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THE LAX CONJECTURE IS TRUE

A. S. LEWIS, P. A. PARRILO, AND M. V. RAMANA

(Communicated by Jonathan M. Borwein)

Abstract. In 1958 Lax conjectured that hyperbolic polynomials in three vari-
ables are determinants of linear combinations of three symmetric matrices.
This conjecture is equivalent to a recent observation of Helton and Vinnikov.

Consider a polynomial p on Rn of degree d (the maximum of the degrees of the
monomials in the expansion of p). We call p homogeneous if p(tw) = tdp(w) for
all real t and vectors w ∈ Rn: equivalently, every monomial in the expansion of
p has degree d. We denote the set of such polynomials by Hn(d). By identifying
a polynomial with its vector of coefficients, we can consider Hn(d) as a normed
vector space of dimension

(
n+d−1

d

)
.

A polynomial p ∈ Hn(d) is hyperbolic with respect to a vector e ∈ Rn if p(e) �= 0
and, for all vectors w ∈ Rn, the univariate polynomial t �→ p(w − te) has all real
roots. The corresponding hyperbolicity cone is the open convex cone (see [5])

{w ∈ Rn : p(w − te) = 0 ⇒ t > 0}.
For example, the polynomial w1w2 · · ·wn is hyperbolic with respect to the vec-
tor (1, 1, . . . , 1), since the polynomial t �→ (w1 − t)(w2 − t) · · · (wn − t) has roots
w1, w2, . . . , wn; hence the corresponding hyperbolicity cone is the open positive
orthant.

Hyperbolic polynomials and their hyperbolicity cones originally appeared in the
partial differential equations literature [4]. They have attracted attention more re-
cently as fundamental objects in modern convex optimization [6, 1]. Three primary
reasons drive this interest:

(i) the definition of “hyperbolic polynomial” is strikingly simple;
(ii) the class of hyperbolic polynomials, although not well-understood, is known

to be rich — specifically, its interior in Hn(d) is nonempty;
(iii) optimization problems posed over hyperbolicity cones, with linear objective

and constraint functions, are amenable to efficient interior point algorithms.
For more details on these reasons, see [6, 1].

In light of the interest of hyperbolic polynomials to optimization theorists, it is
therefore natural to ask: how general is the class of hyperbolicity cones? In partic-
ular, do hyperbolicity cones provide a more general model for convex optimization
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than “semidefinite programming” (the study of optimization problems with linear
objectives and constraints and semidefinite matrix variables [9])?

We begin with some easy observations. A rich source of examples of hyperbolicity
cones are semidefinite slices, by which we mean sets of the form

(1)
{

w :
n∑

j=1

wjGj ∈ Sd
++

}
,

for matrices G1, G2, . . . , Gn in the space Sd of all d-by-d real symmetric matri-
ces, where Sd

++ denotes the positive definite cone. Such cones are, in particular,
“semidefinite representable” in the sense of [9].

Proposition 2. Any nonempty semidefinite slice is a hyperbolicity cone.

Proof. Suppose the semidefinite slice (1) contains the vector ŵ. We claim the
polynomial p on Rn defined by

(3) p(w) = det
∑

j

wjGj

is hyperbolic with respect to ŵ, with corresponding hyperbolicity cone described
by (1). Clearly p is homogeneous of degree d, and p(ŵ) > 0.

Define a matrix Ĝ =
∑

j ŵjGj ∈ Sd
++, and notice, for any vector w ∈ Rn and

scalar t, we have

p(w − tŵ) = det
∑

j

(wj − tŵj)Gj = det
( ∑

j

wjGj − tĜ
)

= (det Ĝ) det
(
Ĝ−1/2

[∑
j

wjGj

]
Ĝ−1/2 − tI

)
,

where I denotes the identity matrix. Consequently, the univariate polynomial t �→
p(w − tŵ) has all real roots, namely the eigenvalues of the symmetric matrix H =
Ĝ−1/2[

∑
j wjGj ]Ĝ−1/2, so p is hyperbolic with respect to ŵ. Furthermore, by

definition, w lies in the corresponding hyperbolicity cone exactly when these roots
(or equivalently, eigenvalues) are all strictly positive. But this property is equivalent
to H being positive definite, which holds if and only if

∑
j wjGj is positive definite,

as required. �

The class of semidefinite slices is quite broad. For example, any homogeneous
cone (an open convex pointed cone whose automorphism group acts transitively)
is a semidefinite slice [2] (see also [3]). In particular, therefore, any homogeneous
cone is a hyperbolicity cone, a result first observed in [6].

What about the converse? When is a hyperbolicity cone a semidefinite slice?
How general is the class of hyperbolic polynomials of the form (3)?

In considering a general hyperbolic polynomial p on Rn with respect to a vector
e, we can suppose, after a change of variables, that e = (1, 0, 0, . . . , 0) and p(e) = 1.
Consider the first nontrivial case, that of n = 2. By assumption, the polynomial
t �→ p(−t, 1) has all real roots, which we denote g1, g2, . . . , gd, so for some nonzero
real k we have the identity

p(−t, 1) = k
d∏

j=1

(gj − t).
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By homogeneity, for any vector (x, y) ∈ R2 with y �= 0, we deduce

p(x, y) = ydp
(x

y
, 1

)
= ydk

d∏
j=1

(
gj +

x

y

)
= k

d∏
j=1

(gjy + x).

By continuity and the fact that p(1, 0) = 1, we see that

p(x, y) =
d∏

j=1

(gjy + x) = det(xI + yG)

for all (x, y) ∈ R2, where G is the diagonal matrix with diagonal entries g1, g2, . . . ,
gd. Thus any such hyperbolic polynomial p does indeed have the form (3).

What about hyperbolic polynomials in more than two variables? The following
conjecture [8] proposes that all hyperbolic polynomials in three variables are likewise
easily described in terms of determinants of symmetric matrices.

Conjecture 4 (Lax, 1958). A polynomial p on R3 is hyperbolic of degree d with
respect to the vector e = (1, 0, 0) and satisfies p(e) = 1 if and only if there exist
matrices B, C ∈ Sd such that p is given by

(5) p(x, y, z) = det(xI + yB + zC).

An obvious consequence of this conjecture would be that, in R3, hyperbolicity
cones and semidefinite slices comprise identical classes.

A polynomial on R2 is a real zero polynomial [7] if, for all vectors (y, z) ∈ R2,
the univariate polynomial t �→ q(ty, tz) has all real roots. Such polynomials are
closely related to hyperbolic polynomials via the following elementary result.

Proposition 6. If p is a hyperbolic polynomial of degree d on R3 with respect
to the vector e = (1, 0, 0), and p(e) = 1, then the polynomial on R2 defined by
q(y, z) = p(1, y, z) is a real zero polynomial of degree no more than d, and satisfying
q(0, 0) = 1.

Conversely, if q is a real zero polynomial of degree d on R2 satisfying q(0, 0) = 1,
then the polynomial on R3 defined by

(7) p(x, y, z) = xdq
(y

x
,
z

x

)
(x �= 0)

(extended to R3 by continuity) is a hyperbolic polynomial of degree d on R3 with
respect to e, and p(e) = 1.

Proof. To prove the first statement, note that for any point (y, z) ∈ R2 and complex
µ, if q(µ(y, z)) = 0, then µ �= 0 and 0 = p(1, µy, µz) = µdp(µ−1, y, z), using the
homogeneity of p. So, by the hyperbolic property, −µ−1 is real, and hence so is µ.
The remaining claims are clear.

For the converse direction, since q has degree d, clearly p is well-defined and
homogeneous of degree d and satisfies p(e) = 1. If p(µ, y, z) = 0, then either µ = 0
or q(µ−1(y, z)) = 0, in which case µ−1 and hence also µ must be real. �

(Notice, in the first claim of the proposition, that the polynomial q may have degree
strictly less than d: consider, for example, the case p(x, y, z) = xd.)

Helton and Vinnikov [7, p. 10] observe the following result, based heavily on [10].
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Theorem 8. A polynomial q on R2 is a real zero polynomial of degree d and
satisfies q(0, 0) = 1 if and only if there exist matrices B, C ∈ Sd such that q is
given by

(9) q(y, z) = det(I + yB + zC).

(Notice, as in the Lax conjecture, that the “if” direction is immediate.)
We claim that Theorem 8 is equivalent to the Lax conjecture. To see this,

suppose p is a hyperbolic polynomial of degree d on R3 with respect to the vector
e = (1, 0, 0), and p(e) = 1. Then by Proposition 6, the polynomial on R2 defined
by q(y, z) = p(1, y, z) is a real zero polynomial of degree d′ ≤ d, and satisfying
q(0, 0) = 1. Hence by Theorem 8, equation (9) holds: we can assume d′ = d by
replacing B, C ∈ Sd′

with block diagonal matrices Diag(B, 0), Diag(C, 0) ∈ Sd.
Then, by homogeneity, for x �= 0,

p(x, y, z) = xdp
(
1,

y

x
,
z

x

)
= xdq

(y

x
,
z

x

)

= xd det
(
I +

y

x
B +

z

x
C

)
= det(xI + yB + zC),

as required. The converse direction in the Lax conjecture is immediate.
Conversely, let us assume the Lax conjecture, and suppose q is a real zero poly-

nomial of degree d on R2 satisfying q(0, 0) = 1. (The converse direction in Theorem
8 is immediate.) Then by Proposition 6 the polynomial p defined by equation (7)
is a hyperbolic polynomial of degree d on R3 with respect to e, and p(e) = 1.
According to the Lax conjecture, equation (5) holds, so

q(y, z) = p(1, y, z) = det(I + yB + zC),

as required. �

The exact analogue of the Lax conjecture fails in general for polynomials in
n > 3 variables. To see this, note that the set of polynomials on Rn of the form
w �→ det

∑
j wjGj (where G1, G2, . . . , Gn ∈ Sd) has dimension at most n ·

(
d+1
2

)
,

being an algebraic image of a vector space of this dimension. If the degree d is large,
this dimension is certainly smaller than the dimension of the set of hyperbolic
polynomials: as we observed above, this latter set has nonempty interior in the
space Hn(d) (by a result of Nuij [6, Thm. 2.1]), and so has dimension

(
n+d−1

d

)
.

More concretely, consider the polynomial defined by p(w) = w2
1 −

∑n
2 w2

j for
w ∈ Rn. This polynomial is hyperbolic of degree d = 2 with respect to the vector
(1, 0, 0, . . . , 0), and yet cannot be written in the form det

∑
j wjGj for matrices

G1, G2, . . . , Gn ∈ S2 if n > 3. To see this, choose any nonzero vector w satisfying
w1 = 0, and such that the first row of the matrix

∑
j wjGj is zero.

The question of whether all hyperbolicity cones are semidefinite slices, or, more
generally, are semidefinite representable, appears open.
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