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Abstract. The ε-pseudospectrum of a matrix A is the subset of the complex plane consisting of
all eigenvalues of all complex matrices within a distance ε of A. We are interested in two aspects of
“optimization and pseudospectra.” The first concerns maximizing the function “real part” over an
ε-pseudospectrum of a fixed matrix: this defines a function known as the ε-pseudospectral abscissa
of a matrix. We present a bisection algorithm to compute this function. Our second interest is in
minimizing the ε-pseudospectral abscissa over a set of feasible matrices. A prerequisite for local
optimization of this function is an understanding of its variational properties, the study of which is
the main focus of the paper. We show that, in a neighborhood of any nonderogatory matrix, the
ε-pseudospectral abscissa is a nonsmooth but locally Lipschitz and subdifferentially regular function
for sufficiently small ε; in fact, it can be expressed locally as the maximum of a finite number of
smooth functions. Along the way we obtain an eigenvalue perturbation result: near a nonderogatory
matrix, the eigenvalues satisfy a Hölder continuity property on matrix space—a property that is well
known when only a single perturbation parameter is considered. The pseudospectral abscissa is a
powerful modeling tool: not only is it a robust measure of stability, but it also reveals the transient
(as opposed to asymptotic) behavior of associated dynamical systems.
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1. Introduction. The ε-pseudospectrum of a matrix A, denoted Λε(A), is the
subset of the complex plane consisting of all eigenvalues of all complex matrices within
a distance ε of A (see [20, 39, 40]). We are interested in two aspects of “optimization
and pseudospectra.” The first concerns maximizing a simple real-valued function over
a fixed pseudospectrum Λε(A). We focus specifically on the case where this function
is simply “real part.” Then the optimal value defines the ε-pseudospectral abscissa
of A, denoted αε(A). Just as the spectral abscissa of a matrix provides a measure
of its stability, that is, the asymptotic decay of associated dynamical systems, so the
ε-pseudospectral abscissa provides a measure of robust stability, where by robust we
mean with respect to complex perturbations in the matrix. One of the contributions
of this paper is a bisection algorithm that computes αε(A) for any A; this algorithm
also identifies all maximizing points in the pseudospectrum.

In many applications, matrices are not fixed but dependent on parameters that
may be adjusted. Our second interest in optimization concerns minimizing the ε-
pseudospectral abscissa αε over a feasible set of matrices. A prerequisite for local
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minimization of αε is an understanding of its variational properties as a function
of the matrix A. This provides the focus for most of the paper. Our main result
shows that, in a neighborhood of any nonderogatory matrix, the ε-pseudospectral
abscissa is a nonsmooth but locally Lipschitz and subdifferentially regular function
for sufficiently small ε; in fact, it can be expressed locally as the maximum of a finite
number of smooth functions. Such a property is desirable from the point of view
of numerical methods for local optimization, but we defer a computational study to
future work.

The paper is organized as follows. After setting up some notation in section 2,
we begin in section 3 by discussing related ideas in the robust control literature. We
review the connections between the pseudospectral abscissa and the “distance to in-
stability” [28, 16], or “complex stability radius” [21], and the H∞ norm of a transfer
function [8]. The outcome of minimization of αε over a set of matrices obviously
depends on the crucial issue of the choice of ε. We show that as ε is increased from
zero to an arbitrarily large quantity, the corresponding optimization problem evolves
from minimization of the spectral abscissa (enhancing the asymptotic decay rate of
the associated dynamical system) to the minimization of the largest eigenvalue of the
symmetric part of the matrix (minimizing the initial growth rate of the associated
system). Regarding the first of these extremes (optimization of the spectral abscissa),
variational analysis of this non-Lipschitz function is well understood [15, 12], global
optimization is known to be hard [5], and some progress has been made in local op-
timization methods [14]. Regarding the second extreme, optimization of this convex
function over a polyhedral feasible set is a semidefinite programming problem, and
the global minimum can be found by standard methods [4, 38]. Intermediate choices
of ε control transient peaking in the dynamical system associated with the matrix,
and one particular choice corresponds exactly to the complex stability radius (or H∞
norm) optimization problem. Thus the pseudospectral approach gives a whole range
of stabilizing optimization problems, each with a quantifiable interpretation in terms
of the allowable perturbations. Furthermore, unlike maximization of the complex
stability radius, which simply optimizes the “robustness” of the stability, minimiz-
ing the pseudospectral abscissa preserves some explicit emphasis on optimizing the
asymptotic decay rate of the system.

In section 4, we analyze the topology of the pseudospectrum, observing that points
on the boundary are accessible from the interior by analytic paths, and discussing
conditions under which the boundary is differentiable at points that maximize the
real part. This sets the stage for the description of a simple bisection algorithm
to compute αε(A), the pseudospectral abscissa of a fixed matrix, in section 5. In
section 6, we show that the bisection algorithm locates all maximizers of the real part
over the pseudospectrum. The bisection algorithm is very much analogous to Byers’
algorithm for measuring the distance to instability [16], which has spawned more
sophisticated variants for the calculation of stability radii (real as well as complex)
and H∞ norms, both globally and quadratically (or higher order) convergent; see
[8, 7, 11, 18, 36]. Along similar lines, we have also developed a quadratically convergent
variant algorithm for computing αε, described and analyzed in a companion paper
[13].

In section 7, we continue our study of analytical properties of the pseudospec-
trum. As is well known, the pseudospectrum of a matrix A is defined by an inequality
on σmin(A− zI), the least singular value of A− zI. In Theorem 7.4 (growth near an
eigenvalue) we give an interesting estimate relating σmin(A− zI) to |z − λ0|m, where
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λ0 is a nonderogatory eigenvalue (one whose geometric multiplicity is one), and m
is its algebraic multiplicity. The coefficient relating these quantities is a ratio of two
products, of eigenvalue separations and of singular values, respectively. One corollary
of this result is that an ε-pseudospectrum component around a nonderogatory eigen-
value is strictly convex for sufficiently small ε, an intuitively appealing but apparently
nontrivial fact. Another corollary is that the nonderogatory eigenvalue λ0 satisfies
a Hölder continuity property in a neighborhood of A in matrix space, with Hölder
exponent equal to 1/m. While this result might not seem surprising, in light of well-
known classical spectral perturbation theory [27, 23, 3, 30], we have not seen it in
the literature. The classical analysis focuses almost exclusively on single perturbation
parameters.

The analytical results of section 7 allow us to achieve our primary goal in sec-
tion 8: a detailed variational analysis of the pseudospectral abscissa αε. The main
result has already been mentioned above. Finally, in section 9, we examine the bound-
ary properties of the pseudospectrum at points where the boundary is not smooth,
using techniques from modern variational analysis [17, 34]. We show that, under a
nondegeneracy condition, the complement of the pseudospectrum is Clarke regular at
such a point, and give a formula for the normal cone.

2. Notation. We consider a matrix A in the space of n × n complex matrices
Mn. We denote the spectrum of A by Λ = Λ(A), and we denote by α = α(A) the
spectral abscissa of A, which is the largest of the real parts of the eigenvalues.

For a real ε > 0, the ε-pseudospectrum of A is the set

Λε = {z ∈ C : z ∈ Λ(X) where ‖X −A‖ ≤ ε}.
(Throughout, ‖ · ‖ denotes the operator 2-norm on Mn.) For the most part, ε is
fixed, so where it is understood we drop it from the terminology. Any element of
the pseudospectrum is called a pseudoeigenvalue. Unless otherwise stated, we shall
always assume ε > 0, but it is occasionally helpful to extend our notation to allow
ε = 0, so Λ0 = Λ. Analogously, the strict pseudospectrum is the set

Λ′
ε = {z ∈ C : z ∈ Λ(X) where ‖X −A‖ < ε}.

The pseudospectral abscissa αε is the maximum value of the real part over the pseu-
dospectrum:

αε = sup{Re z : z ∈ Λε}.(2.1)

We call this optimization problem the pseudospectral abscissa problem. Note α0 = α.
The function σmin : Mn → R denotes the smallest singular value. We define a

function g : C → R by

g(z) = σmin(A− zI) = ‖(A− zI)−1‖−1,

where we interpret the right-hand side as zero when z ∈ Λ(A). Thus g is the reciprocal
of the norm of the resolvent. Using this notation, a useful characterization of the
pseudospectrum is

Λε = {z ∈ C : g(z) ≤ ε},
and analogously

Λ′
ε = {z ∈ C : g(z) < ε}
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(see [39]). Clearly as ε increases, both families of sets are monotonic increasing.
We will sometimes want to allow the matrix A (and the parameter ε) to vary. We

therefore define the pseudospectral abscissa function αε : M
n → R by

αε(Z) = sup{Re z : σmin(Z − zI) ≤ ε}.
3. Related ideas. The pseudospectral abscissa is related to several other func-

tions important for stability analysis. In this section we briefly sketch the connections
with two such functions, in particular, the “distance to instability” and theH∞ norm.

A matrix A is stable if all its eigenvalues have strictly negative real parts; in other
words, the spectral abscissa of A satisfies α(A) < 0. From any given matrix A, the
distance to the set of matrices which are not stable [28, 19] (also known as the complex
stability radius [21]) is

β(A) = min{‖X −A‖ : X ∈ Mn, α(X) ≥ 0}.
Since the set of matrices which are not stable is closed, this minimum is attained.
Notice in particular that β(A) = 0 if and only if A is not stable. It is now easy to
check the relationship

β(A) ≤ ε ⇔ αε(A) ≥ 0,(3.1)

and more generally, for any real x,

αε(A) ≥ x ⇔ αε(A− xI) ≥ 0 ⇔ β(A− xI) ≤ ε.

Notice that we can write the pseudospectral abscissa in the form

αε(A) = max{α(X) : ‖X −A‖ ≤ ε},
a special case of “robust regularization” [26] and “minimum stability degree” [2].
Since the spectral abscissa α is continuous, standard arguments [26] show that the
function

(ε, A) ∈ R+ ×Mn 
→ αε(A)(3.2)

is continuous.
In this paper we consider almost exclusively a fixed choice of the parameter ε, but

for the moment let us consider the effect of varying ε on the solution of a pseudospec-
tral abscissa minimization problem. For any fixed set of feasible matrices F ⊂ Mn,
the continuity of the map (3.2) guarantees various useful continuity properties of the
optimal value and solutions of the optimization problem infF αε (see [34, Chap. 7]).
In particular, if F is nonempty and compact, then

lim
ε→ε̄

inf
F

αε = inf
F

αε̄,

and any cluster point of a sequence of matrices Ar minimizing αεr over F , where
εr → ε̄, must minimize αε̄ over F .

Notice that any stable matrix A satisfies

αβ(A)(A) = 0.

To see this, note that the implication (3.1) shows αβ(A) ≥ 0, while if αβ(A) > 0, then
by the continuity of αε with respect to ε, there would exist ε ∈ (0, β(A)) such that
αε(A) ≥ 0, whence we get the contradiction β(A) ≤ ε < β(A).
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We return to our pseudospectral abscissa minimization problem infF αε. The
following easy result shows that, under reasonable conditions, for a particular choice
of ε, this problem is equivalent to maximizing the distance to instability over the same
set of feasible matrices.

Proposition 3.1 (maximizing the distance to instability). If the optimal value
β̄ = maxF β is attained by some stable matrix, then minF αβ̄ = 0 and

argmin{αβ̄(X) : X ∈ F} = argmax{β(X) : X ∈ F}.

Proof. Any matrix A ∈ F satisfies β(A) ≤ β̄. If A is stable, then αβ̄(A) ≥
αβ(A)(A) = 0, while on the other hand, if A is not stable, then αβ̄(A) ≥ α0(A) ≥ 0.
Hence infF αβ̄ ≥ 0.

By assumption, β̄ is finite and strictly positive, so clearly every matrix in the
(nonempty) set of optimal solutions argmaxFβ is stable. Any such matrix A satis-
fies αβ̄(A) = αβ(A)(A) = 0, and hence A ∈ argminFαβ̄ . We deduce argmaxF β ⊂
argminF αβ̄ and minF αβ̄ = 0.

Consider, conversely, a matrix A ∈ F such that A �∈ argmaxFβ. Suppose first
that A is stable. Since β(A) < β̄, we know αβ̄(A) > αβ(A)(A) = 0, because as we
shall see in the next section, αε(A) is strictly increasing in ε. On the other hand, if A
is not stable, then the same reasoning shows αβ̄(A) > α0(A) ≥ 0. In either case, we
have shown A �∈ argminFαβ̄ , so argminF αβ̄ ⊂ argmaxF β as required.

We thus see that, under reasonable conditions, as ε increases from zero, the set
of optimal solutions argmaxF αε evolves from the set of minimizers of the spectral
abscissa through the set of maximizers of the stability radius. This raises the question
of what happens for large ε. The following result shows that the limiting version of
infF αε as ε → +∞ is the optimization problem

inf
X∈F

λmax

(X +X∗

2

)
,

where λmax denotes the largest eigenvalue of a Hermitian matrix.
Theorem 3.2 (large ε). For any matrix A ∈ Mn,

[
αε(X)− ε

]→ λmax

(A+A∗

2

)
as ε → +∞ and X → A.

Proof. If we denote the right-hand side by λ, then there is a unit vector u ∈ Cn

satisfying u∗(A + A∗)u = 2λ. Consider any sequence εr → +∞ and Xr → A. Since
‖uu∗‖ = 1, we know

αεr (Xr)− εr ≥ α(Xr + εruu
∗)− εr = εr

(
α
(
uu∗ +

1

εr
Xr

)
− 1
)
.

Now standard perturbation theory [23] shows α is analytic around the matrix uu∗ with
gradient ∇α(uu∗) = uu∗, so as r → ∞, the right-hand side in the above relationship
converges to

Re (tr (uu∗A)) = Reu∗Au = λ.

We have thus shown

lim inf
r

(αεr (Xr)− εr) ≥ λ.
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Now suppose

lim sup
r

(αεr (Xr)− εr) > λ.

We will derive a contradiction. Without loss of generality, there exists a real δ > 0
such that

αεr (Xr)− εr > λ+ δ for all r.

For each r we can choose a matrix Dr satisfying ‖Dr‖ ≤ 1 and

αεr (Xr) = α(Xr + εrDr),

and a unit vector wr ∈ Cn satisfying

α(Xr + εrDr) = Re (w∗
r(Xr + εrDr)wr).

Hence

λ+ δ < Re (w∗
rXrwr) + εr(Re (w

∗
rDrwr)− 1)

≤ Re (w∗
rXrwr) = w∗

r

(Xr +X∗
r

2

)
wr

≤ λmax

(Xr +X∗
r

2

)
.

But as r → ∞, the right-hand side above converges to λ, which is the desired contra-
diction.

We see from this result that, for example, if the set F is a polyhedron, then the
limiting version of the optimization problem infF αε as ε → ∞ is a computationally
straightforward, convex minimization problem, whereas when ε = 0 the problem may
be hard [5].

The idea of theH∞ norm of a transfer matrix is also closely related to the complex
stability radius. Consider the linear time-invariant dynamical system

ṗ = Ap+ u,

where p denotes the state vector (in this simple case coinciding with the output)
and u denotes the input vector. The “transfer matrix” of this system is the function
H(s) = (sI −A)−1 (where s is a complex variable). Assuming the matrix A is stable,
the corresponding H∞ norm is defined by

‖H‖∞ = sup
ω∈R

σmax(H(iω)),

where σmax denotes the largest singular value. Clearly

‖H‖∞ = sup
ω∈R

1

σmin(A− iωI)
,

so ‖H‖∞ < ε−1 if and only if we have

σmin(A− iωI) > ε for all ω ∈ R.
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As a consequence of Theorem 5.4 below, for example, this is equivalent to αε(A) < 0.
In summary, for a stable matrix A, we have

αε(A) < 0 ⇔ β(A) > ε ⇔ ‖H‖∞ <
1

ε
.(3.3)

We can characterize the condition αε(A) < x analogously in terms of a “shifted” H∞
norm [9, p. 67].

An important topic in robust control has been the design of controllers which
minimize the H∞ norm [44, 43]. In the language above, this corresponds to choosing
the parameters defining the stable matrix A in order to maximize the minimum value
of σmin(A− zI) as z varies along the imaginary axis. Our ultimate aim of optimizing
the pseudospectral abscissa is related, but rather different, being motivated by the
broad idea of robust optimization [4]. We first fix the “level of robustness” ε (precisely
the quantity that we seek to maximize in an H∞ norm problem) and then vary A to
move the corresponding pseudospectrum as far as possible to the left in the complex
plane. In other words, we try to maximize a real parameter x such that the H∞ norm
corresponding to the shifted matrix A− xI is not more than ε−1.

What are the relative merits of different choices of ε in a pseudospectral minimiza-
tion problem infF αε? Here we are motivated by Trefethen’s well-known viewpoint
[39, 40], but we add an optimization “twist.” When ε = 0, optimization amounts to
minimizing the spectral abscissa of a matrix A ∈ F , in other words, optimizing the
asymptotic rate of decay of trajectories of the dynamical system ṗ = Ap. On the
other hand, for large ε, by Theorem 3.2 (large ε), optimization amounts to minimiz-
ing λmax(A + A∗)/2. This corresponds to optimizing the initial decay rate of the
dynamical system, since at time t = 0,

d

dt

‖p‖2

2
= p(0)∗

(A+A∗

2

)
p(0) ≤ λmax

(A+A∗

2

)
‖p(0)‖2,

with equality if p(0) is an eigenvector corresponding to the largest eigenvalue. For
intermediate choices of ε, minimizing the pseudospectral abscissa balances the two ob-
jectives of improving asymptotic stability and restricting the size of transient peaks
in the trajectories. In particular, Proposition 3.1 (maximizing the distance to insta-
bility) shows that, under reasonable conditions, for some choice of ε, minimizing αε

is equivalent to minimizing the H∞ norm, that is, maximizing the complex stability
radius.

To summarize, minimizing the H∞ norm of a matrix A optimizes the robustness
of the stability of the dynamical system ṗ = Ap, but with no explicit reference to
its asymptotic decay rate. By minimizing the pseudospectral abscissa αε instead, for
different choices of the parameter ε we obtain a range of different balances between ro-
bustness and asymptotic decay, one choice giving exactly the H∞ norm problem. One
could achieve a similar range of balances by minimizing the H∞ norm corresponding
to the shifted matrix A − xI as the real parameter x varies; however, working with
ε-pseudospectra for fixed ε provides a natural interpretation in terms of allowable
perturbations to A. Yet another range of balances is achieved by the “robust spectral
abscissa” defined in [14].

Just as with the H∞ norm, the pseudospectral abscissa can be characterized
via semidefinite programming. Specifically, by [9, p. 67] or [4, Prop. 4.4.2], a real x
satisfies

αε(A) < x
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if and only if there exist reals µ < 0 and λ, and an n× n positive definite Hermitian
matrix P such that the matrix[

(µ− λ)I + 2xP −A∗P − PA −εP
−εP λI

]

is positive semidefinite. As discussed in [9, pp. 3–4], the power of such semidefinite
characterizations derives from their amenability to efficient interior point methods
for convex optimization, pioneered in [31]. The disadvantage is the appearance of
subsidiary semidefinite matrix variables: if the underlying matrices A are large, and
we need to calculate the pseudospectral abscissa for many different matrices (in an
optimization routine, for example), involving these subsidiary variables may be pro-
hibitive computationally; see, for example, [33, 14, 42]. For this reason, in this work
we consider more direct approaches to the pseudospectral abscissa.

4. Boundary properties. We begin our direct, geometric approach to the pseu-
dospectral abscissa by studying the boundary of the pseudospectrum.

Proposition 4.1 (compactness). The pseudospectrum Λε is a compact set con-
tained in the ball of radius ‖A‖ + ε. It contains the strict pseudospectrum Λ′

ε, which
is nonempty and open.

Proof. The strict pseudospectrum is nonempty since it contains the spectrum. It is
open since σmin, and hence g are continuous. This also shows that the pseudospectrum
is closed. For any point z ∈ Λε there is a unit vector u ∈ Cn satisfying ‖(A−zI)u‖ ≤ ε.
On the other hand, ‖Au‖ ≤ ‖A‖, so we have the inequality

|z| = ‖zu‖ ≤ ‖(A− zI)u‖+ ‖Au‖ ≤ ‖A‖+ ε,(4.1)

which shows boundedness.
The next result is slightly less immediate.
Theorem 4.2 (local minima). The only local minimizers of the function

g(z) = σmin(A− zI)

are the eigenvalues of the matrix A.
Proof. Suppose the point z0 is a local minimizer that is not an eigenvalue. Then

z0 is a local maximizer of the norm of the resolvent ‖(A − zI)−1‖. We can choose
unit vectors u, v ∈ Cn satisfying

‖(A− z0I)
−1‖ = |u∗(A− z0I)

−1v|,
and then we have, for all points z close to z0, the inequalities

|u∗(A− zI)−1v| ≤ ‖(A− zI)−1‖ ≤ ‖(A− z0I)
−1‖ = |u∗(A− z0I)

−1v|.
Hence the modulus of the function u∗(A − zI)−1v has a local maximum at z0. But
this contradicts the maximum modulus principle, since this function is analytic and
nonconstant near z0.

Corollary 4.3 (closure of strict pseudospectrum). The closure of the strict
pseudospectrum is the pseudospectrum, so for ε > 0 the pseudospectral abscissa is

αε = sup{Re z : z ∈ Λ′
ε}.

Proof. A point in the pseudospectrum that is outside the closure of the strict
pseudospectrum must be a local minimizer of the function g.
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An easy exercise now shows that the pseudospectral abscissa αε is a continuous,
strictly increasing function of ε ∈ [0,+∞). Note also that, by contrast with the
above result, the function g may have local maximizers and, consequently, the strict
pseudospectrum may not equal the interior of the pseudospectrum.

We can refine the above corollary with a more delicate argument, showing that we
can “access” any point in the pseudospectrum via a smooth path through the strict
pseudospectrum.

Theorem 4.4 (accessibility). Given any point z0 in the pseudospectrum, there
is a real-analytic path p : [0, 1] → C such that p(0) = z0 and p(t) lies in the strict
pseudospectrum for all t ∈ (0, 1].

Proof. We may as well assume g(z0) = ε. By Corollary 4.3, there exists a sequence
zr ∈ Λ′

ε approaching z0. For each index r there exists a vector ur ∈ Cn satisfying the
inequalities

1 < ‖ur‖ < 1 +
1

r
and ‖(A− zrI)u

r‖ < ε.

By taking a subsequence, we may as well assume that the sequence {ur} converges to
a limit u0, and then we have (z0, u

0) ∈ clS, where

S =
{
(z, u) : ‖u‖2 > 1, ‖(A− zI)u‖2 < ε2

}
.

Since the set S is defined by a finite number of strict algebraic inequalities, we
can apply the accessibility lemma [29]. Hence there is a real-analytic path q : [0, 1] →
C×Cn such that q(0) = (z0, u

0) and q(t) ∈ S for all t ∈ (0, 1]. The result now follows
by taking p to be the first component of q.

In most cases the boundary of the pseudospectrum is straightforward to analyze
without recourse to the above result. We make the following definition.

Definition 4.5. A point z ∈ C is degenerate if the smallest singular value of
A − zI is nonzero and simple (that is, has multiplicity one) and the corresponding
right singular vector u satisfies u∗(A− zI)u = 0.

We need the following elementary identity.
Lemma 4.6. Given any unit vector u ∈ Cn, matrix B ∈ Mn, and scalar w ∈ C,

we have

‖(B + wI)u‖2 − ‖Bu‖2 = |u∗(B + wI)u|2 − |u∗Bu|2.
The next result shows that, except possibly at degenerate points, the pseudospec-

trum can never be “pointed” outwards.
Proposition 4.7 (pointedness). Any nondegenerate point in the pseudospectrum

lies on the boundary of an open disk contained in the strict pseudospectrum.
Proof. Consider a nondegenerate point z0 ∈ Λε. We may as well assume g(z0) = ε.

Choose a unit right singular vector u ∈ Cn satisfying the condition u∗(A− z0I)u �= 0.
We now claim

|z − u∗Au| < |z0 − u∗Au| ⇒ z ∈ Λ′
ε.

To see this, observe that if z satisfies the left-hand side, then

σ2
min(A− zI)− ε2 ≤ ‖(A− zI)u‖2 − ‖(A− z0I)u‖2

= |u∗(A− zI)u|2 − |u∗(A− z0I)u|2
= |z − u∗Au|2 − |z0 − u∗Au|2
< 0,
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using the preceding lemma.
In particular, this result shows that Theorem 4.4 is elementary in the case when

the point of interest z0 is nondegenerate.
Thus the pseudospectrum is not pointed outward, except possibly at a degenerate

point. In fact, a more detailed analysis due to Trefethen shows that the pseudospec-
trum is never pointed outward [41]. However, it can certainly be pointed inward, as
the following example shows.

Example 1 (nonsmooth points). Consider the matrix

A =

[
0 1
−1 0

]
.

The pseudospectrum Λε consists of the union of two disks of radius ε, centered at the
two eigenvalues, ±i. For example, if ε =

√
2, then z = 1 is a nonsmooth point where

the boundary of the pseudospectrum is pointed inward. In the case where ε = 1, the
pseudospectrum consists of two disks tangent to each other at the origin.

Nonetheless, even though the boundary of the pseudospectrum can be nonsmooth,
this cannot occur at any nondegenerate optimal solution of the pseudospectral abscissa
problem.

Proposition 4.8 (optimal solutions). Any locally optimal solution z0 of the
pseudospectral abscissa problem (2.1) must lie on the boundary of the pseudospectrum.
Furthermore, unless z0 is degenerate, the boundary is differentiable there.

Proof. The fact that z0 cannot lie in the interior of Λε is immediate. Now assume
z0 is nondegenerate. Since z0 is optimal, Λε lies on or to the left of the vertical line
through z0. But since z0 is nondegenerate, Λε contains a closed disk whose boundary
contains z0, by Proposition 4.7 (pointedness). Thus the boundary of Λε lies between
the disk and the vertical line, which are tangent at z0. This completes the proof.

Again, the nondegeneracy hypothesis may be dropped using the more general
result on pointedness mentioned above [41].

5. Components of the pseudospectrum. We recall some basic ideas from
plane topology. A domain is a nonempty, open, arcwise connected subset of C. Given
a point z in an open set Ω ⊂ C, a particular example of a domain is the component of
z, which consists of all points that can be joined to z by a continuous path in Ω [35].

The following result is in essence well known (see, for example, [10]).
Theorem 5.1 (eigenvalues and components). Every component of the strict

pseudospectrum of the matrix A contains an eigenvalue of A.
Proof. Suppose the set S is a component of the strict pseudospectrum Λ′

ε that
contains no eigenvalues of A. The function g attains its minimum on the compact set
clS at some point z, and clearly g(z) < ε, so z ∈ Λ′

ε. Since S is open and contains no
eigenvalues, Theorem 4.2 (local minima) implies z �∈ S.

But since Λ′
ε is open, it contains an open disk D centered at z. Since z ∈ clS, we

know D ∩S �= ∅, and hence D ∪S is an arcwise connected subset of Λ′
ε strictly larger

than S. But this contradicts the definition of S.
In Example 1 (nonsmooth points), when ε = 1 the strict pseudospectrum consists

of two components, namely the two open disks centered at the two eigenvalues, ±i.
By contrast, the pseudospectrum is arcwise connected.

The simplest case of the above result occurs when each eigenvalue has geometric
multiplicity one and ε is small. In this case we show later (Corollary 7.5) that the
pseudospectrum consists of disjoint compact convex neighborhoods of each eigenvalue
(cf. [32]).
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Our next aim is to try to bracket the pseudospectral abscissa. We first need a
subsidiary result.

Lemma 5.2 (moving to the boundary). For any point z1 in Λε there exists a
point z2 satisfying Re z1 = Re z2 and g(z2) = ε.

Proof. We simply take z2 on the boundary of the intersection of the vertical line
through z1 and the pseudospectrum Λε (which is compact).

Byers’ algorithm for calculating the distance to instability [16] and its subsequent
variants (see the introduction) all depend on versions of the following easy piece of lin-
ear algebra, relating singular values to imaginary eigenvalues of a certain Hamiltonian
matrix. We include a proof for completeness.

Lemma 5.3 (imaginary eigenvalues). For real numbers x and y, and ε ≥ 0, the
matrix A− (x+ iy)I has a singular value ε if and only if the matrix[

xI −A∗ εI
−εI A− xI

]

has an eigenvalue iy.
Proof. Plus and minus the singular values of any matrix B ∈ Mn are exactly the

eigenvalues of the matrix [
0 B
B∗ 0

]
.

Thus the matrix A− (x+ iy)I has a singular value ε if and only if ε is an eigenvalue
of the matrix [

0 A− (x+ iy)I
A∗ − (x− iy)I 0

]

or, in other words, if and only if the matrix[ −εI A− (x+ iy)I
A∗ − (x− iy)I −εI

]

is singular. Since[
0 I
−I 0

] [ −εI A− (x+ iy)I
A∗ − (x− iy)I −εI

]

=

[
(A∗ − xI) −εI

εI (xI −A)

]
+ iy

[
I 0
0 I

]
,

this is equivalent to iy being an eigenvalue of the matrix[
xI −A∗ εI
−εI A− xI

]
.

The following result is our key test. Geometrically it states simply that a given real
x (bigger than the spectral abscissa α) is less than the pseudospectral abscissa exactly
when the vertical line through x intersects the boundary of the pseudospectrum. As
we shall see, this is a straightforward computational test.

Theorem 5.4 (bracketing the pseudospectral abscissa). For any real x ≥ α, the
following statements are equivalent:

(i) x ≤ αε;
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(ii) the equation

g(x+ iy) = ε, y ∈ R,(5.1)

is solvable;
(iii) the system

iy ∈ Λ

[
xI −A∗ εI
−εI A− xI

]
, y ∈ R,(5.2)

is solvable.
Proof. We first show (i) ⇒ (ii). If x = αε, then choose any point z solving

the pseudospectral abscissa problem (2.1). Clearly z = x + iy for some real y, and
g(z) = ε, so we have shown that (5.1) has a solution.

We can therefore assume x < αε, in which case there exists a point z1 such that
Re z1 > x and g(z1) < ε. The component of z1 in the strict pseudospectral abscissa
Λ′
ε contains an eigenvalue z2 by Theorem 5.1 (eigenvalues and components). Hence

there is an arc in this component connecting z1 and z2. But since Re z1 > x ≥ Re z2,
this arc must contain a point z3 with Re z3 = x. Now applying Lemma 5.2 (moving
to the boundary) gives a solution to (5.1).

The implication (ii)⇒ (iii) is immediate from Lemma 5.3 (imaginary eigenvalues),
so it remains to show (iii) ⇒ (i). But this is again an easy consequence of Lemma
5.3: if system (5.2) holds, then ε is a singular value of the matrix A− (x+ iy)I, and
hence the smallest singular value of this matrix is no greater than ε, whence we get
the result.

Using this result, the relationship (3.3) between the pseudospectral abscissa and
the H∞ norm is an easy exercise.

We can now approximate the pseudospectral abscissa αε by a bisection search as
follows.

Algorithm 5.5 (bisection method). We begin with the initial interval

[α, ‖A‖+ ε].

We know αε lies in this interval by the argument of Proposition 4.1 (compactness).
Now at each iteration we let x be the midpoint of the current interval and compute
all the eigenvalues of the matrix[

xI −A∗ εI
−εI A− xI

]
.(5.3)

If any of the eigenvalues are purely imaginary, then we deduce x ≤ αε and replace
the current interval with its right half. Otherwise, by Theorem 5.4 (bracketing the
pseudospectral abscissa), we know x > αε, so we replace the current interval with its
left half. The intervals generated by this algorithm are guaranteed to converge to the
pseudospectral abscissa αε.

The difference between this algorithm and Byers’ bisection method for the dis-
tance to instability [16] is that the former searches for x by bisection, while the latter
searches for ε by bisection.

Notice that at each iteration of the bisection method we can easily solve (5.1). We
first list the purely imaginary eigenvalues of the matrix (5.5), namely {iy1, iy2, . . . , iyk}.
We then form the index set

J = {j : σmin(A− (x+ iyj)I) = ε}.
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The set of solutions of (5.1) is then simply {yj : j ∈ J}. As we shall see in the next
section, the points x+ iyj (for j ∈ J) provide good approximations to all the solutions
of the pseudospectral abscissa problem (2.1).

A more sophisticated, quadratically convergent algorithm for the pseudospectral
abscissa, based on similar ideas and analogous to H∞ norm algorithms such as [7, 11,
24], is developed in [13].

6. Approximate solutions. The results generated by the bisection algorithm
(or the algorithm in [13]) approximate all the global maximizers in the pseudospectral
abscissa problem (2.1). To make this precise we use the following standard notion of
set convergence [34]. We say that a sequence of sets Y 1, Y 2, . . . ⊂ R converges to a
set Y ⊂ R if the following properties hold:

(i) For any number y ∈ Y there exists a sequence of numbers yr ∈ Y r converging
to y;

(ii) any cluster point of a sequence of numbers yr ∈ Y r lies in Y .
(This notion is weaker than the idea of convergence with respect to the Pompeiu–
Hausdorff distance [34, Ex 4.13], although it is equivalent in the case when the sets
Y r and Y are uniformly bounded, as will be the case in our application below.)

We now prove a rather general result.
Theorem 6.1 (global maximizers). The number of global maximizers of the

pseudospectral abscissa problem (2.1) does not exceed n. Denote these

{αε + iy : y ∈ Y },
where Y ⊂ R. Consider any real sequence α ≤ xr ↑ αε. Then the sets

Yr = {y ∈ R : g(xr + iy) = ε}
converge to Y .

Proof. The pseudospectral abscissa problem (2.1) has at least one maximizer,
by compactness. Furthermore, any solution z = αε + iy must satisfy the equation
g(z) = ε. Just as in the proof of Theorem 5.4 (bracketing the pseudospectral abscissa),
this implies that y must satisfy the equation

det

[ −εI A− (αε + iy)I
A∗ − (αε − iy)I −εI

]
= 0.

But this polynomial equation has at most 2n solutions, so we can write

Y = {y1, y2, . . . , ym},
where 1 ≤ m ≤ 2n.

Fix the index j ∈ {1, 2, . . . ,m}. Theorem 4.4 (accessibility) and Theorem 5.1
(eigenvalues and components) together imply the existence of a continuous function
p : [0, 1] → C such that p(0) = αε + iyj , p(1) is an eigenvalue, and p(t) ∈ Λ′

ε for all
t > 0.

Using the continuity of p, we can now iteratively construct a nonincreasing se-
quence {tr} ⊂ [0, 1] such that Re p(tr) = xr for all r. Taking limits shows

Re p(lim
r

tr) = lim
r

xr = αε.

But for t > 0 we have g(p(t)) < ε, which implies Re p(t) < αε, so we deduce tr ↓ 0.
Hence if we define vrj = Im p(tr), we have vrj → yj .
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For each index r, consider the bounded open set

{y ∈ R : g(xr + iy) < ε}.
If tr = 0, this set is empty, and we define lrj = ur

j = yj . Otherwise, denote the
component of vrj in this set by the open interval (lrj , u

r
j). By continuity, lrj and ur

j are
both zeros of the function

y ∈ R 
→ g(xr + iy)− ε.(6.1)

We now claim both lrj → yj and ur
j → yj .

If this claim fails, then without loss of generality, after taking a subsequence, we
can assume lrj → w < yj . By definition, we know

g(xr + i(svrj + (1− s)lrj )) < ε for all s ∈ (0, 1], r = 1, 2, . . . ,

so taking limits shows

g(αε + i(syj + (1− s)w)) ≤ ε for all s ∈ [0, 1].

But in this case every point in the line segment αε + i[w, yj ] solves the pseudospec-
tral abscissa problem (2.1), contradicting the fact that there are only finitely many
solutions. This proves the claim. We have thus shown property (i) in the definition
of set convergence: the constructed sequence (lrj ) converges to the desired point yj .
Property (ii) is immediate.

Finally, suppose m > n. Choose any nondecreasing sequence {xr} ⊂ [α, αε)
converging to αε, and for each index r construct the set

{lrj , ur
j : j = 1, 2, . . . ,m}

as above. Then for r sufficiently large, this is a set of 2m distinct zeros of the function
(6.1), and hence of the polynomial

det

[ −εI A− (xr + iy)I
A∗ − (xr − iy)I −εI

]
.

But this polynomial is not identically zero, and has degree 2n, which is a contradic-
tion.

The algorithmic significance of the above result is this: Consider any algorithm
that generates a sequence of lower approximations to the pseudospectral abscissa,
xr ↑ αε. In particular, we could consider the bisection algorithm of the previous
section. For each step r, an eigenvalue computation generates the set Y r ⊂ R, as
described after Algorithm 5.5. The above result now shows that this set is a good
approximation to Y , and hence gives us a good approximation to the set of all optimal
solutions to the pseudospectral abscissa problem.

7. Smoothness. To study the smoothness of the function g, and hence the
boundary of the pseudospectrum, we rely on the following well-known result. We
consider Mn as a Euclidean space with inner product

〈X,Y 〉 = Re tr (X∗Y ) (X,Y ∈ Mn).

A real-valued function on a real vector space is real-analytic at zero if in some neigh-
borhood of zero is can be written as the sum of an absolutely convergent power series
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in the coordinates relative to some basis, and we make an analogous definition at other
points. In particular, such functions are smooth (C∞) near the point in question.

We call vectors u, v ∈ Cn minimal left and right singular vectors for a matrix
Z ∈ Mn if

Zv = σmin(Z)u and Z∗u = σmin(Z)v.

Theorem 7.1 (analytic singular value). If the matrix Z has a simple smallest
singular value, then the function σ2

min is real-analytic at Z. If, furthermore, σmin(Z) >
0, then σmin is real-analytic at Z, with gradient

∇σmin(Z) = uv∗

for any unit minimal left and right singular vectors u, v ∈ Cn.
Proof. The matrix

(XT − iY T )(X + iY )

depends analytically on the matrices X,Y ∈ Mn and has a simple eigenvalue σ2
min(Z)

when (X,Y ) = (X0, Y0) for real matrices X0, Y0 ∈ Mn satisfying Z = X0+iY0. Hence
by standard perturbation theory [23], the above matrix has a unique eigenvalue near
σ2

min(Z) for all (X,Y ) close to (X0, Y0), depending analytically on (X,Y ). When X
and Y are real, this eigenvalue is exactly σ2

min(X + iY ), so the first part follows. The
second part follows by taking square roots. The gradient calculation is standard (see,
for example, [37]).

We next turn to smoothness properties of the function g : C → R defined by

g(z) = σmin(A− zI).

We will often find it more convenient to work with the squared function g2(z) =
(g(z))2.

We can treat C as a Euclidean space, where we define the inner product by
〈w, z〉 = Re (w∗z).

Corollary 7.2 (analytic boundary). If the singular value σmin(A − z0I) is
simple, then the function g2 is real-analytic at z0. If, furthermore, this singular value
is strictly positive, then g is real-analytic at z0, with gradient

∇g(z0) = −v∗u,

where the vectors u, v ∈ Cn are unit minimal left and right singular vectors for A −
z0I.

Proof. This follows from the previous result by the chain rule.
Thus what we called “degenerate” points are simply smooth critical points of g,

distinct from the eigenvalues. At a nondegenerate smooth point z0 with g(z0) = ε,
the gradient of g is nonzero, and hence the boundary of the pseudospectrum

Λε = {z ∈ C : g(z) ≤ ε}
is simply a smooth curve locally, with normal u∗(A− z0)u at z0.

We call an eigenvalue of A nonderogatory if it has geometric multiplicity one.
This is the most common type of multiple eigenvalue (from the perspective of the
dimensions of the corresponding manifolds in Mn [1]). The following result is very
well known.
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Proposition 7.3 (nonderogatory eigenvalues). The point λ0 ∈ C is a non-
derogatory eigenvalue of the matrix A if and only if 0 is a simple singular value of
A− λ0I.

Proof. First, note that λ0 is an eigenvalue of A if and only if A− λ0I is singular,
which is equivalent to 0 being a singular value of A−λ0I. Second, v is a corresponding
eigenvector of A exactly when (A − λ0I)v = 0, which says that v is a right singular
vector of A − λ0I corresponding to the singular value 0. Thus the eigenspace of
A corresponding to the eigenvalue λ0 coincides with the subspace of right singular
vectors of A−λ0I corresponding to the singular value 0, so in particular these spaces
have the same dimension. The result now follows.

We can now show that the function g is well behaved near any nonderogatory
eigenvalue of A.

Theorem 7.4 (growth near an eigenvalue). Let λ0 be a nonderogatory eigenvalue
of multiplicity m for the matrix A. Then

σmin(A− zI) = g(z) =

∏n−m
j=1 |λj − λ0|∏n−1

k=1 σk

|z − λ0|m +O(|z − λ0|m+1)

for complex z near λ0, where λ1, λ2, . . . , λn−m are the eigenvalues of A distinct from λ0

(listed by multiplicity) and σ1, σ2, . . . , σn−1 are the nonzero singular values of A−λ0I
(listed by multiplicity). (In the case n = 1 or m = n, we interpret the empty products
appearing in the above expression as 1.)

Furthermore, the function g2 has positive definite Hessian at all points z �= λ0

near λ0.
Proof. We prove the case λ0 = 0: the general case follows by a simple transfor-

mation.
Since 0 is a nonderogatory eigenvalue of A, Proposition 7.3 (nonderogatory eigen-

values) shows 0 is a simple singular value of A. Hence by Corollary 7.2 (analytic
boundary), the function f : R2 → R defined by

f(x, y) = (g(x+ iy))2

is real-analytic at (0, 0).
Consider any point (x, y) ∈ R2, and let z = x+ iy. The matrix

(A− zI)∗(A− zI)

is Hermitian, so its characteristic polynomial

pz(µ) = det((A− zI)∗(A− zI)− µI)

has all real coefficients. Hence we can write

pz(µ) =

n∑
r=0

qr(x, y)µ
r

for some real polynomials qr. The smallest zero of pz is f(x, y).
We concentrate on the two lowest-order coefficients of the above polynomial.

First, note

q0(x, y) = pz(0)
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= det((A− zI)∗(A− zI))

= |det(A− zI)|2

= |z|2m
n−m∏
j=1

|λj − z|2.

Hence for small (x, y) we have

q0(x, y) =


(x2 + y2)m

n−m∏
j=1

|λj |2

+O(‖(x, y)‖2m+1).(7.1)

Turning to the coefficient of µ, notice

p0(µ) = det(A∗A− µI) = −µ

n−1∏
k=1

(σ2
k − µ),

so

q1(0, 0) = −
n−1∏
k=1

σ2
k

(notice this is nonzero), and hence

q1(x, y) = −
n−1∏
k=1

σ2
k +O(‖x, y‖).(7.2)

Since the function f is real-analytic at (0, 0), we know for some integer t = 1, 2, . . . ,

f(x, y) = s(x, y) +O(‖(x, y)‖t+1)

for some nonzero homogeneous polynomial s of degree t. Now substituting into the
relationship

n∑
r=0

qr(x, y)(f(x, y))
r = 0

and using (7.1) and (7.2) shows t = 2m, and

f(x, y) =

∏n−m
j=1 |λj |2∏n−1
k=1 σ

2
k

(x2 + y2)m +O(‖(x, y)‖2m+1)

as required.
It remains to show that the Hessian ∇2f(x, y) is positive definite for all small

(x, y) �= (0, 0). We have shown that f is analytic at (0, 0) and

f(x, y) = τ(x2 + y2)m +O(‖(x, y)‖2m+1)

for some nonzero constant τ . Since we can differentiate the power series for f term-
by-term, a short calculation shows

∇2f(x, y) = 2mτ(x2 + y2)m−2H(x, y),
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where

H(x, y) =

[
(2m− 1)x2 + y2 2(m− 1)xy

2(m− 1)xy x2 + (2m− 1)y2

]
+O(‖(x, y)‖3).

We deduce

H11(x, y) = (2m− 1)x2 + y2 +O(‖(x, y)‖3) > 0

and furthermore

detH(x, y) = (2m− 1)(x2 + y2)2 +O(‖(x, y)‖5) > 0,

so the matrix H(x, y) is positive definite for all small (x, y) �= (0, 0). The result now
follows.

The following results are immediate consequences.
Corollary 7.5 (convexity). If λ0 is a nonderogatory eigenvalue of the matrix

A, then for all small ε > 0 the pseudospectrum Λε near λ0 consists of a compact,
strictly convex neighborhood of λ0.

Proof. We can consider the pseudospectrum as a level set of the function g2,
which is strictly convex near λ0.

Corollary 7.6 (smoothness). If λ0 is a nonderogatory eigenvalue of the matrix
A, then the function g is smooth with nonzero gradient at all nearby points distinct
from λ0.

Proof. Since the real-analytic function g2 is strictly convex near the eigenvalue
λ0, with a strict local minimizer there, it follows that λ0 is an isolated critical point
of g2. It is then easy to see that g is smooth and noncritical near λ0.

If the matrix A has an eigenvalue λ0 of multiplicity m, then, by continuity of the
set of eigenvalues, any matrix close to A will have exactly m eigenvalues close to λ0

(counted by multiplicity). Our last corollary bounds how far these eigenvalues can be
from λ0.

Corollary 7.7 (Hölder continuity). With the assumptions and notation of
Theorem 7.4, consider any constant

κ >

( ∏n−1
k=1 σk∏n−m

j=1 |λj − λ0|

)1/m

.

For any matrix Z close to A, any eigenvalue z of Z close to λ0 satisfies

|z − λ0| ≤ κ‖Z −A‖1/m.

Proof. This follows easily from Theorem 7.4 (growth near an eigenvalue), using
the elementary property that

σmin(A− zI) ≤ ‖Z −A‖

for any eigenvalue z of Z.
In the above result, if we specialize to the case of a perturbation Z = A+ tB

(where t is a complex parameter), then the result shows that the eigenvalues of A+
tB near a nonderogatory eigenvalue of A of multiplicity m satisfy an m−1-Hölder
continuity condition in t. This is a well-known result; see [27, 23, 3, 30].
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8. Smoothness and regularity of the pseudospectral abscissa. Our ulti-
mate goal is an understanding of how the pseudospectral abscissa αε depends on the
underlying matrix A. We therefore now allow A (and ε) to vary. Recall that the
pseudospectral abscissa function αε : M

n → R is given by

αε(Z) = max{Re z : σmin(Z − zI) ≤ ε},

and for any nonempty set Ω ⊂ C we define the refinement

αΩ(Z, ε) = sup{Re z : z ∈ Ω, σmin(Z − zI) ≤ ε}.(8.1)

Thus for Ω = C, we obtain exactly the pseudospectral abscissa. We now apply
classical sensitivity analysis to differentiate this function.

Theorem 8.1 (smoothness of pseudospectral abscissa). Suppose that, for ε =
ε0 > 0 and Z = A, the supremum (8.1) is attained by a point z0 ∈ intΩ, where the
singular value σmin(A− z0I) is simple. Then for any corresponding unit minimal left
and right singular vectors u, v ∈ Cn, the number v∗u is real and nonpositive.

Now suppose furthermore that z0 is the unique attaining point in (8.1), that it
is nondegenerate (or, in other words, v∗u �= 0), and that the Hessian ∇2(g2)(z0) is
nonsingular. Then the function αΩ is smooth around the point (A, ε0), with

∇Zα
Ω(A, ε0) =

uv∗

v∗u
and ∇εα

Ω(A, ε0) = − 1

v∗u
.

Proof. Consider the optimization problem


sup Re z
subject to σ2

min(Z − zI) ≤ ε2,
z ∈ Ω.

When (Z, ε) = (A, ε0) this problem becomes


sup Re z
subject to g2(z) ≤ ε20,

z ∈ Ω,

with optimal solution z0. By Corollary 7.2 (analytic boundary), the function g2 is
smooth near z0, with gradient

∇g2(z0) = 2g(z0)∇g(z0) = −2ε0v
∗u.

Either this gradient is zero or there is a Lagrange multiplier µ ∈ R+ such that the
gradient of the Lagrangian

z 
→ Re z − µ(g2(z)− ε20)

at z = z0 is zero. In this case,

1 + 2µε0v
∗u = 0,(8.2)

so the first part follows.
Moving to the second part, (8.2) implies µ = −(2ε0v

∗u)−1. Under the additional
assumptions we can apply a standard sensitivity result (for example, [6, Thm 5.5.3])
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to deduce that the gradient of the optimal value of the original optimization problem
at (A, ε0) equals the gradient of the Lagrangian

(Z, ε) 
→ Re z0 + (2ε0v
∗u)−1(σ2

min(Z − z0I)− ε2)

at (A, ε0). The result now follows by Theorem 7.1 (analytic singular value).
An eigenvalue of the matrix A with real part equal to the spectral abscissa α is

called active.
Theorem 8.2 (regular representation). If the matrix A has s distinct active

eigenvalues, all of which are nonderogatory, then there exist s functions

γj : M
n ×R++ → R (j = 1, 2, . . . , s),

such that for small ε > 0 and matrices Z close to A, each map

(Z, ε) 
→ γj(Z, ε)

is smooth and satisfies γj(A, 0) = α(A), the pseudospectral abscissa can be expressed
as

αε(Z) = max{γj(Z, ε) : j = 1, 2, . . . , s},
and the set of gradients

{∇Zγj(A, ε) : j = 1, 2, . . . , s}
is linearly independent.

Proof. Denote the distinct eigenvalues of A by λ1, λ2, . . . , λk, where

Reλj

{
= α (j ≤ s),
< α (j > s).

Let D denote the open unit disk in C. Providing we choose a radius δ > 0 sufficiently
small, we have

2δ < |λp − λq| for all p �= q,

δ +Reλj < α for all j > s,

and so the open disks λj + δD are disjoint, and those with j > m lie in the half-plane
Re z < α. Furthermore, again by reducing δ if necessary, Theorem 7.4 (growth near
eigenvalues) guarantees that each of the functions

g2
∣∣
λj+δD

(j = 1, 2, . . . , s)

is smooth, with everywhere positive definite Hessian except possibly at λj .
We claim that the small pseudospectra (by which we mean pseudospectra corre-

sponding to small ε) of matrices close to A lie in small disks around the eigenvalues
of A. More precisely, for small ε ≥ 0 and matrices Z close to A, we claim

{z ∈ C : σmin(Z − zI) ≤ ε} ⊂ {λ1, λ2, . . . , λk}+ δD.(8.3)

Otherwise there would exist sequences εr → 0, Zr → A, and zr ∈ C satisfying, for all
r = 1, 2, . . . ,

σmin(Zr − zrI) ≤ εr,

|zr − λj | ≥ δ (j = 1, 2, . . . , k).
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The first inequality above implies the sequence {zr} is bounded, so has a cluster point
z0, which must satisfy the inequalities

σmin(A− z0I) ≤ 0,

|z0 − λj | ≥ δ (j = 1, 2, . . . , k).

The first inequality above can only hold if z0 is an eigenvalue of A, which contradicts
the second inequality. Hence inequality (8.3) holds, as we claimed.

Using the notation of (8.1), we can, for small ε > 0, matrices Z close to A and,
for each j = 1, 2, . . . ,m, define functions

γj(Z, ε) = αλj+δD(Z, ε) = sup{Re z : |z − λj | < δ, σmin(Z − zI) ≤ ε},
and as a consequence of inclusion (8.3), we can then write

αε(Z) = max{γj(Z, ε) : j = 1, 2, . . . ,m}.
We claim each function γj is smooth around the point (A, ε0) for any small ε0 > 0.

To prove this claim, we use Theorem 8.1 (smoothness of pseudospectral abscissa).
For any j = 1, 2, . . . , s, consider the supremum

γj(A, ε0) = sup{Re z : |z − λj | < δ, σmin(A− zI) ≤ ε0}
= sup

{
Re z : g2

∣∣
λj+δD

(z) ≤ ε20

}
.

By our choice of the radius δ, this supremum is attained at a unique point zj (cf.
Corollary 7.5 (convexity)), which is nondegenerate (cf. Corollary 7.6 (smoothness)),
and at which the Hessian ∇2(g2)(zj) is positive definite. Hence the function γj is
smooth around (A, ε0), with gradient

∇Zγj(A, ε0) =
ujv

∗
j

v∗juj
,

where uj , vj are unit minimal left and right singular vectors for A− zjI, and v∗juj is
real and strictly negative.

To complete the proof, it suffices to show that the set of matrices

{ujv
∗
j : j = 1, 2, . . . , s} ⊂ Mn

is linearly independent providing our choice of radius δ > 0 is sufficiently small. If
this fails, then for each j there is a sequence of points zrj → λj and sequences of unit
minimal left and right singular vectors ur

j , v
r
j for A− zrj I such that the set of matrices

{ur
j(v

r
j )

∗ : j = 1, 2, . . . , s} ⊂ Mn

is linearly dependent. By taking subsequences, we can suppose ur
j → u0

j and vrj → v0
j

for each j, and then the set

S = {u0
j (v

0
j )

∗ : j = 1, 2, . . . , s} ⊂ Mn

must be linearly dependent. But it also follows that u0
j , v

0
j are unit left and right eigen-

vectors for A corresponding to the eigenvalue λj . Since the eigenvalues λ1, λ2, . . . , λs

are distinct, the sets of eigenvectors

{u0
j : j = 1, 2, . . . ,m} and {v0

j : j = 1, 2, . . . , s}
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are each linearly independent, and a standard exercise then shows the contradiction
that the set S above is linearly independent.

As a consequence of this result, the pseudospectral abscissa must be a reasonably
well-behaved nonsmooth function near a matrix with all nonderogatory eigenvalues.
Specifically, we have the following result. We refer the reader to [17, 34] for standard
nonsmooth terminology.

Corollary 8.3 (regularity). If all the active eigenvalues of a matrix A ∈ Mn

are nonderogatory, then for all small ε > 0 the pseudospectral abscissa αε is locally
Lipschitz and subdifferentially regular around A.

Proof. This follows immediately from the representation as a maximum of smooth
functions in the previous result [17, Prop. 2.3.12].

This corollary presents an interesting parallel with a key result in [15]. This result
states that the spectral abscissa, even though non-Lipschitz, is a subdifferentially
regular function around the matrix A if and only if each active eigenvalue of A is
nonderogatory.

By combining the representation of αε constructed in the proof of Theorem 8.2
with the growth estimate of Theorem 7.4, we can also see how the pseudospectral
abscissa depends on the parameter ε.

Corollary 8.4 (dependence on ε). If all the active eigenvalues of the matrix
A are nonderogatory, with maximum algebraic multiplicity m, then as a function of
ε ≥ 0 we have

αε − α ∼ γε1/m as ε ↓ 0,

for some constant γ > 0.

9. Nonsmooth geometry. What about points z0 ∈ C, where σmin(A − z0I)
is multiple? The function σmin is nonsmooth at any matrix with a multiple smallest
singular value, so the function g may be nonsmooth at z0. An appropriate approach
to studying the pseudospectrum near z0 is therefore to use nonsmooth analysis. We
again refer to [17, 34] for the standard concepts.

For any point z ∈ C we consider the subspace U(z) ⊂ Cn spanned by all right
singular vectors corresponding to σmin(A− zI), and we define a subset of C by

G(z) = {u∗(A− zI)u : u ∈ U(z), ‖u‖ = 1}.
Proposition 9.1 (convexity). The set G(z) is nonempty, compact, and convex.
Proof. Define a linear map B : U(z) → U(z) by

Bu = PU(z)((A− zI)u),

where PU(z) : Cn → U(z) denotes the orthogonal projection. Now notice for all
vectors u ∈ U(z) we have

〈u,Bu〉 = 〈u, PU(z)((A− zI)u)〉 = 〈P ∗
U(z)u, (A− zI)u〉

= 〈u, (A− zI)u〉 = u∗(A− zI)u,

since the map P ∗
U(z) : U(z) → Cn is just the embedding. We deduce

G(z) = {〈u,Bu〉 : u ∈ U(z), ‖u‖ = 1},
and this set is nonempty, compact, and convex, by the Toeplitz–Hausdorff theo-
rem [22].
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The next result gives another perspective on the pointedness of the pseudospec-
trum (recall Proposition 4.7 (pointedness)).

Theorem 9.2 (nonsmooth boundary behavior). For complex z0 satisfying g(z0)=
ε and 0 �∈ G(z0), the complement of the strict pseudospectrum,

{z ∈ C : g(z) ≥ ε},
is Clarke regular at z0, with normal cone cone(G(z0)).

Proof. The complement of the strict pseudospectrum is

{z ∈ C : σmin(A− zI) ≥ ε}
= {z : λmin((A− zI)∗(A− zI)) ≥ ε2}
= {z : F (z) ∈ Hn

+} = F−1(Hn
+),

whereHn denotes the Euclidean space of n×n Hermitian matrices, with inner product
〈X,Y 〉 = Re (tr (XY )) and positive semidefinite cone Hn

+, the function λmin : Hn →
R is the smallest eigenvalue, and the function F : C → Hn is defined by

F (z) = (A− zI)∗(A− zI)− ε2I.

The gradient map ∇F (z0) : C → Hn is given by

∇F (z0)(w) = −w∗A− wA∗ + 2〈w, z0〉I,
and a short calculation shows that the adjoint map ∇F (z0)

∗ : Hn → C is given by

∇F (z0)
∗X = 2tr ((z0I −A)X).

It is well known (see, for example, [25]) that the positive semidefinite cone is Clarke
regular at F (z0) (being convex), with normal cone

NHn
+
(F (z0)) = −cone{uu∗ : F (z0)u = 0}

= −cone{uu∗ : u ∈ U(z0), ‖u‖ = 1}.
Now consider any matrix

X ∈ NHn
+
(F (z0)) ∩N(∇F (z0)

∗).

By the calculations above, we deduce

−X =

k∑
j=1

µjuju
∗
j

for some integer k, reals µj ≥ 0, and unit vectors uj ∈ U(z0) (j = 1, 2, . . . , k), and

0 = tr ((A− z0I)X) =

k∑
j=1

µju
∗
j (A− z0I)uj .

But since 0 �∈ G(z0), by Proposition 9.1 (convexity) this implies that each µj is zero.
We have therefore proved the condition

NHn
+
(F (z0)) ∩N(∇F (z0)

∗) = {0}.
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Under this condition we can apply a standard chain rule [34] to the set of interest,
F−1(Hn

+), to deduce that it is Clarke regular at the point z0, with normal cone

NF−1(Hn
+

)(z0) = ∇F (z0)
∗NHn

+
(F (z0)) = cone(G(z0)),

as required.
Consider, for instance, Example 1 (nonsmooth points). When ε =

√
2, we saw

that the point z0 = 1 is a nonsmooth point on the boundary of the pseudospectrum,
which consists of the union of two disks of radius

√
2, centered at ±i. A calculation

shows that the set G(z0) in this case is the line segment [1− i, 1 + i], so according to
the above result, the normal cone to the complement of the strict pseudospectrum is
the cone {x+ iy : |y| ≤ −x}, as we expect.

By contrast, when ε = 1 we saw that the pseudospectrum consists of two unit
disks, tangent at 0. A calculation shows G(0) is the line segment [−i, i], which contains
0, so the above theorem does not apply.

Acknowledgments. Many thanks to Peter Benner, Carsten Scherer, and two
anonymous referees for many helpful suggestions and references.
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