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Abstract. In this work we continue the nonsmooth analysis of absolutely symmetric functions
of the singular values of a real rectangular matrix. Absolutely symmetric functions are invariant
under permutations and sign changes of its arguments. We extend previous work on subgradients
to analogous formulae for the proximal subdifferential and Clarke subdifferential when the function
is either locally Lipschitz or just lower semicontinuous. We illustrate the results by calculating the
various subdifferentials of individual singular values. Another application gives a nonsmooth proof
of Lidskii’s theorem for weak majorization.
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1. Introduction

This paper is a continuation of our work in [10], where we began a systematic study
of the nonsmooth properties of functions of the singular values of a rectangular
matrix. There we gave simple formulae for the regular subdifferential, the limiting
subdifferential, and the horizon subdifferential, of such functions and illustrated
the results with several applications.

To make the development as self contained as possible, in the next section we
have stated all results from the first paper that are needed in the proofs here.

The development that follows has four main parts. We begin by discussing
absolutely symmetric functions of singular values that are locally Lipschitz and
show that the main formula from [10] is preserved for the Clarke subdifferential
as well. Next we relax that assumption and require the functions involved to be
only lower semicontinuous. The independent development for the Lipschitz case
is interesting in its own right: It deepens the analogies with the work of Lewis
in [9], as well as extending and generalizing the convexity results there. We need
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some of these convexity results later in the third part, where we are interested
in the individual singular values of a real rectangular matrix. The last part deals
with another application of our theory. We derive, through elementary nonsmooth
analysis, a famous theorem in matrix perturbation analysis: Lidskii’s theorem for
weak majorization between the vectors of singular values of perturbed rectangular
matrices. The results described here were first investigated in the second author’s
dissertation [15].

2. Definitions and Preliminary Results

Given a function f : R
n → [−∞, +∞] we say vector y ∈ R

n is a regular subgra-
dient of f at x if f (x) < ∞ and

f (x + z) � f (x) + 〈y, z〉 + o(z) as z → 0.

The set of all regular subgradients at x is denoted by ∂̂f (x) and called the regular
subdifferential.

A vector y ∈ R
n is a (limiting) subdifferential of f at x if f (x) < ∞ and there

is a sequence of points xr in E approaching x with values f (xr) approaching the
finite value f (x), and a sequence of regular subgradients yr in ∂̂f (xr) approaching
y. The set of all limiting subgradients is denoted ∂f (x). In case when f (x) = ∞
we set ∂̂f (x) = ∂f (x) = ∅. The reader can verify that ∂f (x) and ∂̂f (x) are always
closed sets and that ∂̂f (x) is convex.

If the function f is locally Lipschitz around x, convex combinations of subgra-
dients are called Clarke subgradients. The set of Clarke subgradients is the Clarke
subdifferential ∂cf (x). (This definition is equivalent to the standard one in [2] –
see for example Theorem 2 in [5].)

Henceforth we will assume that n and m are natural numbers and n � m.
Let Mn,m denote the Euclidean space of n × m real matrices, with inner prod-
uct 〈X, Y 〉 = tr XTY . Simpler, Mn will denote Mn,n. By O(n) we will denote
the group of n × n orthogonal matrices, and the product O(n) × O(m) will be
denoted by O(n, m). One of the main objects of this paper is the class of singular
value functions. These are functions F : Mn,m → [−∞, +∞] with the invariance
property

F(UT
n XUm) = F(X) for all (Un, Um) ∈ O(n, m) and X ∈ Mn,m.

When (Un, Um) varies freely over O(n, m), in the product UT
n XUm only the sin-

gular values are invariant. Thus it is not surprising that F can be expressed as the
composition F(X) = (f ◦ σ)(X), where σ(X) are the singular values of X and
f : R

n → R is such that

f (x1, x2, . . . , xn) = f (|xπ(1)|, |xπ(2)|, . . . , |xπ(n)|),
for any permutation π . We will call such functions absolutely symmetric. In this
way the singular value functions are in one-to-one correspondence with the ab-
solutely symmetric functions. Throughout we will assume without loss of general-
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ity that the singular values of X are ordered nonincreasingly, that is,

σ1(X) � σ2(X) � · · · � σn(X).

We would like to note that analogous results to those we present in this work
hold also for the space of n×m complex matrices with the inner product 〈X, Y 〉 =
Re(tr X∗Y ), where X∗ denotes transposition and complex conjugation. With this
inner product the complex matrices turn into an Euclidean space over the reals.
Orthogonal matrices below become unitary, but the functions with matrix argument
are still (extended) real valued.

We will use the following notation throughout:

• R
n
↓ = {x ∈ R

n | x1 � x2 � · · · � xn}.
• R

n+ = {x ∈ R
n | xi � 0, i = 1, . . . , n}.

• R
n = R

n
↓ ∩ R

n+.
• |x| = (|x1|, |x2|, . . . , |xn|), for x ∈ R

n.
• x̄ denotes the vector with the same entries as x ∈ R.n ordered in nonincreasing

order, that is, x̄1 � x̄2 � · · · � x̄n.
• x̂ = |x|.
• P(n) the set of all n × n permutation matrices.
• P(−)(n) the set of all n× n matrices that have only one nonzero entry in every

row and column, which is ±1 (we will call them signed permutation matrices).
• E will stand for any finite dimensional Euclidean space and O(E) will denote

the group of its orthogonal transformations.
• For (Un, Um) ∈ O(n, m) and X ∈ Mn,m we denote (Un, Um).X = UT

n XUm,
the action of (Un, Um) on X.

• For x ∈ R
n, Diag x ∈ Mn,m ∪ Mn will denote the matrix with vector x on its

main diagonal and zeros elsewhere. The dimensions on Diag x will be clear
from the context. For X ∈ Mn,m ∪ Mn, by diag X we will denote the vector in
R

n of diagonal entries of X.

Finally we will need the following preliminary results.

SUBGRADIENT INVARIANCE THEOREM. If f : E → [−∞, +∞] is invari-
ant under a subgroup G of O(E), then any point x in E and transformation
g in G satisfy ∂f (gx) = g∂f (x). Corresponding result holds for the regular
subdifferential.

SYMMETRICITY THEOREM. If Y ∈ Mn,m is a regular or a limiting subgradi-
ent of a singular value function F at X ∈ Mn,m, then XTY and Y TX are symmetric
matrices.

(See the theorem with the same name in [10].)

ORDER INEQUALITY. For any x, y ∈ R
n we have xTy � x̄Tȳ with equality iff

∃Q ∈ P(n) such that Qx = x̄ and Qy = ȳ.
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(See, for example, [6].)

ABSOLUTE ORDER INEQUALITY. For any x, y ∈ R
n we have xTy � x̂Tŷ

with equality iff ∃P(−) ∈ P(−)(n) such that P(−)x = x̂ and P(−)y = ŷ.

(For a direct proof see [10], or [7] for generalizations.)

SIMULTANEOUS RECTANGULAR CONJUGACY THEOREM. For any vec-
tors x, y, u, and v in R

n, there is an element (Un, Um) in O(n, m) such that
Diag x = UT

n (Diag u)Um and Diag y = UT
n (Diag v)Um iff there is a matrix P(−) in

P(−)(n) with x = P(−)u and y = P(−)v.

(See the proposition with the same name in [10].)

SINGULAR VALUES DERIVATIVE THEOREM. Any x in R
n and M ∈ Mn,m

satisfy diag M ∈ conv(P(−)(n)xσ
′(Diag x;M)).

(See the proposition with the same name in [10].)

VON NEUMANN’S TRACE THEOREM. Any X, Y ∈ Mn,m satisfy the inequal-
ity tr XTY � σ(X)Tσ(Y ). Equality holds iff there is (Un, Um) ∈ O(n, m) such that
X = UT

n (Diag σ(X))Um and Y = UT
n (Diag σ(Y ))Um.

(See [10] or the original proof in [18].)
We are also going to need the main result from [10]:

THEOREM 2.1 (Subgradients). The (limiting) subdifferential of a singular value
function f ◦ σ at X ∈ Mn,m is given by the formula

∂(f ◦ σ)(X) = O(n, m)X.Diag ∂f (σ (X)), (1)

where

O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).Diag σ(X) = X}.
The regular subgradients satisfy corresponding formula.

We define O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).X = X}, which is
the stabilizer of X in O(n, m) under the defined action. Clearly for any (Un, Um) ∈
O(n, m)X we have the relationship

(Un, Um)O(n, m)Diag σ(X) = O(n, m)X.

3. Clarke Subgradients – the Lipschitz Case

One can easily see that f is locally Lipschitz around σ(X) if and only if F = f ◦σ

is locally Lipschitz around X, and in this section we will assume that this is the
case. It is important to notice that we have the following extension. The proof
follows immediately from the definitions.
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THEOREM 3.1 (Subgradient Invariance & Symmetricity). If the function f is lo-
cally Lipschitz around x then both the Subgradient Invariance Theorem and the
Symmetricity Theorem, stated in the previous section, can be extended to cover the
Clarke subdifferential case.

If X is an n × n square symmetric matrix (that is X ∈ S(n)) then λ(X) will de-
note its eigenvalues arranged in nonincreasing order. The following lemma whose
proof can be found in [9, Lemma 3], is needed later.

LEMMA 3.2. For any vector w in R
n
↓, the function wTλ is convex on S(n), and

any vector x in R
n
↓ satisfies Diag w ∈ ∂(wTλ)(Diag x).

The proof of the next lemma is elementary and uses the fact that the sum of the
k-largest eigenvalues or the k-largest singular values is a sublinear function, see [3,
Corollary 4.3.18] and [3, Example 7.4.24].

LEMMA 3.3. (i) For any vector w in R
n
↓ the function wTλ is sublinear.

(ii) For any vector w in R
n the function wTσ is sublinear.

A subset C of E is invariant under a subgroup, G, of O(n) if gC = C for
all transformations g in G. If the function f : R

n → [−∞, +∞] is absolutely
symmetric then the regular subdifferential of f at a point x in R

n is a convex set,
invariant under the stabilizer P(−)(n)x by the Subgradient Invariance Theorem.

Given a partitioning of the set {1, 2, . . . , n}, into r + 1 blocks I1, I2, . . . , Ir+1,
of one or several consecutive integers we, write any vector y in R

n in the form

y =
r+1⊕

l=1

yl, where yl ∈ R
|Il | for each l.

For matrices Ul in M|Il | for each 1 � l � r , and Ur+1 in either M|Ir+1|, M|Ir+1|+m−n,
or M|Ir+1|,|Ir+1|+m−n, we write Diag(Ul) for the block diagonal matrix





U 1 0 · · · 0
0 U 2 · · · 0
...

...
. . .

...

0 0 · · · Ur+1



 .

It is clear that Diag(Ul) will be either an n×n, m×m square or an n×m rectangular
matrix, depending on the dimensions of Ur+1, and it will be clear from the context
which is the case.

Suppose we are given the following subgroups of P(−)(n) and O(n, m) respec-
tively:

P̃ (n) = {Diag(P l) : P l ∈ P(|Il|), 1 � l � r and P r+1 ∈ P(−)(|Ir+1|)},
Õ(n, m) = {(Diag(Ul), Diag(V l)) : Ul = V l ∈ O(|Il|), 1 � l � r and

Ur+1 ∈ O(|Ir+1|);V r+1 ∈ O(|Ir+1| + m − n)}.
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Notice that P̃ (n) is the group defined by the property: P̃ (n)x = x for all x ∈ Rn

such that xi = xj ⇔ i, j ∈ Il for some l and xi = 0 ⇔ i ∈ Ir+1.

LEMMA 3.4 (Sum of Invariant Sets). If the sets C, D ⊂ R
n are convex and in-

variant under the group P̃ (n) then

Õ(n, m).Diag C + Õ(n, m).Diag D = Õ(n, m).Diag(C + D).

Proof. Diagonalizing each block for 1 � l � r and applying the singular value
decomposition theorem to the last, (r + 1)st, block proves the equality

Õ(n, m).Diag C =
{

Diag(Xl) :
r⊕

l=1

λ(Xl) ⊕ σ(Xr+1) ∈ C

}
. (2)

Let

X = Diag(Xl) ∈ Õ(n, m).Diag C,

and

Y = Diag(Y l) ∈ Õ(n, m).Diag D.

We wish to show

X + Y ∈ Õ(n, m).Diag(C + D),

or equivalently, by identity (2),

r⊕

l=1

λ(Xl + Y l) ⊕ σ(Xr+1 + Y r+1) ∈ C + D.

Since identity (2) shows
⊕r

l=1 λ(Xl) ⊕ σ(Xr+1) lies in the convex set C and⊕r
l=1 λ(Y l) ⊕ σ(Y r+1) lies in the convex set D, it suffices to show

r⊕

l=1

λ(Xl + Y l) ⊕ σ(Xr+1 + Y r+1)

∈ conv

(
P̃ (n)

(
r⊕

l=1

λ(Xl) ⊕ σ(Xr+1)

))
+

+ conv

(
P̃ (n)

(
r⊕

l=1

λ(Y l) ⊕ σ(Y r+1)

))
.

If this fails then there is a separating hyperplane separating the point from the set.
That is, there exists a vector z = ⊕

l z
l satisfying

〈
z,

r⊕

l=1

λ(Xl + Y l) ⊕ σ(Xr+1 + Y r+1)

〉
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> max

〈
z, conv

(
P̃ (n)

(
r⊕

l=1

λ(Xl) ⊕ σ(Xr+1)

))
+

+ conv

(
P̃ (n)

(
r⊕

l=1

λ(Y l) ⊕ σ(Y r+1)

))〉

= max

〈
z, P̃ (n)

(
r⊕

l=1

λ(Xl) ⊕ σ(Xr+1)

)〉
+

+ max

〈
z, P̃ (n)

(
r⊕

l=1

λ(Y l) ⊕ σ(Y r+1)

)〉
.

But then the (Absolute) Order Inequality and Lemma 3.3 show
r∑

l=1

〈zl, λ(Xl + Y l)〉 + 〈zr+1, σ (Xr+1 + Y r+1)〉

>

r∑

l=1

〈zl, λ(Xl)〉 + 〈ẑr+1, σ (Xr+1)〉 +
r∑

l=1

〈zl, λ(Y l)〉 + 〈ẑr+1, σ (Y r+1)〉

=
r∑

l=1

〈zl, λ(Xl) + λ(Y l)〉 + 〈ẑr+1, σ (Xr+1) + σ(Y r+1)〉

�
r∑

l=1

〈zl, λ(Xl + Y l)〉 + 〈ẑr+1, σ (Xr+1 + Y r+1)〉

�
r∑

l=1

〈zl, λ(Xl + Y l)〉 + 〈zr+1, σ (Xr+1 + Y r+1)〉,

which is a contradiction. �
COROLLARY 3.5 (Convex Invariant Sets). If the set C ⊂ R

n is convex and in-
variant under the group P̃ (n) then the set of matrices Õ(n, m).Diag C is convex.

Proof. We just have to apply the above lemma to the sets

C1 = λC, D1 = (1 − λ)C,

where λ is a number in [0, 1]. �
LEMMA 3.6. If the set C ⊂ R

n is invariant under the group P̃ (n), then the
following equality holds

conv(Õ(n, m).Diag C) = Õ(n, m).Diag(conv C).

Proof. It is clear that Õ(n, m).Diag C ⊂ Õ(n, m).Diag(conv C), and the later
set is convex because of Corollary 3.5. Consequently

conv(Õ(n, m).Diag C) ⊆ Õ(n, m).Diag(conv C).

The opposite inclusion is trivial. �
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Recently, an independent result by Tam and Hill, covering the result below,
appeared in [16]. They consider invariant functions, called orbital, in the context
of semisimple Lie group theory. We offer a direct approach that first appeared in
the second author’s thesis [15].

THEOREM 3.7 (Clarke Subgradients). The Clarke subdifferential of a locally Lip-
schitz singular value function f ◦ σ at a matrix X in Mn,m is given by the formula

∂c(f ◦ σ)(X) = O(n, m)X.Diag ∂cf (σ (X)), (3)

where

O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).Diag σ(X) = X}.
Proof. Assume first X = Diag x for a vector x in R

n. After that the general case
will follow easily by the Subgradient Invariance Theorem. Let

x1 = · · · = xk1 > xk1+1 = · · · = xk2 > xk2+1 · · · = xkr
> xkr+1

= · · · = xkr+1 = 0,

where kr+1 = n. Partition the set {1, 2, . . . , n} into r+1 blocks: I1 = {1, 2, . . . , k1},
I2 = {k1 + 1, . . . , k2}, . . . , Ir+1 = {kr + 1, . . . , kr+1}.

We are going to compute the group O(n, m)Diag x (it is a group since x ∈ R
n).

If (Un, Um) is in O(n, m)Diag x , then we have

(Diag x)(Diag x)TUn = Un(Diag x)(Diag x)T,

(Diag x)T(Diag x)Um = Um(Diag x)T(Diag x),

which shows that Un = Diag(Ul), where Ul ∈ O(|Il|) for 1 � l � r + 1, and
Um = Diag(V l), where V l ∈ O(|Il|) for 1 � l � r , and V r+1 ∈ O(|Ir+1|+m−n).
Now from the identity

UT
n (Diag x) = (Diag x)UT

m

one sees that Ul = V l for each 1 � l � r . So we obtain

O(n, m)Diag x = Õ(n, m). (4)

Since x is invariant under the group P̃ (n) the convex set ∂cf (x) is also invariant
under P̃ (n), by the Subgradient Invariance Theorem. Corollary 3.5 now shows that
the set Õ(n, m).Diag ∂cf (x) is convex.

The Subgradient Theorem 2.1 now gives us

∂c(f ◦ σ)(Diag x) = conv ∂(f ◦ σ)(Diag x) = conv(Õ(n, m).Diag ∂f (x)).

Using the easily established fact

Õ(n, m).Diag ∂f (x) ⊆ Õ(n, m).Diag ∂cf (x)
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and the convexity of the right-hand side, we see that

conv(Õ(n, m).Diag ∂f (x)) ⊆ Õ(n, m).Diag ∂cf (x).

On the other hand from ∂cf (x) = conv ∂f (x) one can immediately see that the
reverse inclusion holds as well:

Õ(n, m).Diag ∂cf (x) = Õ(n, m).Diag(conv ∂f (x))

= Õ(n, m).conv(Diag ∂f (x))

⊆ conv(Õ(n, m).(Diag ∂f (x))

= conv ∂(f ◦ σ)(Diag x) = ∂c(f ◦ σ)(Diag x).

The result follows. �
For completeness we would like to state and prove the Clarke version of the

Diagonal Subgradients Corollary in [10]. (Diagonal Subgradients Corollary in [10]
states that the result below holds for regular and limiting subgradients.)

COROLLARY 3.8 (Diagonal Clarke Subgradients). For any vectors x and y in R
n

and any singular value function f ◦ σ ,

y ∈ ∂cf (x) ⇔ Diag y ∈ ∂c(f ◦ σ)(Diag x).

Proof. If the function f is Lipschitz around σ(X) and y is a Clarke subgradient
at x, then y is a convex combination of limiting subgradients yi ∈ ∂f (x). By
the Diagonal Subgradients Theorem for limiting subgradients in [10], each matrix
Diagyi is a subgradient of f ◦ σ at X, and since Diagy is a convex combination of
these matrices, Diagy must be a Clarke subgradient.

To see the reverse implication choose a diagonal matrix Diag y ∈
∂c(f ◦ σ)(Diag x). Then the Clarke Subgradients Theorem above shows the ex-
istence of an element (Un, Um) in O(n, m) and a vector z in ∂cf (x̂) such that
Diag y = (Un, Um).Diag z and Diag x = (Un, Um).Diag x̂. By the Simultaneous
Rectangular Conjugacy Theorem, there is a matrix P(−) in P(−)(n) with y = P(−)z

and x = P(−)x̂, and the result follows from the Subgradient Invariance Theorem. �
COROLLARY 3.9 (Strict Differentiability). If f is Lipschitz around σ(X), then
f ◦ σ is strictly differentiable at X if and only if f strictly differentiable at σ(X).

Proof. In the Lipschitz case f is strictly differentiable at x if and only if the
Clarke subdifferential is a singleton. By the above theorem and the fact that the
Clarke subdifferential is a convex set this happens if and only if ∂c(f ◦ σ)(X) is a
singleton (since a convex set with a constant norm is a singleton).
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4. Clarke Subgradients – the Lower Semicontinuous Case

A function f is called lower semicontinuous if its graph

epif = {(x, α) ∈ R
n × R | f (x) � α}

is a closed subset of R
n+1. Let C ⊂ R

n and x ∈ C. A vector v is a regular normal
to C at x, written v ∈ N̂C(x), if

lim
z→x
z∈C

〈v, z − x〉
‖z − x‖ � 0.

A vector v is a normal to C at x, written v ∈ NC(x), if there is a sequence of
points xr in C approaching x, and a sequence of regular normals vr in N̂C(xr)

approaching v. Notice that NC(x) is a closed cone. The set of Clarke subgradients
of a function f at x, ∂̄f (x), is defined by

∂cf (x) = {v | (v, −1) ∈ cl conv Nepi f (x, f (x))},
and is called the Clarke subdifferential. It can be shown (see [14, Theorem 9.13(b)
and Theorem 8.49]) that if f is locally Lipschitz around x then this definition
coincides with the definition given at the beginning, that is why we use the same
notation for the subdifferential, ∂c, as in the locally Lipschitz case. If f is lower
semicontinuous around x then we have the formula (see [14, Theorem 8.9]):

Nepi f (x, f (x))

= {λ(v, −1) | v ∈ ∂f (x), λ > 0} ∪ {(v, 0) | v ∈ ∂∞f (x)}. (5)

The following lemma can be found in [12, Proposition 2.6], we include a proof for
completeness.

LEMMA 4.1. If f is lower semicontinuous around x we have the representation

∂cf (x) = cl(conv ∂f (x) + conv ∂∞f (x)).

In particular when the cone ∂∞f (x) doesn’t contain lines we have (see also [14,
Theorem 8.49]) the simpler formula

∂cf (x) = conv ∂f (x) + conv ∂∞f (x).

Proof. Define the sets

K1 = {(v, 0) | v ∈ ∂∞f (x)},
K2 = {λ(v, −1) | v ∈ ∂f (x), λ > 0},

and

L = {x ∈ R
n+1 | xn+1 = −1}.
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Then by (5) we get

conv Nepi f (x, f (x)) = conv K1 + conv K2, (6)

and by the definition of the set L

(conv K1 + conv K2) ∩ L = {(v, −1) | v ∈ conv ∂∞f (x) + conv ∂f (x)}. (7)

Let us see on the other hand that the following equality holds:

(cl conv Nepi f (x, f (x))) ∩ L = cl(conv N epif (x, f (x)) ∩ L). (8)

Indeed, take a point (v, −1) in (cl conv Nepi f (x, f (x)))∩L. So there is a sequence
(vr, αr) in conv Nepi f (x, f (x)), approaching (v, −1). For big enough r , we have
αr < 0. Then

(
vr

|αr | ,
αr

|αr |
)

=
(

vr

|αr | , −1

)

is in conv Nepi f (x, f (x)) ∩ L, approaching (v, −1). So (v, −1) is in
cl(conv Nepi f (x, f (x)) ∩ L). The opposite inclusion is clear.

So putting (6), (7), and (8) together

{(v, −1) | v ∈ ∂cf (x)} = (cl conv Nepi f (x, f (x))) ∩ L

= cl{(v, −1) | v ∈ conv ∂∞f (x) + conv ∂f (x)}
= {(v, −1) | v ∈ cl(conv ∂∞f (x) + conv ∂f (x))},

and we are done. In the other case, we have that the cone ∂∞f (x) doesn’t contain
lines if and only if Nepi f (x, f (x)) doesn’t contain lines. Since when a cone doesn’t
contain lines and is closed, so too is its convex hull (see [14, Theorem 3.15]), we
get

cl conv Nepi f (x, f (x)) = conv Nepi f (x, f (x))

and the second formula becomes clear. �
Let (Un, Um) be an arbitrary, fixed element of the set O(n, m)X. Then the repre-

sentation O(n, m)X = (Un, Um)O(n, m)Diag σ(X) holds, where the symbol
O(n, m)Diag σ(X) denotes the stabilizer of the matrix Diag σ(X) in the group
O(n, m). Notice that the matrices in the stabilizer O(n, m)Diag σ(X) have the same
structure as those in the set Õ(n, m) in Lemma 3.4 and Corollary 3.5. Let now
f be an absolutely symmetric function. Clearly f is lower semicontinuous if and
only if f ◦ σ is lower semicontinuous. Using (in this order) Lemma 4.1, Theo-
rem 2.1, Lemma 3.6, Corollary 3.5, Lemma 3.4, a simple limiting argument using
the fact that the set O(n, m)X is compact (when exchanging it with ‘cl’), and using



254 ADRIAN S. LEWIS AND HRISTO S. SENDOV

everywhere the above representation, we get:

∂c(f ◦ σ)(X)

= cl
(
conv ∂∞(f ◦ σ)(X) + conv ∂(f ◦ σ)(X)

)

= cl
(
conv O(n, m)X.Diag ∂∞f (σ (X)) + conv O(n, m)X.Diag ∂f (σ (X))

)

= cl
(
O(n, m)X.conv Diag ∂∞f (σ (X)) + O(n, m)X.conv Diag ∂f (σ (X))

)

= cl
(
O(n, m)X.

(
conv Diag ∂∞f (σ (X)) + conv Diag ∂f (σ (X))

))

= O(n, m)X.cl
(
conv Diag ∂∞f (σ (X)) + conv Diag ∂f (σ (X))

)

= O(n, m)X.Diag cl
(
conv ∂∞f (σ (X)) + conv ∂f (σ (X))

)

= O(n, m)X.Diag ∂c(f (σ (X)).

This proves the following theorem.

THEOREM 4.2. If X ∈ Mn,m and f is an absolutely symmetric function and
lower semicontinuous around σ(X), then f ◦ σ is lower semicontinuous around X

and

∂c(f ◦ σ)(X) = O(n, m)X.∂c(f (σ (X)),

where

O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).Diag σ(X) = X}.

5. Proximal Subgradients

In this section we show that the formula in Theorem 4.2 also holds for proximal
subgradients of singular value functions.

DEFINITION 5.1 (Proximal Subgradients). A vector y is called a proximal sub-
gradient of a function f : R

n → R at x, a point where f (x) is finite, if there exist
ρ > 0 and δ > 0 such that

f (x + z) � f (x) + 〈y, z〉 − 1

2
ρ‖z‖2 when ‖z‖ � δ.

The set of all proximal subgradients will be denoted with ∂pf (x).

It is clear from the definition that

∂pf (x) ⊆ ∂̂f (x). (9)

LEMMA 5.2 (Proximal Subgradients Invariance). Suppose the function f : E →
[−∞, +∞] (E is an inner product space) is invariant under a subgroup G of
O(E), then any point x in E and transformation g in G satisfy ∂pf (gx) = g∂pf (x).
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Proof. Suppose first y ∈ ∂pf (x), so there is a ρ > 0 such that all z in E

sufficiently close to 0 satisfy f (x + z) � f (x) + 〈y, z〉 − 1
2ρ‖z‖2. Using the

invariance of f we get

f (gx + z) = f (x + g−1z) � f (x) + 〈y, g−1z〉 − 1

2
ρ‖g−1z‖2

= f (gx) + 〈gy, z〉 − 1

2
ρ‖z‖2,

so gy ∈ ∂pf (gx). One can easily see that ∂pf (gx) = g∂pf (x). �
5.1. A PRELIMINARY RESULT

Our aim in this auxiliary section will be to prove the identity

σ(X + M) = σ(X) + σ ′(X;M) + O(‖M‖2)

and as an added bonus we will obtain an expression for σ ′(X;M). First of all
from [3, Theorem 4.3.1] we have that

λ(X + M) = λ(X) + O(‖M‖). (10)

We will use the following notation and results from [17]. If A is an n×n symmetric
matrix, its eigenvalues are all real and we can arrange them in nonincreasing order

λ1(A) · · · � λi−1(A) > λi(A) = · · · λl(A) · · · = λj (A) > λj+1(A)

� · · · λn(A),

where i � l � j and λl(A) is the l-th largest eigenvalue of A (counting mul-
tiplicity of each of them). The following proposition is an easy consequence of
Equation (10) and Proposition 1.4 in [17].

PROPOSITION 5.3. Let A ∈ S(n) and U ∈ O(n) so that

UTAU = Diag(λ1(A), . . . , λn(A)) (U = [u1, . . . , un]).
If we set U1 := [ui, . . . , uj ] then

λl(A + E) = λl(A) + λl−i+1(U
T
1 EU1) + O(‖E‖2).

Fix X ∈ Mn,m, let M ∈ Mn,m be a perturbation matrix, and

X = V T
(
Diag σ(X)

)
W

be the singular value decomposition of X. Define

A :=
(

0 X

XT 0

)
, E :=

(
0 M

MT 0

)
.
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It is well known (see [3, Theorem 7.3.7]) that the eigenvalues of the matrix A

are (σ1(X), . . . , σn(X), 0, . . . , 0, −σn(X), . . . , −σ1(X)) with m − n zeros in the
middle. Let U ∈ Mn+m be the orthogonal matrix that gives the ordered spectral
decomposition of A, that is

UTAU = Diag
(
σ1(X), . . . , σn(X), 0, . . . , 0, −σn(X), . . . , −σ1(X)

)
.

We apply the above proposition to the l-th eigenvalue of A, 1 � l � n, using the
matrices A, E, and U to get

σl(X + M) = λl(A + E) = λl(A) + λl−i+1(U
T
1 EU1) + O(‖E‖2)

= σl(X) + λl−i+1(U
T
1 EU1) + O(‖M‖2).

In particular we get that

σ ′(X;M) = λl−i+1(U
T
1 EU1).

5.2. PROXIMAL SUBGRADIENTS

Following the standard reduction ideas we first prove a simpler version of the
theorem we want.

LEMMA 5.4 (Diagonal Proximal Subgradients). For any vectors x in R
n, y in R

n

and any singular value function f ◦ σ we have

y ∈ ∂pf (x) ⇔ Diag y ∈ ∂p(f ◦ σ)(Diag x).

Proof. Suppose first that Diag y is a proximal subgradient. Then there are ρ > 0
and δ > 0 such that for all vectors z in R

n such that ‖z‖ < δ we have

f (x + z) = (f ◦ σ)(Diag x + Diag z)

� (f ◦ σ)(Diag x) + tr(Diag y)(Diag z) − 1
2ρ‖Diag z‖2

= f (x) + 〈y, z〉 − 1
2ρ‖z‖2,

so y ∈ ∂pf (x). (In this case we didn’t use that x ∈ R
n.)

In the opposite direction, let y ∈ ∂pf (x). By Lemma 5.2, every element of the
finite set P(−)(n)xy is a proximal subgradient of f at x. We consider the support
function of the convex hull of this set (which we denote by 	),

δ∗
	(z) = max{zTP(−)y : P(−) ∈ P(−)(n)x}, for all z in R

n.

This function is sublinear, with global Lipschitz constant ‖y‖. The definition of
proximal subgradients implies that there are numbers ρ > 0 and δ > 0 such that
for all vectors z in R

n satisfying ‖z‖ < δ we have

f (x + z) � f (x) + δ∗
	(z) − 1

2ρ‖z‖2. (11)
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On the other hand using the result from the previous subsection, sufficiently small
matrices Z in Mm,n must satisfy

‖σ(Diag x + Z) − x − σ ′(Diag x;Z)‖ � K‖Z‖2.

Therefore by inequality (11), together with the Lipschitzness of δ∗
	 and σ , we get

f (σ (Diag x + Z))

= f (x + (σ (Diag x + Z) − x))

� f (x) − 1
2ρ‖σ(Diag x + Z) − x‖2 +

+ δ∗
	(σ ′(Diag x;Z) + [σ(Diag x + Z) − x − σ ′(Diag x;Z)])

� f (x) + δ∗
	(σ ′(Diag x;Z)) − ( 1

2ρ + K‖y‖)‖Z‖2.

Recall that by the Singular Value Derivatives Theorem we have

diag Z ∈ conv(P(−)(n)xσ
′(Diag x;Z)). (12)

Since the polytope 	 is invariant under the group P(−)(n)x , so is its support func-
tion, so

δ∗
	(P(−)σ

′(Diag x;Z)) = δ∗
	(σ ′(Diag x;Z)),

for any matrix P(−) in P(−)(n)x . The convexity of δ∗
	, its invariance property, and

relation (12), imply that

δ∗
	(diag Z) � δ∗

	(σ ′(Diag x;Z)).

We continue the chain of inequalities above:

f (σ (Diag x + Z)) � f (x) + δ∗
	(diag Z) − ( 1

2ρ + K‖y‖)‖Z‖2

� f (x) + yTdiag Z − ( 1
2ρ + K‖y‖)‖Z‖2

= f (x) + 〈Diag y, Z〉 − ( 1
2ρ + K‖y‖)‖Z‖2,

and the result follows. �
We are now ready to prove again the formula that pervades the whole paper in

the case of proximal subdifferentials.

THEOREM 5.5 (Proximal Subgradients). The proximal subdifferential of any sin-
gular value function f ◦ σ at a matrix X in Mn,m is given by the formula

∂p(f ◦ σ)(X) = O(n, m)X.Diag ∂pf (σ (X)),

where

O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).Diag σ(X) = X}.
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Proof. For any vector y in ∂pf (σ (X)), the Diagonal Proximal Subgradients
Lemma 5.4 shows

Diag y ∈ ∂p(f ◦ σ)(Diag σ(X)),

and now, for any element (Un, Um) in O(n, m)X, from the Proximal Subgradients
Invariance Lemma 5.2 we get

(Un, Um).Diag y ∈ ∂p(f ◦ σ)((Un, Um).Diag σ(X)) = ∂p(f ◦ σ)(X),

and we are done with showing the inclusion ‘⊇’. We now show the opposite in-
clusion ‘⊆’. Let Y ∈ ∂p(f ◦ σ)(X). Because ∂p(f ◦ σ)(X) ⊆ ∂̂(f ◦ σ)(X) ⊆
∂(f ◦ σ)(X), the Symmetricity Theorem implies that XTY = Y TX and Y TX =
XTY . This means that the rectangular matrices X and Y can be simultaneously
diagonalized by one and the same orthogonal pair (Un, Um) (see [10]). We get that

Y = UT
n (Diag P(−)σ (Y ))Um, X = UT

n (Diag σ(X))Um,

for some element (Un, Um) in O(n, m), and some P(−) in P(−)(n). Consequently
(Un, Um) ∈ O(n, m)X. Lemma 5.2 shows that

Diag P(−)σ (Y ) ∈ ∂p(f ◦ σ)(Diag σ(X)).

Finally the Diagonal Proximal Subgradients Lemma 5.4 gives us

P(−)σ (Y ) ∈ ∂pf (σ (X)).

Thus the matrix Y belongs to the set O(n, m)X.Diag ∂pf (σ (X)). �

6. Absolute Order Statistics and Individual Singular Values

In this section we want to present a useful application of the different variations
of the Subgradients Theorems. We are going to calculate the proximal, regular,
limiting, horizon, and Clarke subdifferentials of an individual singular value σk(·).
The availability of such formulas indicated the potential of this approach in matrix
perturbation theory.

We start by defining the absolutely symmetric function corresponding to the
r-th singular value. The kth absolute order statistic ϕk: R

n → R is defined to be

ϕk(x) = kth largest element of {|x1|, |x2|, . . . , |xn|}
(or in other words ϕk(x) = (x̂)k). It clearly satisfies the relation ϕk(x) = σk(Diag x).
To apply the Subgradient Theorem, note that σk = ϕk ◦ σ . Thus we must first
compute the subdifferential of ϕk. We define the function sign(x) as

sign(x) =
{

1, if x � 0,

−1, if x < 0.

Let {e1, . . . , en} be the standard basis in R
n.
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PROPOSITION 6.1. At any point x in R
n, the regular subgradients of the kth

absolute order statistic are described by

∂̂ϕk(x) =





conv{±ei | |xi | = ϕk(x)}, if ϕk−1(x) > ϕk(x) = 0,

conv{(sign(xi))ei | |xi | = ϕk(x)}, if ϕk−1(x) > ϕk(x) �= 0,

∅, otherwise,

and moreover ∂∞ϕk(x) = {0}, and ∂pϕk(x) = ∂̂ϕk(x).
Proof. Define the set of indices I = {i | |xi | = ϕk(x)}, and consider several

cases.
If the inequality ϕk−1(x) > ϕk(x) holds then clearly, close to the point x, the

function ϕk is given by w ∈ R
n �→ maxi∈I |wi |. The subdifferential at x of this

second function (which is convex) is conv{±ei | |xi | = ϕk(x)} if ϕk(x) = 0 or is
conv{(sign(xi))ei | |xi | = ϕk(x)} if ϕk(x) �= 0. (See [13, Theorem 23.8] together
with [1, Problem 3.2.13].)

On the other hand, in the case ϕk−1(x) = ϕk(x), suppose y is regular subgradi-
ent, and so satisfies

ϕk(x + z) � ϕk(x) + yTz + o(z), as z → 0.

Here we consider two subcases whose argumentation slightly differ from one an-
other.

Assume first that ϕk−1(x) = ϕk(x) = 0. For any index i in I , all small positive
δ satisfy ϕk(x + δei) = ϕk(x) and ϕk(x − δei) = ϕk(x), from which we deduce
yi = 0 for each i in I . But also

ϕk

(
x + δ

∑

i∈I

ei

)
= ϕk(x) + δ, and ϕk

(
x − δ

∑

i∈I

ei

)
= ϕk(x) + δ,

which leads to the contradiction
∑

i∈I yi = 1. So ∂̂ϕk(x) = ∅.
Second, suppose we have ϕk−1(x) = ϕk(x) > 0. For any index i in I , all

small positive δ satisfy ϕk(x + δ(sign(xi))ei) = ϕk(x), from which we deduce
(sign(xi))yi � 0, but also

ϕk

(
x − δ

∑

i∈I

(sign(xi))ei

)
= ϕk(x) − δ,

which leads to the contradiction
∑

i∈I (sign(xi))yi � 1. Again we must have had∑
i∈I yi = 1.
The horizon subdifferential is easy to check since ϕk is Lipschitz. For the last

claim we use the fact that for any function ∂pf (x) ⊆ ∂̂f (x) with equality whenever
f is convex. �

For a vector y in R
n we define the support of y to be

supp y = {i | yi �= 0}.
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The number of elements in this set is then |supp y|. It will help to think that the
structure of the vector (ϕ1(x), ϕ2(x), . . . , ϕn(x)) is given by

ϕ1(x) = · · · = ϕk1(x) > · · · > ϕkl−1+1(x) = · · · = ϕk(x) = · · · = ϕkl
(x)

> · · · ϕkr
(x) � 0 (k0 = 0, kr = n),

so that ϕk(x) is somewhere in the lth block of equal entries.

THEOREM 6.2 (kth Absolute Ordered Statistic). The Clarke subdifferential of the
kth absolute ordered statistic ϕk at a point x in R

n is given by

∂cϕk(x) =
{

conv{±ei | |xi | = ϕk(x)}, if ϕk(x) = 0,

conv{(sign(xi))ei | |xi | = ϕk(x)}, otherwise,

whereas the (limiting) subdifferential is given by

∂ϕk(x) = {y ∈ ∂cϕk(x) | |supp y| � α}, where

α = 1 − k + |{i | |xi | � ϕk(x)}|. (13)

Regularity holds if and only if ϕk−1(x) > ϕk(x).

Remark 6.3. Notice that α is equal to the number of elements in the same block
as ϕk(x) after ϕk(x), including ϕk(x). In other words, with the notation introduced
right before the theorem we can get the expression α = kl − k + 1.

Proof. We begin by proving Equation (13). Every vector z in a small enough
neighbourhood around x will have the property that ẑi = ẑj ⇒ x̂i = x̂j for
all i and j . That is why by using Proposition 6.1 one can easily see that for all
z in that neighbourhood, ∂̂ϕk(z) is contained in the set in the right-hand side of
Equation (13). Because this set is closed, after taking limits we see that ∂ϕk(x) is
contained in it as well.

We now show the opposite inclusion. Take a vector y in the right-hand side of
(13) and an index set J such that

|J | = n − α,

j ∈ J ⇒ yj = 0,

{i | |xi | �= ϕk(x)} ⊆ J.

It can easily be seen that for small enough δ we have

ϕk−1

(
x + δ

∑

i∈J

(sign(xi))ei

)
> ϕk

(
x + δ

∑

i∈J

(sign(xi))ei

)
= ϕk(x).

Finally using Proposition 6.1 we see that, depending on the case considered,

y ∈
{

conv{±ei | i �∈ J }
conv{(sign(xi))ei | i �∈ J }

}
= ∂̂ϕk

(
x + δ

∑

i∈J

(sign(xi))ei

)
,
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whence by taking limits we conclude that y ∈ ∂ϕk(x). The formulas for the
Clarke case follow by taking convex hulls. The regularity claim follows by Propo-
sition 6.1. �

Finally the subdifferentials of the singular value function σk(X) are given by
the following corollary.

COROLLARY 6.4 (Singular Value Subgradients). The Clarke subdifferential of
the kth singular value σk at a matrix X in Mn,m is given by

∂cσk(X) = conv{vwT | ‖v‖ = ‖w‖ = 1, Xw = σk(X)v, XTv = σk(X)w}
whereas the (limiting) subdifferential is given by

∂σk(X) = {Y ∈ ∂cσk(X) | rank Y � α}, where

α = 1 − k + |{i | σi(X) � σk(X)}|.
Regularity holds if and only if σk−1(X) > σk(X).

Proof. We will only deduce the formula for the Clarke subdifferential. The
limiting one and the condition for regularity will follow easily.

Fix a matrix X. For any pair (V , W) ∈ O(n, m)X we have that X =
V T(Diag σ(X))W is the (ordered) singular value decomposition of X, where we
suppose V T = [v1, . . . , vn] and WT = [w1, . . . , wm]. We first consider the case
when σk(X) > 0. For any index i, such that σi(X) = σk(X), using V X =
(Diag σ(X))W we can express the ith row on both sides: σi(X)wT

i = vT
i X. Then

V T(Diag ei)W = viw
T
i .

By Theorem 3.7 we get

∂cσk(X) = (Un, Um)O(n, m)Diag σ(X).
(
Diag conv{ei | σi(X) = σk(X)}),

where (Un, Um) is a fixed element of O(n, m)X. The set {ei | σi(X) = σk(X)} is
clearly invariant under the subgroup, P̃ (n), of P(−)(n) that stabilizes σ(X). Then
by Lemma 3.6 and recalling that O(n, m)Diag σ(X) = Õ(n, m) we obtain

∂cσk(X) = (Un, Um)conv Õ(n, m).
(
Diag{ei | σi(X) = σk(X)})

= conv O(n, m)X.
(
Diag{ei | σi(X) = σk(X)})

= conv{viw
T
i | σi(X) = σk(X), (V , W) ∈ O(n, m)X}.

Suppose now σk(X) = 0. If, as above, (V , W) ∈ O(n, m)X then the only restric-
tions on vk and wk are: ‖vk‖ = ‖wk‖ = 1, XTvk = Xwk = 0. Thus

∂cσk(X) = (Un, Um)conv Õ(n, m).
(
Diag{±ei | σi(X) = σk(X)})

= conv O(n, m)X.
(
Diag{±ei | σi(X) = 0})

= conv{±viw
T
i | σi(X) = 0, (V , W) ∈ O(n, m)X}.

The stated formula now follows. �
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A formula for the regular subdifferential of a singular value can also easily be
obtained using Proposition 6.1 and the considerations above.

COROLLARY 6.5. The Clarke subdifferential of the kth singular value σk at 0 is
given by

∂cσk(0) = conv{vwT | v ∈ R
n, w ∈ R

m, ‖v‖ = ‖w‖ = 1}
=

{
Y ∈ Mn,m |

n∑

i=1

σi(Y ) � 1

}
,

whereas the (limiting) subdifferential at 0 is given by

∂σk(0) = {Y ∈ ∂cσk(0) | rank Y � n − k + 1}
=

{
Y ∈ Mn,m |

n∑

i=1

σi(Y ) = 1 and rank Y � n − k + 1

}
.

Proof. It is clear from the previous corollary that

∂cσk(0) = conv{vwT | v ∈ R
n, w ∈ R

m, ‖v‖ = ‖w‖ = 1}.
The equivalence with the second expression (which is just the unit ball for the
Schatten 1-norm) is an easy exercise, and well-known. �

7. Lidskii’s Theorem for Weak Majorization – via Nonsmooth Analysis

This section parallels and extends the techniques in [8] where the original form of
Lidskii’s theorem, about the vector of eigenvalues of perturbed symmetric matrices,
was proved using tools from nonsmooth analysis.

The form of Lidskii’s theorem (for weak majorization) in which we are in-
terested here states (see [4, Theorem 3.4.5]) that any matrices X and Y in Mn,m

satisfy

|σ(X + Y ) − σ(X)| ≺w σ(Y ).

The symbol ≺w denotes weak majorization: for two vectors x and y in R
n we

say that y weakly majorizes x, and write x ≺w y if
∑k

i=1 x̄i �
∑k

i=1 ȳi for k =
1, 2, . . . , n. Clearly x ≺w y if and only if P1x ≺w P2y (for any permutation
matrices P1 and P2).

In this section we show how this form of Lidskii’s theorem can be easily derived
from the results obtained in the paper. We need an equivalent characterization of
weak majorization.

LEMMA 7.1. Let x and y be any two vectors in R
n, then the following conditions

are equivalent

(i) |x| ≺w |y|;
(ii) x ∈ conv(P(−)(n)y);

(iii) for every vector w in R
n we have wTx � ŵTŷ.
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Proof. The equivalence of (i) and (ii) is the content of [11, Theorem 1.2]. Sup-
pose now (ii) holds, then for all w in R

n,

wTx � max
P(−)∈P(−)(n)

(wTP(−)y) = ŵTŷ.

If (iii) holds but x �∈ conv(P(−)(n)y), then there is a separating hyperplane, that is,
there is a vector z in R

n such that

zTx > max
P(−)∈P(−)(n)

(zTP(−)y) = ẑTŷ,

a contradiction. �
Fix w in R

n and consider the absolutely symmetric function defined by

f (x) = wTx̂. (14)

The function f is clearly Lipschitz. If x has coordinates with distinct absolute
values, then f is differentiable at x and ∇f (x) = P(−)w for some P(−) ∈ P(−)(n).
The set of all such vectors x (whose entries have distinct absolute values) has a
complement in R

n with measure zero. On the other hand we have the following
theorem (see [2, Theorem 2.5.1]).

THEOREM 7.2 (Intrinsic Clarke Subdifferential). Let the function f be Lipschitz
near x, and suppose S is any set of Lebesgue measure 0 in R

n. Then

∂cf (x) = conv{lim ∇f (xi) | xi → x, xi �∈ S}.
(It is well known that if f is Lipschitz in a neighbourhood of x then f is differen-
tiable almost everywhere in that neighbourhood.)

From this theorem we get that the function defined in (14) satisfies

∂cf (x) ⊂ conv(P(−)(n)w).

We need another theorem [2, Theorem 2.3.7].

THEOREM 7.3 (Mean-Value Theorem). Let x and y be vectors in R
n, and sup-

pose that f is Lipschitz on an open set containing the line segment [x, y]. Then
there exists a point u in (x, y) such that

f (x) − f (y) ∈ 〈∂cf (u), x − y〉.

We have that wTσ(·) = (f ◦ σ)(·) is Lipschitz, so there is a matrix U in Mn,m,
between the matrices X and X + Y , and a matrix T in ∂c(wTσ)(U) such that:

wT(σ (X + Y ) − σ(X)) = tr(T TY ) � σ(T )Tσ(Y ),
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where the last inequality is von Neumann’s Trace Theorem. On the other hand
applying formula (3) and the above inclusion we get

σ(T ) ∈ conv(P(−)(n)w).

Consequently σ(T )Tσ(Y ) � ŵTσ(Y ). We have thus shown that for every vector
w in R

n we have

wT(σ (X + Y ) − σ(X)) � ŵTσ(Y ).

Lidskii’s theorem follows from Lemma 7.1.
An independent work by Tam and Hill, covering this version of Lidskii’s the-

orem, appeared in [16]. Their considerations are in the context of semisimple Lie
group theory. Our direct and simpler approach first appeared in the second author’s
thesis [15].
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