparent linear rate (Overton, 2006). Preliminary and

ongoing experiments suggest that the rate of convergence on a

partly smooth function f relative to a manifold M depends on

factors such as the curvature of M, the Lipschitz modulus of f ,

and the conditioning of the restricted Hessian r2 f jM .

9. Pseudospectra

The last example we introduced in Section 2 is a set-valued

mapping: the pseudospectrum of a matrix A2Mn:

A 7!LeðAÞ ¼
[

jjX�Ajj�e

LðXÞ ¼ fz : smin ðA� zIÞ � eg;
Fig. 7. Partial smoothness.
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for some fixed constant e> 0. Pseudospectra capture robust

properties of eigenvalues, by their very definition. For example,

the matrix A is ‘‘robustly stable’’, meaning it stays stable under

arbitrary perturbations of size no larger than e, exactly when the

pseudospectrum LeðAÞ lies in the left halfplane. Relatedly, the

complex stability radius of a stable matrix A is the smallest e for

which LeðAÞ intersects the imaginary axis.

As argued at length in Trefethen and Embree (2005), the

spectrum of a nonnormal matrix is often deceptive as a

modeling tool, whereas pseudospectra may be much more

informative. The advent of efficient computational techniques

(Wright) has made analysis using pseudospectral plots very

appealing. Studying the variational analysis of pseudospectra

opens up the possibility of extending their use beyond analysis

to design problems.

To focus on robust control applications, let us consider the

stability of the system ẋ ¼ Ax. We know that the asymptotic

behavior of this system depends on the spectrum of the matrix

A: in particular, when A is stable, trajectories decay

exponentially to the origin. Nonetheless, these trajectories

may exhibit large ‘‘transient peaks’’ in the course of this decay,

of possibly devastating significance for a practical model. The

size of these peaks is related precisely to the pseudospectra of

A, and in turn to the corresponding Lyapunov system, via the

famous ‘‘Kreiss Matrix Theorem’’, which we state informally

below.

Theorem 9.1 (Kreiss (1962)).

The following properties are equivalent.

	 Trajectories for ẋ ¼ Ax may have large transient peaks.

	 The pseudospectrum LeðAÞ grows quickly into the right

halfplane as e increases away from zero.

	 Any positive-definite matrix Y with AT Y þ YA negative-

definite must be ill-conditioned.

The Kreiss Theorem is more precise than the statement here

(see the discussion in Trefethen & Embree, 2005): a complete

statement concerns families of matrices A, and quantifies and

relates the notions of ‘‘large’’, ‘‘quickly’’, and ‘‘ill-condi-

tioned’’ in the theorem.

As an illustration, consider the following example of

Demmel (1987):

A ¼ �

1 5 52 53 54

0 1 5 52 53

0 0 1 5 52

0 0 0 1 5

0 0 0 0 1

2
66664

3
77775:

Fig. 8 plots the norm of a trajectory for the system ẋ ¼ Ax, and

clearly shows a transient peak roughly a hundred times the size

of the initial point.

The EIGTOOL plot in Fig. 9 explains the large transient peak.

The matrix A has a single eigenvalue at�1. The left-hand picture

shows the boundaries of various pseudospectra corresponding to

choices of e whose logarithms (to base 10) are shown in the right-

hand color-code. In particular, notice that the pseudospectrum

L10�2ðAÞ extends into the right halfplane, telling us that some

unstable matrix X satisfies jjX � Ajj � 10�2. The right-hand

picture plots the function �log 10smin ðA� zIÞ: as a curiosity,

notice the local minimizer at zero.

The Kreiss Matrix Theorem suggests that a useful tool for

studying transient peaks is the pseudospectral abscissa

aeðAÞ ¼ max fRel : l2LeðAÞg:

Fig. 10 illustrates the steps of a ‘‘criss-cross’’ algorithm (Burke,

Lewis, & Overton, 2003b) to compute ae, available in EIG-

TOOL. The method relies on two key properties of any

pseudospectrum.

	 Each component contains an eigenvalue (by the maximum

modulus principle).

	 The intersections of the pseudospectral boundary with any

line are easy to compute by a Hamiltonian eigensolver.

As Fig. 10 illustrates, the algorithm proceeds by starting with

a rightmost eigenvalue, and then constructing a sequence of

vertical lines interspersed with horizontal lines passing through

midpoints of vertical segments of intersection with the pseudo-

spectrum. The method is robust, globally and locally quad-

ratically convergent (under reasonable conditions), and seems

extremely reliable in practice. Furthermore, as is so often the case

for functions associated with spectra properties of matrices, the

algorithm returns the gradientrae (when it exists) at essentially

no extra cost, allowing the use of the gradient sampling method

outlined above to optimize the pseudospectral abscissa (Burke,

Lewis, & Overton, 2003a). An analogous algorithm computes

the pseudospectral radius (Mengi & Overton, 2005).

From the perspective of robust control specialists, pseudos-

pectra may be seen as an overly conservative tool. The e-

pseudospectrum of a real matrix A consists of all eigenvalues of

matrices resulting from an unstructured, complex perturbation

of size no larger than e. Why should such general perturbations

be interesting, practically? In measuring the distance to

instability, for example, is it not more reasonable to consider

the real stability radius, where we allow only real perturbations

(Qiu et al., 1995)?

The Kreiss Matrix Theorem gives one answer to this

question. Since the three statements in the result are equivalent,

the size of transient peaks associated with a real matrix are

determined by the pseudospectra, and hence by general

complex perturbations, rather than by the real stability radius.

Thus, at least in the absence of information about the initial

Fig. 8. Trajectory norm for Demmel’s example.
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state, no matter what the structure of the matrix A,

pseudospectra provide a correct picture of the transient

behavior of the system.

Multiple eigenvalues of nondiagonalizable matrices A are

very sensitive to perturbation. To be more precise, the spectrum

X 7!LðXÞ, regarded as a set-valued mapping, is not Lipschitz

around A: there exists no constant k such that

dðLðXÞ;LðYÞÞ � kjjX � Y jj for all X; Y near A:

Here, d denotes the usual Hausdorff distance between sets:

dðU;VÞ ¼ max fsup
u2U

inf
v2V
jju� vjj; sup

v2V
inf
u2U
jjv� ujjg:

In addition to its advantages as a modeling tool and as a vehicle

for robust spectral properties, one may hope that, in computa-

tions, the pseudospectrum may behave in a more numerically

stable fashion than the spectrum. However, as Fig. 11 illus-

trates, the pseudospectral mapping X 7!LeðXÞ can also be

nonlipschitz. For the given A, Fig. 11 plots several pseudos-

pectral boundaries. The shaded region is the pseudospectrum

LeðAÞ with e ¼ ð
ffiffiffi
5
p
� 1Þ=2. As we increase e, the boundary

moves up the imaginary axis in a nonlipschitz fashion. Non-

lipschitz behavior of Le around A follows.

Fortunately, the nonlipschitz behavior illustrated above is

not typical: in many settings, we can be confident that the

pseudospectrum and associated functions like the pseudospec-

tral abscissa will be Lipschitz, and hence better behaved in

numerical applications than the spectrum and the spectral

abscissa (Burke et al., 2003a; Burke, Lewis, & Overton, 2007a).

The full power of modern variational analysis gives a

concise and elegant way to understand the Lipschitz behavior of

the pseudospectrum Le (Lewis & Pang, 2006). A careful

analysis shows that Lipschitz behavior behavior fails for a

precise reason: the presence on the pseudospectral boundary of

a resolvent-critical point, by which we mean a Clarke-critical

point of the function

z 7! smin ðA� zIÞ:

In the illustration above, for example, the Lipschitz property

fails due to the behavior of the pseudospectral mapping near

zero, and zero is indeed resolvent-critical. The function above is

semi-algebraic, and such functions have a Sard-like property

similar to that discussed in Section 4: they can have at most

Fig. 9. Pseudospectral plots for Demmel’s example.

Fig. 10. The criss-cross algorithm for the pseudospectral abscissa. Fig. 11. Nonlipschitz pseudospectral behavior.
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finitely many Clarke-critical values (Bolte et al., 2005). Hence,

given any matrix A, the pseudospectrum Le must be Lipschitz

around A for all but finitely many values of e, and so in

particular for all small e> 0.

Resolvent-critical points are significant in a variety of

contexts. Consider the basic problem of computing the

spectrum of a matrix A. The conditioning of this problem is

related to the distance from A to the nearest matrix with a

multiple eigenvalue (Demmel, 1990). As shown by Alam and

Bora (2005) (see also Burke, Lewis, & Overton, 2007b), this

distance is the smallest e for which two distinct components of

the pseudospectrum LeðAÞ coalesce, and the point of

coalescence, which is also the required multiple eigenvalue,

must be resolvent-critical.

10. Summary

The aim of this survey has been to give specialists in robust

control a taste of the flexibility and power of current ideas in

nonsmooth optimization. Modern variational analysis furnishes

a broad toolkit for analyzing solutions to nonsmooth

optimization problems, understanding sensitivity, and devel-

oping computational algorithms. The rich structure inherent in

robust control synthesis guarantees ongoing fertile interaction

with the field of nonsmooth optimization.
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