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Abstract. Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices pres-
ent a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in
engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary
optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the
broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms,
touching briefly on semidefinite representability, and then outlining two broader algebraic viewpoints based
on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation
theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical sys-
tems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears
throughout, as a unifying narrative thread.
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PART I: INTRODUCTION

1. Von Neumann and invariant matrix norms

Before outlining this survey, I would like to suggest its flavour with a celebrated classical
result. This result, von Neumann’s characterization of unitarily invariant matrix norms,
serves both as a historical jumping-off point and as an elegant juxtaposition of the central
ingredients of this article.

Von Neumann [64] was interested in unitarily invariant norms || - || on the vector
space M”" of n-by-n complex matrices:

IUXV]| = |IX]|| forall U,V e U", X € M",

where U” denotes the group of unitary matrices. The singular value decomposition shows
that the invariants of a matrix X under unitary transformations of the form X — UXV
are given by the singular values o1(X) > 02(X) > --- > 0,(X), the eigenvalues of
the matrix ~/X*X. Hence any invariant norm || - || must be a function of the vector
o (X), so we can write || X| = g(o (X)) for some function g : R” — R. We ensure this
last equation if we define g(x) = ||Diagx|| for vectors x € R”, and in that case g is
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a symmetric gauge function: that is, g is a norm on R” whose value is invariant under
permutations and sign changes of the components. Von Neumann’s beautiful insight was
that this simple necessary condition is in fact also sufficient.

Theorem 1.1 (von Neumann, 1937). The unitarily invariant matrix norms are exactly
the symmetric gauge functions of the singular values.

Von Neumann’s proof rivals the result in elegance. He proceeds by calculating the
dual norm of a matrix Y € M",

Y[l = max{(X,Y) : | X|| =1}

where the real inner product (X, Y) in M" is the real part of the trace of X*Y. Specifically,
he shows that any symmetric gauge function g satisfies the simple duality relationship

(gx00)x =goo, (1)

where g, is the norm on R” dual to g. From this, the hard part of his result follows: goo
is indeed a norm, being the dual of some positively homogeneous function.

The proof of formula (1) is instructive. Von Neumann uses two key ingredients: the
fact that any norm g is its own bidual g.., and the fundamental inequality

(X,Y) < (0(X),0(Y)). 2

He proves this inequality by considering the optimality conditions for the problem of
maximizing (Y, Z) as the variable Z varies over the matrix manifold

({UXV:U,VeU}={ZeM :0(Z) =c(X)). 3)

The ideas driving this lovely argument illustrate many of the threads we pursue in this
survey: groups of matrix transformations (such as unitary multiplication) and associated
canonical forms (such as the singular value decomposition); matrix functions invariant
under these transformations (such as unitarily invariant norms) and associated symmet-
ric functions (such as symmetric gauges); convexity and duality arguments (such as the
biduality relationship for norms); variational arguments over matrix manifolds (like that
defined in equation (3)).

One last important ingredient for us is missing from von Neumann’s original devel-
opment, namely sensitivity analysis or perturbation theory. The crucial tool here is the
subdifferential [56] of a convex function f : E — R, where E is an arbitrary Euclidean
space and R = [—00, 4+00]. The subdifferential at a point x € E where f (x) is finite is
the set

ifx)={yeE:{(y,z—x) < f(z) — f(x) forall z € E}.

The subdifferential gives sensitivity information via directional derivatives:
F O w) =sup{{y, w) : y € 3f (x)}.
A more careful study of the key inequality (2) shows the attractive formula
d(goo)(X) ={UDiagy)V :U,V €U", y € 9g(x), X = U(Diagx)V} (4)

for any symmetric gauge function g [65, 67, 35].
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2. An outline

This article presents a personal view of some of the beautiful mathematics underlying
eigenvalue optimization. As an expository mathematical essay, it contains no proofs,
algorithms, applications, or computational results. A survey of the broader picture may
be found in [43]. Although making frequent use of the language of convex analysis [56,
29, 6], the writing is, as far as possible, self-contained.

After this outline, which concludes Part I, the survey breaks into three further parts:
Part IT on convex optimization involving the eigenvalues of symmetric matrices; Part
IIT on applications of variational analysis to eigenvalue perturbation theory and to the
stability of polynomials; Part IV on the stability and robust stability of nonsymmetric
matrices. A portion of Part III and all of Part IV relies heavily on an extended and ongo-
ing joint project with Jim Burke and Michael Overton. Many of the ideas I sketch in
those sections are shared with them; all the errors are mine.

Each of the three main parts further breaks down into sections. I have tried to organize
each section around both a theme in optimization and a fundamental, often classical,
mathematical result underlying the theme. Most sections include an open question or
two that I find interesting.

Part IT begins with Davis’s characterization of those convex functions of symmetric
matrices that are invariant under orthogonal similarity transformations, a close analogue
of von Neumann'’s result. In the search for unifying frameworks in which to pursue this
analogy, we explore two algebraic settings. In the first, we consider the eigenvalues of
a symmetric matrix as a special case of the characteristic roots of a hyperbolic polyno-
mial, and we consider the implications of Garding’s theorem on the convexity of the
associated hyperbolicity cone. The second framework, better suited for questions about
duality, invokes classical semisimple Lie theory. In this setting, we consider the Kostant
convexity theorem, a far-reaching generalization of Horn’s characterization of the diag-
onals of symmetric matrices with given eigenvalues. We also follow various analogues
of the Chevalley restriction theorem concerning the smoothness of invariant functions
of eigenvalues.

Part ITI begins with a rapid sketch of some of the central ideas we need from contem-
porary nonsmooth optimization, as developed by Clarke, Ioffe, Mordukhovich, Rocka-
fellar and others. We explore Lidskii’s theorem, one of the central results of eigenvalue
perturbation theory, from a variational analysis perspective. Turning to polynomials, we
relate a fundamental result of Burke and Overton—that the set of stable monics (all of
whose zeros have negative real part) is everywhere Clarke regular—to the famous Gauss-
Lucas theorem. Nonsmooth calculus then gives an analogous result for “power-stable”
polynomials, all of whose zeros lie in the unit disk.

Part IV concerns the stability of nonsymmetric matrices. Either by appealing to
classical results of Arnold on manifolds of matrices with fixed Jordan structure, or by
applying a nonsmooth chain rule to the previous regularity result for stable polynomi-
als, we arrive at Burke and Overton’s characterization of the points of regularity of the
cone of stable matrices (all of whose eigenvalues have negative real part). The Jordan
structure of a solution to an optimization problem over this cone typically persists under
small perturbations to the problem. We end with a discussion of robust stability. We
follow two approaches, one via a classical semidefinite characterization of Lyapunov,
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and the other via pseudospectra: the two approaches can be reconciled by a celebrated
result from numerical analysis, the Kreiss matrix theorem. The pseudospectral approach
shows considerable computational promise.

PART II: SYMMETRIC MATRICES

3. Convex spectral functions

Twenty years after the appearance of von Neumann’s characterization of unitarily invari-
ant matrix norms, Davis [20] proved an exactly analogous result for convex spectral
Jfunctions on the vector space S” of n-by-n symmetric matrices, that is, convex functions
F : §" — R satisfying

FWUTXU)=F(X) forallU € 0", X € §",

where O" denotes the group of orthogonal matrices. The spectral decomposition shows
that we can write any such function in the form F(X) = f(A(X)), where A1(X) >
A (X) > -+ = Ay(X) are the eigenvalues of X (whence the name “spectral” function).
Following von Neumann’s argument, we could define f(x) = F(Diagx) for vectors
x € R”", and in that case f is a symmetric convex function. Davis observed that this
necessary condition is also sufficient.

Theorem 3.1 (Davis, 1957). The convex spectral functions are exactly the symmetric
convex functions of the eigenvalues.

Indeed, one can parallel von Neumann’s duality-based argument closely to prove this
result [36], but we defer further discussion of duality approaches to Section 5. A nice
summary is [31].

The interior point revolution and Nesterov and Nemirovski’s seminal 1994 book
[52] shifted focus in convex optimization towards questions of tractability. A partic-
ularly compelling approach [52, 3, 66] considers the semidefinite-representable sets,
namely those of the form

{xeR": Ax e B+ L+8S}

for some positive integer n, linear map A : R” — §", matrix B € S", and linear
subspace L C S", where S’} denotes the cone of positive semidefinite matrices in S”.
(We use the term somewhat loosely: for tractability, we would want a “concrete” repre-
sentation, and one where the dimension n does not grow too quickly as the dimension m
grows. Furthermore, for optimization over a full-dimensional convex set, a semidefinite
representation of any convex set with the same boundary usually suffices.) A semidef-
inite representable function f : R™ — R is one whose epigraph {(x,r) : f(x) < r}
is semidefinite-representable. Davis’s theorem has a nice analogue in this framework,
essentially a rephrasing of [3, Prop 4.2.1].

Theorem 3.2 (Ben-Tal/Nemirovski, 2001). The semidefinite-representable spectral
functions are exactly the symmetric semidefinite-representable functions of the eigen-
values.



The mathematics of eigenvalue optimization 159

Furthermore, von Neumann’s characterization (Theorem 1.1) has a corresponding ana-
logue: the semidefinite-representable unitarily invariant norms are exactly the semidefi-
nite-representable symmetric gauge functions of the singular values (cf. [3, Prop 4.2.2]).
The striking parallels between von Neumann’s framework of unitarily invariant
norms and Davis’s framework of convex spectral functions demand a unified analysis. In
the next two sections we consider two perspectives, the first a remarkably elementary but
purely primal approach, and the second a more sophisticated, duality-based approach.

4. Hyperbolic polynomials

Any symmetric matrix X has all real eigenvalues. In other words, the zeros of the charac-
teristic polynomial ¢ — det(X — ¢7) are all real. Remarkably, this very simple property
drives many convexity results about eigenvalues.

To see this, consider a homogeneous polynomial p of degree n on R”. We call p
hyperbolic with respect to a vector d € R™ if p(d) # 0 and the polynomial ¢ +—
p(x — td) has all real zeros for any vector x € R™ [22]. We call these zeros the char-
acteristic roots of x, and denote them A (x) > Ax(x) > --- > A, (x). The hyperbolicity
cone is the set C;, = {x : A,(x) > 0}. With this terminology, the determinant is a
hyperbolic polynomial on the vector space of symmetric matrices with respect to the
identity matrix, the characteristic roots are just the eigenvalues, and the hyperbolicity
cone consists of the positive definite matrices.

The hyperbolic polynomials form a rich class. For example (see [2, Fact 2.10]), for
any hyperbolic polynomial p as above, the polynomials p,(-) = E,(A(-)) are all hyper-
bolic with respect to d, where E, denotes the rth elementary symmetric function on R",
namely the sum over all r-fold products of the variables.

Fundamental to questions about convexity is the following wonderfully concise
result. For an elementary (although not transparent) proof, see [23].

Theorem 4.1 (Garding, 1951). Hyperbolicity cones are convex.

Building on Garding’s observation, Giiler [25] proved (with the above notation) that
the function — In(p(-)) is a self-concordant barrier for the hyperbolicity cone C),, with
barrier parameter n. (See [52, 55] for the definition and algorithmic implications of self-
concordance.) Giiler’s result suggests efficient primal algorithms for linearly-constrained
optimization problems posed over the hyperbolicity cone.

Giiler’s barrier is an example of a convex symmetric function of the characteristic
roots, namely — > ;In2; (). In fact, by bootstrapping up from Garding’s theorem we
obtain a complete generalization of the interesting direction in Davis’s characterization
(Theorem 3.1). The following result appeared in [2].

Theorem 4.2 (convex functions of characteristic roots). Symmetric convex functions
of the characteristic roots of a hyperbolic polynomial are convex.

The success of the idea of semidefinite representability now suggests the tempt-
ing question of the modeling power of hyperbolic polynomials. In particular, does the
characterization of Ben-Tal and Nemirovski (Theorem 3.2) have any extension in this
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framework? Specifically, which symmetric functions of A(x) have tractable representa-
tions? One potentially useful tool is the representability of hyperbolic means [45]: in
the above notation, these are functions of the form p'/" on the domain C p. Sets of the
form

{(x.1) € Cp x Ry 1 1" < p(x))

have an easily computable self-concordant barrier with barrier parameter O (n?). By
applying this fact to the hyperbolic polynomials p,(-) = E,(1(-)), we deduce the repre-
sentability of constraints on elementary symmetric functions of the characteristic roots
of the form E, (A (x)) > k.

Can hyperbolic polynomials model more powerfully than semidefinite program-
ming? More precisely, are all hyperbolicity cones semidefinite representable? Forms of
this question go back to Lax [34], who made the following conjecture.

Conjecture 4.3 (Lax, 1958). If p is a polynomial on R3, then p is hyperbolic of degree
n with respect to the vector (1, 0, 0) and p(1, 0, 0) = 1 if and only if there exist matrices
B, C € S" such that p is given by p(x, y,z) = det(xI + yB + zC).

This conjecture is indeed true, as follows from recent work of Helton and Vinnikov
[27, 63]: see [44]. This result implies that any three-dimensional hyperbolicity cone is
a semidefinite slice: it is isomorphic to an intersection of a positive definite cone with a
subspace (and hence in particular is semidefinite representable).

Homogeneous cones (open convex pointed cones for which any element of the cone
can be mapped to any other by a linear automorphism of the cone) are a special case of
hyperbolicity cones [25]. In this case the representability question was recently answered
affirmatively in [17] (see also [21]): any homogeneous cone is a semidefinite slice.

5. Duality, smoothness, and Lie theory

The technical hurdle in extending Ben-Tal and Nemirovski’s characterization of semi-
definite-representable spectral functions (Theorem 3.2) to the very broad framework of
hyperbolic polynomials lies in the lack of any obvious duality theory. At the opposite
extreme, the algebraic framework unifying the most successful primal-dual interior-
point methods for conic convex programs, namely that of Euclidean Jordan algebras, is
rather narrow in scope [26]. In this section we consider an intermediate algebraic frame-
work, covering an interesting range of examples but with a duality theory rich enough
to subsume the development in Section 1 around von Neumann’s characterization of
unitarily invariant norms.

This section (and this section alone) is Lie-theoretic in essence. Rather than assume
any familiarity with Lie theory, we simply retrace our steps through the familiar case
of symmetric matrices, using the key results as illustrations of the general case. For
this beautiful classical development we follow the outline provided by [53, Chap. 5,
Sec. 3,4]. More details appear in [40].

We begin with our familiar decomposition of the vector space of n-by-n real matrices
with trace zero, s[(n, R), into a sum of the subspace of skew-symmetric matrices, so(n),
and the symmetric matrices with trace zero, p,, and note this sum is direct and orthogo-
nal with respect to the bilinear form (X, Z) = tr(X Z): we write sl(n, R) = so(n) ® p,.
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This is a special case of a Cartan decomposition g = €@ p, where g is a real semisimple
Lie algebra, ¢ is a subalgebra of g tangent to a maximal compact subgroup K of any
connected semisimple Lie group G with Lie algebra g (for example, the adjoint group
for g) and a complementary subspace p, direct with respect to the Killing form (-, -). In
our example, G is the special linear group SL(n, R) of matrices with determinant one
(and sl(n, R) is the tangent space to G at the identity), and K is the subgroup SO (n) of
orthogonal matrices.

We say that a subalgebra a of g is R-diagonalizable if g has a basis with respect to
which each element of a (regarded as an operator on p via the natural adjoint represen-
tation) is represented as a diagonal matrix. In our example, the diagonal matrices with
trace zero, a,, form a maximal R-diagonalizable subalgebra.

The group K acts on the subspace p via the adjoint representation: in our example,
this action is X — U - X = UXUT for X € pp and U € SO(n). Now consider
the normalizer and centralizer corresponding to any fixed maximal R-diagonalizable
subalgebra a of g, defined respectively by

N={keK:k-a=a}
Z={keK:k-x=xforallx € a}.

The Weyl group is the quotient group W = N/Z. We can think of W, loosely, as a
group of linear transformations on a (which is a Euclidean space with inner product the
Killing form). At this point in the development, a miracle occurs (fundamental to the
classification of semisimple Lie algebras): the Weyl group W is always a finite reflection
group. In our example, elementary calculations show that N is the group of matrices with
determinant one and having exactly one nonzero entry of 1 in each row and column,
and Z is the subgroup of diagonal matrices in N, so we can consider W as acting on
a, by permuting diagonal entries: in other words, the Weyl group is isomorphic to the
group of n-by-n permutation matrices P”.
We are now ready for the driving result of this section [32].

Theorem 5.1 (Kostant, 1973). Suppose g = € @ p is a Cartan decomposition of a real
semisimple Lie algebra corresponding to a maximal compact subgroup K, and suppose
a C pisamaximal R-diagonalizable subalgebra. Then the orthogonal projection (under
the Killing form) onto a of any orbit of K acting on p is the convex hull of an orbit of
the Weyl group.

In our example, the orthogonal projection is the map that sets the off-diagonal entries
of a trace-zero symmetric matrix to zero, so we deduce the following result [30]. (The
trace-zero assumption below is easily dispensable.)

Corollary 5.2 (Horn, 1954). The diagonals of all symmetric matrices similar to a given
trace-zero symmetric matrix X form a polytope. This polytope is the convex hull of all
vectors with entries permutations of the eigenvalues of X.

What is the connection with the characterizations of von Neumann and Davis (The-
orems 1.1 and 3.1)? One appealing way to restate the Davis characterization is that
a spectral function is convex if and only if its restriction to the subspace of diagonal
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matrices is convex. In this form, it is not hard to deduce the characterization from Horn’s
result. Von Neumann'’s characterization has an analogous restatement: a unitarily invari-
ant function on M" is a norm if and only if its restriction to the Euclidean subspace of
real diagonal matrices, D", is a norm. Using Kostant’s theorem, we obtain the following
broad unification [40].

Corollary 5.3 (invariant convex functions). In the framework of Kostant’s theorem, a
K -invariant function h : p — R is convex if and only if its restriction to the subspace a
is convex.

Von Neumann’s characterization follows by considering the standard Cartan decompo-
sition of the Lie algebra su(p, ¢) instead of sl(n, R).

Given the results of Ben-Tal and Nemirovski on semidefinite representability (The-
orem 3.2 and the subsequent comment), the following conjecture seems promising.

Conjecture 5.4 (semidefinite representability of invariant functions). With the frame-
work of Kostant’s theorem, a K -invariant function 4 : p — R is semidefinite-represent-
able if and only if %|4 is semidefinite-representable.

So far in this section, the rather sophisticated algebraic framework has succeeded
in paralleling the characterizations of von Neumann and Davis, results also captured by
the much more spartan framework of hyperbolic polynomials sketched in the previous
section. In apparent contrast with the latter framework, however, semisimple Lie theory
is rich in duality theory, allowing us to imitate von Neumann’s entire development. An
analogous development for Euclidean Jordan algebras appeared recently in [48].

Consider von Neumann’s beautiful duality formula (1), for example. An equivalent
statement is that any unitarily invariant norm || - || on M" satisfies

(). = (1)

or in words, “the dual of the restriction is the restriction of the dual”. For inhomogeneous
convex functions f on a Euclidean space, the Fenchel conjugate function

5 = sup{(x,y) — f(x)}

pn’

replaces the dual norm as the key duality tool [56]. An analogous result to von Neu-
mann’s holds for the Fenchel dual of a spectral function [36], and the two can be broadly
unified by the following result [40], using Kostant’s theory.

Theorem 5.5 (conjugates of invariant functions). In the framework of Kostant’s the-
orem, any K -invariant function h : p — R satisfies (h|q)* = h*|q.

Our algebraic framework also nicely covers subdifferential formulas like (4) and its
analogue for spectral functions [36]:

A(f or)(X)={UDiagnUT : U € 0", y € 3f(x), X = UDiagx)UT} (5

for any symmetric convex function f : R” — R. The following result [40] again unifies
the two threads.
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Theorem 5.6 (subdifferentials of invariant functions). In the framework of Kostant’s
theorem, a K -invariant convex function h : p — R at a point x € p has subdifferential

oh(x)={k-v:keK, u,vea, x=k-u, vedh|qu}.

Summarizing the general direction of these results, we see that the interesting con-
vex-analytic properties of an invariant function on the “large” underlying space p lift
precisely from the corresponding properties on the “small” subspace a. These kind of
“lifting” results are reminiscent of another famous piece of classical Lie theory, the
Chevalley restriction theorem.

Theorem 5.7 (Chevalley). With the framework of Kostant’s theorem, any K -invariant
function h : p — R is a polynomial of degree k if and only if the restriction h|q is a
polynomial of degree k.

For example, the spectral polynomials of degree k are exactly the degree-k symmetric
polynomials of the eigenvalues. (In fact, the Chevalley result states more: the restriction
map h +— h|q is an isomorphism of algebras.)

The Chevalley restriction theorem is an example of how smoothness lifts to the space
p from the subspace a. Analogues exist for C° and analytic functions—see [19]. At
the opposite extreme, at least for spectral functions, we have the following result (see
[37, 46]).

Theorem 5.8 (lifting smoothness). Consider an open symmetric set Q@ C R" and a
symmetric function f : Q — R. Then, on the space S", the function f o A is CV (or
respectively C®) if and only if f is CV (or respectively C?).

(A set is symmetric if it is invariant under coordinate permutations.) We can even write
down straightforward formulas for the first and second derivatives of f o A in terms of
those for f. This pattern suggests several natural conjectures. Does the analogous result
hold for C® functions with k > 3? Do these results hold in our Lie-theoretic framework
above? What about for symmetric functions of the characteristic roots of a hyperbolic
polynomial? (It is not too hard to show that differentiability does lift in the hyperbolic
polynomial setting.)

One reason for studying C® functions in optimization is as a helpful framework
for investigating self-concordance. For example, the symmetric function f : R} | — R
defined by f(x) = — ), In(x;) is a self-concordant barrier with parameter n, and so
is f o A = —Indet. Does self-concordance always lift in this manner [62]? A simple
example supporting such a conjecture (and specializing a somewhat more general result)
is the following [51]: if f : (—1, 1) — R is a self-concordant barrier with parameter k,
then so is the function f (]| - ||2).

PART III: SOME VARIATIONAL ANALYSIS

6. Nonsmooth optimization

We have seen how classical optimization theory—the variational analysis of smooth
or convex functions—applies well to spectral functions of symmetric matrices. In par-
ticular, derivatives or subdifferentials are easy to calculate in terms of the underlying
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symmetric function. Over the last thirty years, great progress has been made in our
understanding of optimization problems that are neither smooth nor convex, driven by
Clarke, Ioffe, Mordukhovich, Rockafellar and others. In this part, we apply this powerful
theory to eigenvalue perturbation analysis and to the stability of polynomials.

We begin in this section with a quick summary of the relevant variational analysis.
The two texts [18] and [57] are excellent general sources.

In this section we fix a Euclidean space E. We call a vector z € E a regular subgra-
dient of a function f : E — R at a vector x € E if f(x) is finite and

SO) = fx) = {z,y—x)+o(ly —x|) asy — x;

the regular subdifferential 3 f(x) is the set of such z. This notion is a one-sided version
of the classical gradient, as well as correlating with the classical subdifferential of a
convex function. We next define “limiting” subgradients by “closing” the regular sub-
differential mapping 3 f- Specifically, we call z a subgradient of f at x if there exists a
sequence of vectors x, — x and a sequence of regular subgradients y, € 3 f(x;) such
that f(x,) = f(x) and y, — y; the subdifferential df (x) is the set of such z.

An attractive feature of variational analysis is that we can study a set S C E via
its indicator function §g, which takes the value 0 on S and +oco outside S. The regular
normal cone N s(x) is just the regular subdifferential 98 s(x), and the normal cone Ng(x)
is the subdifferential 965(x). We call S (Clarke) regular at x € S if S is locally closed
at x and the normal and regular normal cones agree. Two examples are worth keeping in
mind. First, a closed convex set S is regular at any element x € S, and Ng(x) is then just
the usual normal cone in the sense of convex analysis. Secondly, if the set M C E is
a manifold, which for our purposes just means M can be expressed locally around any
element as the zero set of some C® functions with linearly independent gradients, then
N a(+) is just the usual normal space in the sense of elementary differential geometry.

We call a function f : E — R (subdifferentially) regular at x € E if f(x) is finite
and the epigraph of f is regular at the point (x, f(x)): in this case, every subgradient
is regular (3f (x) = 9 f(x)). In particular, convex functions are regular at every point
where they take finite value, the subdifferential agreeing with the same notion from
convex analysis. The subdifferential of a C(!) function just consists of the gradient.

The most basic nontrivial result of differential calculus is the mean value theorem,
and variational analysis provides a useful generalization for nonsmooth functions (see
for example [57]).

Theorem 6.1 (mean value). If the function h : E — R is locally Lipschitz on an open
convex set containing the line segment [x, y] C E, then there existsapointw € [x, y]and
asubgradient 7 € 0h(w)U—09(—h)(w) satisfying the equation h(y)—h(x) = (z, y — x).

Crucial to the uses of differential calculus on all but the simplest of functions is the
chain rule. From several nonsmooth generalizations, we need the following one for our
development.

Theorem 6.2 (chain rule). Suppose the function ® : R™ — E is CV at the point
v € R", the set S C E is regular at the point ®(v), and the condition Ng(®(v)) N
ker(V® (v))* = {0} holds. Then the inverse image

O (S)={ueR": du) e S)
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is regular at the point v, with normal cone given by
Ng-1(5)(0) = (VO (1)) N5 (P (v)).

We end this section with some less standard material. From a variational perspective,
much of the fascinating behaviour of eigenvalues (and indeed many other concrete func-
tions) arises from a delicate interplay between smooth and nonsmooth properties. For
the purposes of sensitivity analysis, this interplay is well captured by the idea of partial
smoothness [42]. A set S C E is partly smooth relative to an active manifold M C §
if, as the point x varies in M, the set S is always regular at x with normal cone Ng(x)
varying continuously and spanning N (x). The continuity of Ng(-) on M amounts
to the condition that for any convergent sequence in M, say x, — x, and any normal
vector y € Ng(x), there exists a sequence of normal vectors y, € Ng(x,) satisfying
y» — y. The “spanning” condition ensures a kind of “sharpness” of the set S around
the manifold M. The following result, essentially due to [54], provides a nice example.

Theorem 6.3 (partial smoothness of semidefinite cone). Given any nonnegative inte-
gers k < n > 1, the semidefinite cone S'| is partly smooth relative to the subset of
matrices of rank k.

Partial smoothness captures much of the essence of active set ideas in optimization.
Under reasonable conditions, for example, if the optimal solution to a smooth minimi-
zation problem over a partly smooth feasible region lies on the active manifold, then the
solution will remain on the manifold under small perturbations to the problem. Many
operations on sets preserve partial smoothness. For example, an exact analogue of the
chain rule (Theorem 6.2) describes how taking inverse images preserves partial smooth-
ness [42]. This result, in combination with the partial smoothness of the semidefinite
cone, explains why the rank of an optimal solution of a semidefinite program is typically
stable under small perturbations to the problem.

7. Eigenvalue perturbation theory

At the heart of the perturbation theory of symmetric matrices stands the following result
[47].

Theorem 7.1 (Lidskii, 1950). For any given matrices X, Y € S", thevector A(Y)—1(X)
lies in the convex hull of the set {PA(Y — X) : P € P"}.

This result and its various proofs, for example, form the unifying theme of the book [5].
Via a separating hyperplane, we arrive at the equivalent version

wl (A(Y) = (X)) < wIA(Y — X) forallw € R”,

where w € R has the same components as w, arranged in decreasing order. In this
form, it becomes tempting to apply the nonsmooth mean value result (Theorem 6.1) to
the function w? A(-), but this function is not convex, so we first need a formula like (5)
for nonconvex spectral functions. Happily, the formula extends unchanged [39].
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Theorem 7.2 (subdifferentials of spectral functions). For any symmetric function f
R" — R and any matrix X € S", we have

A(f o M) (X) = [U(Diagy)UT U e0", yedfx), X = U(Diagx)UT} .

The corresponding result for the regular subdifferential also holds. The function f o A
is regular at X if and only if f is regular at A(X).

By applying this result to the symmetric function f(x) = w’x, Lidskii’s theorem
quickly follows [38].

To what extent does Lidskii’s theorem extend to the frameworks of Section 4 (Hyper-
bolic polynomials) and Section 5 (Duality, smoothness, and Lie theory)? Theorem 5.6
(subdifferentials of invariant functions) does indeed extend at least to nonconvex, locally
Lipschitz functions, and this suffices to generalize Lidskii’s theorem to the Lie-theoretic
framework of Section 5 [59], since the function x — w7 X is indeed locally Lipschitz.
This result, originally due to Berezin and Gel’fand [4], in fact predated Lidskii’s publi-
cation of his special case [5].

This leaves two outstanding questions. First, a full unification of our characteriza-
tions of subdifferentials, Theorems 7.2 and 5.6, seems an obvious conjecture. Secondly,
does a version of Lidskii’s theorem hold for the characteristic roots of a hyperbolic poly-
nomial? Weaker results do hold: for example, in the notation of Section 4 (Hyperbolic
polynomials), we have the following result of Lax [34]:

AMy—x)=0 = A(y)—Ai(x)=0.

8. Stable polynomials

Eigenvalues of matrices are intimately related to zeros of polynomials, via the idea of
the the characteristic polynomial. Before moving towards eigenvalue optimization for
nonsymmetric matrices in the last part of this paper, we therefore pause to consider
variational properties for functions of the zeros of polynomials.

First let us fix some notation. Denote the space of complex polynomials of degree no
more than n by P". The natural basis elements for P" are the polynomials e* defined by
e () = Ffork=0,1,....n (together with iek), and we can view P" as a Euclidean
space if we define this basis as orthonormal. Finally, define the stable monic set by

Py={peP": s + p(z) =0 = Rez <0}.
The stable monic set P} is closed, because the set of zeros of a monic polyno-
mial behave continuously. Surprisingly, however, the good behaviour of this set is more
dramatic, from a variational perspective. Fundamentally, this good behaviour is a con-

sequence of central results in [16], encapsulated in the following result.

Theorem 8.1 (Burke-Overton, 2001). The stable monic set Py is everywhere regular.
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Proving this result in the style of [16] requires calculating the normal cone at an
arbitrary element of Pf;. This calculation is rather involved, needing a systematic frame-
work for breaking polynomials into factors (the “local factorization lemma” [16, Lem.
1.4]), as well as the following fundamental calculation of the normal cone to the stable
monic set at zero:

n
Npn(0) = {Zukek :0>uy €R, Repy—g < 0} : (6)
k=0

Some of the intricacies of the original approach are eased by an inductive use of the
following famous result about polynomials (for which a good reference is [50]).

Theorem 8.2 (Gauss-Lucas, 1830). All critical points of a nonconstant polynomial lie
in the convex hull of the set of zeros of the polynomial.

(See [14] for this approach.)

Clarke regularity is in fact just the first part of a powerful structural analysis of the
stable monic set. Given any list of natural numbers £, let P denote the set of polynomi-
als p € P" for which the purely imaginary zeros of the monic polynomial z*+! + p(z),
when listed in order of decreasing imaginary part, have multiplicities given by the list L.
One can check that P is a manifold, and in fact we arrive at the following result (cf.
[42, Ex. 3.7]).

Theorem 8.3 (partial smoothness of stable monics). For any list L, the stable monic
set Py is partly smooth relative to the subset Py N Pp.

In words, the set of stable monics is partly smooth relative to any subset of those mon-
ics having imaginary zeros with some fixed pattern of multiplicities. Using this result,
we could now apply the partly smooth analogue of the chain rule (Theorem 6.2) to
investigate stability problems of the form

inf{cTu:ueR™ ®®u)ePl),

for some given cost vector ¢ € R™ and smooth map ® : R” — P". Partial smooth-
ness guarantees that the pattern of multiplicities of the imaginary zeros of @ (u) for the
optimal u typically persists under small perturbations to the problem.
Suppose, instead of the stable monic set, we are interested in the power-stable
monics:
Pri={geP" : "M +q(2) =0 = [z| < 1}. (7)

A nice application of the chain rule allows us to use our existing analysis of the stable
monic set to deduce corresponding results for the power-stable case.

To see how to accomplish this, we first make a small technical restriction, easy to
circumvent later: we define a dense open subset of the space P" by

P ={qeP":1+q(1)#0},
and in place of the set of all power-stable monics, we consider instead the subset 75”5[ =

p
P ﬂPgst. Now notice that the transformation of the complex plane w +— (w+1)/(w—1)
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maps the open right halfplane (minus the point 1) onto the complement of the closed

unit disk. Hence a polynomial g € P" lies in P if and only if

w+ 1\ w+1
w#land | —— +g9g|——)=0 = Rew =<0.
w—1 w—1

To capture this property using the chain rule, define a map @ : Pr — pn by

w+1

®(g)(w) = —

[(w + )" (w = )y ( )} —w"!, forw #1

1
14+4g()

(extended by continuity at w = 1). Then we have

73}1

neo= lgeP iw + @(@)(w) =0 = Rew <0} = O~'(PY).

Elementary calculations show the map & is smooth, with everywhere invertible Jaco-
bian, so the chain rule (Theorem 6.2) now demonstrates that the power-stable monic
set ﬁgst is everywhere Clarke regular. We could, in principle, compute the normal cone
using formulas for the normal cone to the stable monic set.

The power of Burke and Overton’s concise observation that the stable monic set
is everywhere Clarke regular (Theorem 8.1) suggests at least two lines of questions.
First, the elegance of the result is not matched by existing proofs: even with the use of
the Gauss-Lucas theorem, extended elementary calculations seem necessary. Is there,
perhaps, a broader framework in which the fact of regularity is more transparent? Sec-
ondly, are more powerful results true? For example, prox-regularity of sets is a stronger
property than Clarke regularity, in particular implying the existence of single-valued
projections onto the set from points nearby. Is the stable monic set prox-regular?

PART IV: STABILITY OF NONSYMMETRIC MATRICES

9. Stable matrices

Eigenvalues of nonsymmetric matrices show much more unruly behaviour than those of
symmetric matrices. Lidskii’s theorem (7.1) shows the eigenvalue map for symmetric
matrices A : S” — R" is Lipschitz, and Davis’s theorem (3.1) demonstrates its elegant
convexity properties. By contrast, the eigenvalues of the matrix (%) , for example, are not
Lipschitz in the variable ¢. Furthermore, unlike in the symmetric case, the set of complex
n-by-n stable matrices M, by which we mean (in not entirely standard fashion) those
matrices having no eigenvalues in the open right halfplane, is not convex. For example,
both the matrices (8 (2)) and (_22 _22) are stable, whereas their midpoint (_1l _21) is not.
Nonetheless, the set of stable matrices M, has some attractive properties from a
variational perspective. It is certainly closed, because the set of eigenvalues of a matrix
behaves continuously. In this section we follow Burke and Overton’s generalization of
their result on the regularity of the stable monic set Pf; (Theorem 8.1) to a more inter-
esting result about M. The matrix case really is more general, because the zeros of
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the monic polynomial ¢ — Z'};} aj e/ are exactly the eigenvalues of the companion
matrix

an—10---0 010---0
an_20---0 001---0
. + J, for the Jordan block J = o

a 0---0 000---0
Matrices are also the more interesting case, because of their more immediate model-
ing powers: A ¢ MY, exactly when trajectories of the dynamical system X = Ax have
exponential growth.
For nonsymmetric matrices, the algebraic multiplicity of an eigenvalue (its multiplic-
ity as a zero of the characteristic polynomial) may differ from its geometric multiplicity
(the dimension of the corresponding eigenspace). Indeed, eigenvalues “typically” have

geometric multiplicity one, in which case we call them nonderogatory. This observation
is made precise by the following result from celebrated work of Arnold [1].

Theorem 9.1 (Arnold, 1971). The space of square matrices M" stratifies into manifolds
corresponding to fixed Jordan structure. Among those manifolds corresponding to a fixed
Jordan structure for all but one particular eigenvalue, the manifold corresponding to
that eigenvalue being nonderogatory has strictly largest dimension.

The following remarkable result shows that, like the stable monic set, the set of stable
matrices is surprisingly well-behaved near typical elements [15].

Theorem 9.2 (Burke-Overton, 2001). The set of stable matrices M}, is regular at a
particular matrix exactly when each imaginary eigenvalue of the matrix is nonderoga-

tory.

The more powerful part of this result, that nonderogatory imaginary eigenvalues implies
regularity, was originally proved using further work of Arnold discussed below. Before
returning to this approach, consider first an attack very much in the spirit of this article,
using the results on polynomials from the previous section and the chain rule. To make
life simple, we consider the result for a nonderogatory matrix (a matrix all of whose
eigenvalues are nonderogatory).

We consider first the map ® : M" — P"~! defined via the characteristic polynomial:

®(X)(z) =det(z] — X) — 7" (z €C). )

Assuming the matrix X is nonderogatory, the local factorization lemma [16, Lem. 1.4]
shows that the Jacobian map V& (X) is surjective. But the set of stable matrices MY, is just
the inverse image &~ (PS"t_l), and regularity now follows by the chain rule (Theorem
6.2).

The chain rule also gives a formula for the normal cone at the matrix X. For example,
from formula (6) we can deduce the normal cone at the Jordan block J:

n
Ny (1) = 1) 0;(J7)*:6p e Ry, Rey =01 . )
j=0
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Burke and Overton’s work [15] leads to an analogous formula for the normal cone at
any stable matrix having all its imaginary eigenvalues nonderogatory. They also present
some theory for the general case, although a complete result remains an open question.

In a similar vein, the partly smooth analogue of the chain rule [42] allows us to deduce
from Theorem 8.3 (partial smoothness of stable monics) that M, is partly smooth, at
least in the nonderogatory case. The complete result is as follows [42]. By analogy with
Section 8 (Stable polynomials), given a list of natural numbers £, let M. denote the set
of matrices in M" all of whose purely imaginary eigenvalues are nonderogatory, and,
when listed in order of decreasing imaginary part, have multiplicities given by the list L.
Arnold’s results show M. is a manifold.

Theorem 9.3 (partial smoothness of stable matrices). For any list L, the set of stable
matrices M is partly smooth relative to the subset Mg N M.

Solutions of “semistable programming” problems of the form
inf{f(u):ueR™, W(u) e M},

for some smooth cost function f : R” — R and smooth constraint map ¥ : R” — M",
have an interesting structural stability property. Specifically, for a typical critical point i,
the Jordan structure of the matrix W (i) persists under small perturbations to the problem
[10, 42]. The reason, fundamentally, is Theorem 9.3.

The original approaches to Burke and Overton’s characterization of regular points
in the set of stable matrices (Theorem 9.2) and to the partial smoothness of this set
(Theorem 9.3) depended much more explicitly on Arnold’s results [1]. A very special
case suffices to illustrate the essential idea.

Consider the orbit of the Jordan block / € M" under similarity transformations:

{(PJP~': P e M" is invertible}.
The core of Arnold’s technique is the following result.

Lemma 9.4 (Arnold, 1971). The orbit of the Jordan block J € M" under similar-
ity transformations is a manifold with normal space N at J spanned by the matrices
I, J*, (Jz)*, (I Any matrix X € M" close to J is similar to a unique matrix
in J + N, depending smoothly on X.

Building on this idea, Arnold was able to construct on a neighbourhood of any matrix,
canonical forms that, unlike the Jordan form, vary smoothly. Applying his results in the
simple special case of nonderogatory matrices gives the tools we need for this section,
the form of formula (9) being an obvious example.

“Power-stable” matrices are also of great interest: if we define the set of matrices
M, C M" to consist of those matrices with all eigenvalues in the closed unit disk,
then A ¢ Mgst exactly when the iteration xx41 = Axj exhibits exponential growth. By
analogy with Burke and Overton’s characterization of regularity for the stable matrices
M2, it turns out that the set Mgst is regular at any element all of whose eigenvalues of

st>
modulus one are nonderogatory, and for example,

n
Nw, (I +J) = Zej(JjYk 16 € Ry, Ref) > —6
j=0
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Two approaches suggest themselves, again in the spirit of this article, the first applying
the chain rule (Theorem 6.2) to the inverse image ! (Ppst)> where @ is the character-
istic polynomial map (8) and Pgst is the set of power-stable monics (7).

The second, more direct, matrix-based approach works by analogy with Section 8

(Stable polynomials). For technical reasons, we first consider the subset
M| ={W e M" : W — [ invertible},

and define amap ® : M} — M" by ®(W) = (W—I)"Y(W+1). For amatrix W € Mf
it is easy to check W ¢ Mgst if and only if ®(W) € MY, so again we can apply the
chain rule.

10. Robust stability

In the previous section we remarked that a matrix A € M”" has an eigenvalue outside
the closed unit disk exactly when the iteration xx41 = Axy exhibits exponential growth.
These equivalent properties can also be checked via semidefinite programming, using
the following well-known result. The original, continuous-time case is due to Lyapunov
[49]. As usual, || - || denotes the operator two-norm on M” (which is exactly the largest
singular value o1 (+)). For two matrices G and H in the space H" of n-by-n Hermitian
matrices, we write H > G to mean H — G is positive definite.

Theorem 10.1 (Lyapunov, 1893). For any matrix A € M", the following properties
are equivalent:

(i) All eigenvalues of A lie in the open unit disk;
(i) |A¥|| — 0 exponentially as k — oo;
(iii) There exists a matrix H > 0 in H" such that H = A*H A.

Attractively simple as it is, this result is often deceptive for two reasons, which, as we
see in the next result, are related. The first difficulty is one of robustness : as we saw in
the last section, the dependence of the eigenvalues on A is not Lipschitz. Consequently,
when a stable matrix A is close to a matrix with a multiple eigenvalue, unexpectedly
small perturbations to A can destroy stability. Secondly, there is the difficulty of tran-
sient growth: even if ||AK|| — 0 asymptotically, intermediate values of | AK| may be
very large [60, 61].

These difficulties can be quantified by the following classical result in numerical
analysis [33]. We need some more notation. First, consider the Lyapunov condition
factor for a matrix A € M", defined by

L(A):inf{y>1:yI>H>y_ll, H > A*HA, HeH"}.

Condition (iii) in Lyapunov’s theorem above says exactly that L (A) is finite. We compare
this condition factor with the power bound

P(A) = sup{||Ak|| k=1,2,...},
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as well as with a third quantity defined in terms of pseudospectra [24]. For real € > 0,
the e-pseudospectrum of A is the set

Ac(A) ={z € C: X —zI singular, X e M", | X — A|| < ¢}
={ze€eC:0,(A—zI) <¢€}
Thus the e-pseudospectrum of A consists of all eigenvalues of matrices within a distance

€ of A, and in particular, Ag(A) is just the spectrum of A. The third quantity we consider
is the Kreiss constant

lz| =1

K(A):sup{ :e>0,zeAE(A)},

which is a bound on the linear rate at which the e-pseudospectrum bulges outside the
unit disk, as a function of €. This supremum in fact occurs for bounded €: for matrices
with eigenvalues close to the unit circle, the growth in the e-pseudospectrum for small
€ > 0 is the key phenomenon.

Theorem 10.2 (Kreiss, 1962). Over any set of matrices in M", the Kreiss constant
K, the power bound P, and the Lyapunov condition factor L are either all uniformly
bounded above or all unbounded.

Results parallel to Theorems 10.1 and 10.2 hold for the continuous-time version. In
that case we are interested in bounding ||’ | (t > 0), the left halfplane takes the place
of the unit disk, and the Lyapunov inequality becomes H > 0,0 = A*H + HA. The
relevant pseudospectral quantity is € "'Re z (z € A (A)).

Kreiss’s original work included inequalities relating the three functions K, P and
L. These inequalities have gradually improved in subsequent work, culminating in the
following tight result [58]

Theorem 10.3 (Spijker, 1991). On the space M", the Kreiss constant K and the power
bound P are related by the inequality K < P < enK.

Let us return to the continuous-time case, where we are interested in the dynamical
system x = Ax. Trajectories of this system all converge to the origin exponentially if
and only if the spectral abscissa

a(A) = maxRe Ag(A)

is strictly negative. But as we observed at the beginning of the section, this condition is
not robust: even if it holds, the pseudospectral abscissa

oc(A) = maxRe A (A)

may be positive for small € > 0. In other words, nearby matrices may not be stable, and
relatedly (via the continuous-time version of the Kreiss matrix theorem), trajectories of
X = Ax may have large transient peaks.

This argument suggests the pseudospectral abscissa o (for some small € > 0) is a
better measure of system decay than the spectral abscissa. It is closely related to two
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other important quantities in robust control theory: for a stable matrix A, the complex
stability radius [28] is

B(A) = max{e > 0: a(A) <0}, (10)

which is just the distance to the set of matrices that are not stable, and the Hy, norm of
the transfer function s — (sI — A)~', which is ﬂ(A)_l (see for example [8]).

As well as its advantages in modeling, the pseudospectral abscissa o has compu-
tational attractions. Regularizing the spectral abscissa in this way enhances convexity
properties: in particular [12],

Jim (oc(A) — €) = $hi(A + A") (1)

and the right hand side is a convex function of the matrix A. The pseudospectral abscissa
also has better Lipschitz properties than the spectral abscissa, as the following result
shows [12, 41].

Theorem 10.4 (Lipschitzness of pseudospectral abscissa). Around any given non-
derogatory matrix, the pseudospectral abscissa o, is locally Lipschitz and subdifferen-
tially regular for all small € > 0.

The pseudospectral abscissa is surprisingly easy to calculate efficiently. An algorithm
building on well-known methods for the Hy, norm [7, 9], using a test for imaginary
eigenvalues of associated 2n-by-2n Hamiltonian matrices, turns out to be globally and
quadratically convergent and effective in practice [13].

Control problems often involve a parametrized matrix A, and we wish to choose
the parameters in order to enhance some stability aspect of the system x = Ax. By
minimizing the pseudospectral abscissa « for various choices of € > 0, we construct
a range of options balancing asymptotic decay and the avoidance of transient growth:
large € amounts to a focus on initial growth (a consequence of equation (11)); some
intermediate choice of € corresponds to minimizing the Hy, norm (a consequence of
equation (10)); € = 0 focuses on asymptotic decay.

Semidefinite-programming-based techniques for optimizing robust stability, involv-
ing variants of the Lyapunov inequality H > Oand 0 > A*H + H A, may not be practical
except for matrices A of low dimension due to the introduction of many subsidiary vari-
ables (the entries of the Hermitian matrix H). By contrast, as we remarked above, the
pseudospectral abscissa is relatively easy to compute (along with subdifferential infor-
mation), and local optimization is promising both in theory, in results like Theorem 10.4
(Lipschitzness of pseudospectral abscissa), and in computational practice [11].

We end with one more open question. Suppose the spectral abscissa minimization
problem inf 7 « has optimal solution some nonderogatory matrix X. If we instead con-
sider the regularized problem inf £ a¢, we generate corresponding optimal solutions X
converging to X as € — 0. Is the pseudospectral abscissa o locally Lipschitz around
X¢? Theorem 10.4 shows the answer is yes when the feasible region F is a singleton,
but in general the answer seems less clear.
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