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Abstract

Consider the affine matrix familyA(x) = A0 +∑m
k=1 xkAk , mapping a design vector

x ∈ Rm into the space ofn × n real matrices. We are interested in the question of how to
choosex to optimize the stability of the matrixA(x). A typical motivation is that one wishes
to control the stability of the dynamical systeṁz = A(x)z. A classic example is stabiliza-
tion by output feedback. We take two approaches. Letα(X) denote the spectral abscissa (the
largest real part of the eigenvalues) of a matrixX; as is well known, this quantity bounds the
asymptotic decay rate of the trajectories of the associated dynamical systemż = Xz. Our first
approach to optimizing stability is to directly minimize the functionα(A(x)). The spectral
abscissaα(X) is a continuous but non-smooth, in fact non-Lipschitz, function of the matrix
argumentX, and finding a global minimizer ofα(A(x)) is hard. We introduce a novel random
gradient bundle method for approximatinglocal minimizers, motivated by recent work on non-
smooth analysis of the functionα(X). Our second approach is to minimize a related function
αδ(A(x)), whereδ is a robustness parameter in(0,1). One motivation for the definition of
the “robust spectral abscissa”αδ(X) is that it bounds transient peaks as well as asymptotic
decay of trajectories oḟz = Xz. The functionαδ(X) is Lipschitz but non-convex forδ ∈ (0,1),
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approachingα(X) asδ → 0 and the largest eigenvalue of1
2(X + XT) asδ → 1. We use a

Newton barrier method to approximate local minimizers ofαδ(A(x)). We compare the results
of the two approaches on a number of interesting test cases. © 2002 Elsevier Science Inc. All
rights reserved.
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1. The spectral abscissa

The spectral abscissaα of a square matrix is the maximum of the real parts of its
eigenvalues. It plays a crucial role in the asymptotic analysis of dynamical systems.
Consider the systeṁz(t) = Xz(t). As is well known, the trajectory norm‖z(t)‖ =
‖etXz(0)‖ is bounded asymptotically by eγ t , that is, e−γ t‖z(t)‖ → 0 ast → ∞, for
anyγ greater thanα(X), the spectral abscissa ofX. In particular, ifα(X) < 0, the
system is asymptotically stable.

Consider the affine matrix family

A(x) = A0 +
m∑
k=1

xkAk, (1)

mapping a design vectorx ∈ Rm into Mn(R), the space ofn × n real matrices. We
are interested in choosingx to optimize stability of the matrixA(x). A typical mo-
tivation is to control the stability of the dynamical systemż(t) = A(x)z(t). If we
focus exclusively on asymptotic stability, we have aspectral abscissa minimization
problem: find a vector̄x that minimizesα(A(x)), locally or globally.

For example, the differential equation describing a damped linear oscillator is

ẅ(t) + ξẇ(t) + w(t) = 0.

Hereξ ∈ R is the parameter that controls damping; whenξ = 0, the solutions are
pure oscillations. The equivalent first-order system in the vectorz = [w, ẇ]T is

ż(t) = A(ξ)z(t), whereA(ξ) =
[

0 1
−1 −ξ

]
. (2)

The trajectory norm‖z(t)‖ is bounded asymptotically by eγ t for anyγ greater than
the spectral abscissa ofA(ξ),

α(A(ξ)) =
{− ξ

2 if |ξ | � 2,

− ξ
2 +

√
ξ2

4 − 1 if |ξ | � 2.
(3)

This is minimized byξ̄ = 2, yieldingα(A(ξ̄ )) = −1. Note thatA(ξ̄) has a non-de-
rogatory double eigenvalue−1. A non-derogatory eigenvalue is one whose geomet-
ric multiplicity is one, i.e., the eigenvalue is associated with a single Jordan block.
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By contrast, asemisimple eigenvalue is one whose geometric multiplicity equals its
algebraic multiplicity, i.e., the eigenvalue has no Jordan blocks with size two or more.

Another interesting example is

A(x) =




−x1 1 0 · · 0
x1 0 1 0 · 0
x2 0 · · · ·
· · · · · 0
· · · · · 1

xn−1 0 · · · 0



. (4)

Herem = n − 1. Fig. 1 shows the contours of the spectral abscissaα(A(x)) in the
casen = 3 (m = 2). The spectral abscissa is minimized byx̄1 = x̄2 = 0, withA(x̄)
a Jordan block, with the non-derogatory triple eigenvalue zero. A manifold is clearly
visible on which the spectral abscissa is non-smooth; on this manifold, which is
tangent to thex1-axis at(0, 0),A(x) has a non-derogatory double eigenvalue (except
at (0, 0) where it is triple). Asx2 is increased above 0, keepingx1 = 0, the triple
eigenvalue splits into three distinct eigenvalues, a real eigenvalue in the right half
plane and a complex conjugate pair in the left, and the spectral abscissa accordingly
increases sharply (the growth is O(x1/3

2 )). Whenx2 is decreased below 0, the growth
in the spectral abscissa is still O(|x2|1/3), but with asymptotic factor reduced by half;
this is because the real eigenvalue is in the left half plane and the complex conjugate
pair is in the right half plane. On the other hand, whenx2 is fixed equal to 0 and
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Fig. 1. Contours of the composite functionα(A(x)), whereα denotes spectral abscissa and the affine map
A is defined by (4) withn = 3.
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x1 is varied, the growth inα is much slower, O(|x1|1/2), though still non-Lipschitz.
This simple example illustrates how challenging spectral abscissa minimization is in
general, even locally.

More complicated spectral abscissa minimization problems often arise in control
applications. A particularly important example (described in [11] as “perhaps the
most basic problem in control theory”) isstabilization by output feedback: given an
n × n matrix Ā, ann × r matrix B̄ and ans × n matrix C̄, find (if possible) anr × s

matrix K such thatĀ + B̄KC̄ is stable, i.e., has all its eigenvalues in the left half
of the complex plane. Efficient algorithms are known only for very special cases
of this problem, such asr = n, B̄ = I or s = n, C̄ = I , when the problem reduces
to standard pole placement [3]. However, in general, this problem is hard. When
interval bounds on the entries ofK are specified, the general problem is known to
be NP-hard [11,23]. The complexity of the general problem without bounds onK is
not known. Since the mapK �→ Ā + B̄KC̄ is affine inK, stabilization by output
feedback can be expressed as a spectral abscissa global minimization problem. In
a 1995 survey [5], experts in control theory described the characterization of triples
(Ā, B̄, C̄) such that a stabilizingK exists as a “major open problem”. Although we do
not expect to devise an efficient algorithm to find global spectral abscissa minimizers,
it is clear that reliable and efficient methods to find local minimizers could be of great
value in practice. In the past, such methods have not been studied systematically;
optimality conditions were not known, and though methods for moving eigenvalues
left in the complex plane have been proposed from time to time, they have generally
been fairly ad hoc, and usually assume that the eigenvalues in question are simple
or perhaps double. The related control literature is huge; besides the surveys already
cited, we mention [15,25].

Other spectral functions besides the spectral abscissa arise in practice, particularly
the spectral radius, in connection with discrete time systems. For simplicity, in this
paper, we confine our attention to the spectral abscissa, but all the ideas extend easily
to the spectral radius. An interesting recent application, to which we are currently
applying our optimization techniques, may be found in [33].

We say that an eigenvalue of a matrixX is active if its real part equals the spectral
abscissaα(X). It is not hard to see that the spectral abscissa map

X ∈ Mn(R) �→ α(X) ∈ R (5)

is non-Lipschitz at allX̄ for which X̄ has a non-semisimple active eigenvalue. Typi-
cally, the restricted mapα ◦ A, i.e.,

x ∈ Rm �→ α(A(x)) ∈ R, (6)

inherits the non-Lipschitz nature of (5). Therefore, even if we were presented with a
minimizer x̄, verification of local optimality requires non-standard analytical tools.
These have been developed at length in [10], using techniques from modern non-
smooth analysis. Although we do not discuss these results in the present work, they
motivate a good deal of its development. In particular we remark that the key result
in [10] is that the map (5) is subdifferentially regular [27] atX̄ if and only if all active
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eigenvalues of̄X are non-derogatory. It is not a coincidence that the spectral abscissa
minimizers forA(x) defined by (2) and (4) are both associated with non-derogatory
multiple eigenvalues. On the contrary, this is typical; minimizing the spectral ab-
scissa tends to make eigenvalues coalesce, and, generically, one expects any such
multiple eigenvalues to be non-derogatory. Furthermore, withm variables, one ge-
nerically expects eigenvalues to have multiplicity at mostm + 1. These phenomena
are discussed and analyzed in [8,7].

Section 3 presents an algorithm that can be used to find local minimizers of the
spectral abscissaα(A(x)). The technique employed is a novel one using randomly
generated bundles of gradients. Numerical results are presented in Section 5, show-
ing that the random gradient bundle method is a very effective way to find local
minimizers, despite the non-Lipschitz nature of the problem. We defer consideration
of convergence analysis for this algorithm to future work, but we have addressed
some underlying theoretical questions about random gradient bundles in [9].

2. The robust spectral abscissa

Although pure spectral abscissa minimization is very interesting from both a
mathematical and a computational point of view, practical stability questions are
often more involved. In particular, asymptotic stability of dynamical systems is far
from the whole story; transient growth can be as undesirable as asymptotic instabili-
ty. Techniques for balancing transient and asymptotic behavior of systems have been
discussed for decades and many approaches are possible. In this section, we focus
on one that has the appeal of being very clean and well motivated.

The following fundamental result characterizes the spectral abscissa of a general
square matrix as an optimization problem over the positive definite matrices, a con-
vex cone inSn, the space of real symmetric matrices. LetP � 0 denote the condition
thatP ∈ Sn is positive definite. Then, for any square matrixX ∈ Mn(R),

α(X) = inf
P∈Sn,P�0

1

2
λmax

(
P 1/2XP−(1/2) + P−(1/2)XTP 1/2

)
,

whereλmax denotes the largest eigenvalue of a symmetric matrix. In other words, the
spectral abscissaα(X) is the optimal value of

inf
γ∈R,P∈Sn

γ (7)

subject to P � 0, 2γP � PX + XTP, (8)

where the latter inequality means that 2γP − (PX + XTP) is positive semidefinite.
Furthermore, the infimum is achieved if and only if the active eigenvalues ofX are
all semisimple. Notice that we can scaleP arbitrarily without changing anything.
For example, we could constrain trP = 1. Although this characterization follows
easily from fundamental results of Lyapunov, it is surprisingly little known outside
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the control community. See [20] for a proof from first principles. Note that the last
constraint is bilinear in the variablesγ and P. In the control community, such a
constraint is known as a bilinear matrix inequality (BMI).

Asymptotic decay of trajectories ofż = Xz is guaranteed ifγ < 0 is feasible in
(7) for someP � 0. However, transient growth is associated with the conditioning
of P. It is easy to show, by differentiating the Lyapunov functionz(t)TPz(t), that

‖z(t)‖ � keγ t‖z(0)‖, (9)

wherek = κ(P ), the condition number ofP. In fact, the Kreiss Matrix Theorem and
its variations [30] state that enforcing a bound of the form (9) is, in a certain sense,
equivalent to boundingκ(P ) in (7).

Introducing the affine mapA(x) discussed above, we obtain another formulation
for minimization of the spectral abscissaα(A(x)),

inf
γ∈R,x∈Rm,P∈Sn

γ (10)

subject to P � 0, 2γP � PA(x) + A(x)TP. (11)

The optimization problem is now over a space whose dimension is generally much
larger thanm. Furthermore, as already noted, minimizing the spectral abscissa typi-
cally leads to non-derogatory multiple eigenvalues and hence to an infimum in (10),
(11) that is not achieved, i.e., any minimizing sequence(γ r , xr , P r) has the con-
dition number ofP r diverging to∞. In other words, optimizing asymptotic decay
forces arbitrarily bad transient peaks in the trajectories from some starting points.

This raises an idea: for any square matrixX and anyδ ∈ (0, 1), define therobust
spectral abscissa αδ(X) as the optimal value of

min
γ∈R,P∈Sn

γ (12)

subject to δI � P � I, 2γP � PX + XTP. (13)

We call δ the robustness parameter. The feasible region forP is now compact, and
κ(P ) is bounded by 1/δ. SinceP may be scaled arbitrarily in (11), we haveαδ(X) →
α(X) (a non-Lipschitz function) asδ → 0 andαδ(X) → 1

2λmax(X + XT) (a convex
function) asδ → 1. The functionαδ(X) is Lipschitz and non-convex forδ ∈ (0, 1).
Although computingαδ(X) is an optimization problem with a BMI constraint, it is
tractable via bisection onγ , by checking a sequence of semidefinite feasibility prob-
lems, since the BMI reduces to an linear matrix inequality (LMI) for fixedγ . More
specifically, since we know that (13) is feasible forγ � 1

2λmax(X + XT) (choose
P = I ) and infeasible forγ < α(X) (by virtue of (8)–(7)), the minimizingγ may
be found by bisection in the interval[α(X), 1

2λmax(X + XT)]. This is how Fig. 2
was generated, usingδ = 0.03. Fig. 2 showsαδ(A(ξ)) (dashed curve) andα(A(ξ))
(solid curve) as functions ofξ for the damped linear oscillator. Efficient interior point
methods for solving semidefinite feasibility problems, or, more generally, semidefi-
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Fig. 2. The spectral abscissaα and robust spectral abscissaαδ with δ = 0.03, for the damped linear
oscillator defined in (2), as a function of the damping parameterξ .

nite programs, have received much attention in the past decade [24,28], especially in
the control community [4,14].4

Given an affine familyA(x), then the robust spectral abscissa minimization prob-
lem is to minimizeαδ(A(x)), i.e.,

min
γ∈R,x∈Rm,P∈Sn

γ (14)

subject to δI � P � I, 2γP � PA(x) + A(x)TP. (15)

For smallδ, this is a difficult non-convex problem for which finding a global mini-
mizer is hard. Section 4 presents a Newton barrier method to find local minimizers.
Section 5 compares the results for pure and robust spectral abscissa minimization for
an interesting set of examples. Section 6 presents some conclusions.

There are many other possible approaches to balancing transient and asymptotic
system behavior. For example, since includingP as a design variable is expensive,
one might defineP implicitly via a constraint of the form

P(A(x) − γ I) + (A(x) − γ I)TP = −I,

and devise a minimization objective that suitably weightsγ andκ(P ).

4 We used both the SeDuMi (http://fewcal.kub.nl/sturm/software/sedumi.html) and SDPpack
(http://www.cs.nyu.edu/cs/faculty/overton/sdppack) codes to generate the graph shown in Fig. 2, obtain-
ing essentially the same results with both. This was an interesting test for SDPpack, since the method it
uses to detect infeasibility does not have any theoretical foundation, unlike the one used by SeDuMi.
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A different approach to the balancing of transient and asymptotic considerations
is provided by the notion of pseudospectrum [29]. Givenε � 0, the pseudospectrum
of a matrixX is defined as the set of eigenvalues of all matricesY satisfying‖Y −
X‖2 � ε. Let α̃ε(X) denote the pseudospectral abscissa ofX, i.e., the maximum of
the real parts of the pseudo-eigenvalues ofX (the elements of the pseudospectrum).
One of the consequences of the Kreiss Matrix Theorem is that, for anyδ ∈ (0, 1) and
fixed n, there existε1, ε2, C1 andC2 such that

C1α̃ε1(X) < αδ(X) < C2α̃ε2(X)

for every matrixX. Thus, in some sense, the notions of robust spectral abscissa and
pseudospectral abscissa are equivalent, although the dependence ofε1, ε2, C1 andC2
on δ is complicated. This justifies the use of the word “robust” in the name forαδ,
since it is immediate from the definition that, ifα̃ε(X) = γ , thenα(Y ) � γ when-
ever‖Y − X‖2 � ε. Direct pseudospectral abscissa optimization is a topic we are
currently studying, but is not discussed in this paper.

We conclude this section by thanking Steve Boyd, Alex Megretski and Nick
Trefethen for very helpful conversations regarding the issues discussed here.

3. A random gradient bundle method

In this section we present a random gradient bundle method to approximate min-
imizers of general non-smooth functions. The ideas are simple and we believe they
will be useful in a very general setting. The method is inspired by the great success of
gradient bundle methods for convex optimization [17]. Bundle and related methods
have been extended to be applicable to Lipschitz non-convex functions [18], but
we are not aware of related work for non-Lipschitz functions such as the spectral
abscissa. Our basic assumptions are simply that (a) the functionf being minimized
is continuous and is continuously differentiable almost everywhere and (b) where it
is defined, the gradient off is easily computed.

The assumptions just mentioned hold for the spectral abscissa map (5) sinceα is
differentiable atX if and only if (i) X either has exactly one real active eigenvalue, say
λ, or exactly one complex conjugate pair of active eigenvalues, sayλ ± iλ̃, and (ii)
this active eigenvalue or conjugate pair of eigenvalues is simple, i.e., has multiplicity
one. Suppose this is the case. Then the gradient of (5) is easily obtained by computing
the eigenvectors ofX. When the active eigenvalue is real, with real right and left
eigenvectorsv andu satisfying

Xv = λv, XTu = λu (16)

with uTv = 1, it is well known [16, Theorem 6.3.12] that the gradient is given by

∇α(X) = uvT.

When a conjugate pair of eigenvaluesλ ± iλ̃ is active, we break the eigenvectors
associated withλ ± iλ̃ into real and imaginary parts, so that
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X(v + iṽ) = (λ + iλ̃)(v + iṽ), XT(u + iũ) = (λ − iλ̃)(u + iũ) (17)

with (u − iũ)T(v + iṽ) = 1. Then it is easily seen that

∇α(X) = uvT + ũṽT.

It follows from the chain rule that the gradient of (6) is given by

(∇(α ◦ A)(x))k = uTAkv

whenA(x) has exactly one real active eigenvalue, with corresponding eigenvectors
satisfying (16), and

(∇(α ◦ A)(x))k = uTAkv + ũTAkṽ

whenA(x) has exactly one conjugate pair of active eigenvalues, with corresponding
left and right eigenvectors satisfying (17).

We illustrate the main idea of the random gradient bundle method by consider-
ing the example whose contours are displayed in Fig. 1. First, consider an ordinary
steepest descent method with a line search, assuming that, at every iterate,α(A(x))

is differentiable. Fig. 3 plots the steepest descent iterates using small circles, starting
from the initial point(−1,−1). The behavior is typical of the steepest descent meth-
od applied to a non-smooth function; progress is good at first, but then the iterates
jam near the manifold on which the function is not differentiable. The iterates of
our gradient bundle algorithm are shown using asterisks in the same Fig. 3. Instead
of calculating only one gradient per iteration, the algorithm evaluates abundle of
gradients at pointsnearby the current iterate, chosen by sampling from a uniform
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Fig. 3. Gradient bundle and steepest descent iterates for the spectral abscissa minimization problem
shown in Fig. 1.
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distribution scaled by a parameterε. The algorithm’s progress is similar to the steep-
est descent method at first, because all the gradients in the bundle are qualitatively
similar at first. However, when the iterates approach the region where the steepest
descent method jams, the bundle includes gradients fromboth sides of the manifold
on which the spectral abscissa is not smooth. The algorithm is based on a generalized
steepest descent method for convex optimization, using a search directiond with the
property that−d is theconvex combination of the gradients in the bundle whose 2-
norm is minimized (a convex quadratic subproblem that is easily solved). Therefore,
in the region where steepest descent jams, the bundle algorithm is able to use the
information from both sides of the manifold to “turn the corner” and make progress
towards the minimizer, as shown by the asterisks in Fig. 3. Eventually, it finds an
iterate at which 0 is in the convex hull of its gradient bundle, and it terminates. At
this point, we would restart the minimization with a smaller value ofε.

We now formally define the random gradient bundle algorithm. It is assumed
that f, the function to be minimized, is continuous, and continuously differentiable
almost everywhere. When we write∇f (x) below, we are implicitly assuming thatf
is differentiable atx, a property that holds with probability one by assumption ifx is
a random point. The symbolG is used for the set of gradients making up a bundle,
and the notation convG means the convex hull ofG. We restrict our iteratesx to the
feasible region defined by

‖x‖∞ � χ,

for some moderately large constantχ .

Algorithm 1 (Gradient Bundle).
0. (Initialization) Choose an initial feasible pointx ∈ Rm, an initial positive value

for the sampling radiusε, a positive reduction factorθ < 1, a positive integerN
defining the number of gradients per bundle, and two positive integersM1 andM2
to terminate the iterations. Initializek = 1.

1. (Inner iteration) Carry out minimizationk, controlled by the sampling radiusε,
as follows. Initializej = 0.
(a) Define a bundleG as the set ofN gradients{∇f (y)}, wherey takes onN values:

the current iteratex, andN − 1 other vectors differing fromx by vectors whose
entries are obtained by sampling from a uniform distribution on[−ε/2, ε/2].

(b) Define the search direction

d = − arg min
{‖v‖2: v ∈ convG

}
. (18)

If d = 0, go to Step 2.
(c) Use a line search (see below) to find a positive steplength satisfying

f (x + td) < f (x), t ∈ (0, t̄], (19)

wheret̄ = arg max{t : ‖x + td‖∞ � χ}.
(d) Replacex by x + td. If t = t̄ , terminate. Ifj < M2, incrementj and return to

Step (a).
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2. (Decrease sampling parameter) If k < M1, replaceε by the smaller valueθε,
incrementk and return to Step 1. Otherwise terminate.

The condition imposed by the line search is simply a reduction in the value of
the objection function. It is a standard practice in line searches for smooth and
convex optimization to impose a somewhat more demanding “sufficient decrease”
condition. However, in the non-Lipschitz case, function values can be extremely
sensitive to changes in the argument in the neighborhood of a minimizer, and the
imposition of any sufficient decrease condition often leads to failure in the line
search.

The definition ofd in (18) guarantees the descent condition

∇f (x)Td < 0

as long asd is not zero, since∇f (x) is one of the gradients in the bundleG. To see
this, observe that ifd is not 0, there is a separating hyperplane between 0 and convG,
so −d, the closest element of convG to 0 in the 2-norm, must satisfy the condi-
tionhT(−d) > 0 for everyh ∈ convG, includingh = ∇f (x). The descent condition
ensures that (19) must hold for sufficiently smallt.

We use a very simple line search:

Algorithm 2 (Line Search).
0. (Initialization) Sets = 0, t = 1. If (19) is violated, go to Step 2.
1. (Doubling phase) Repeatedly do the following: replaces by the value oft and

replacet by min
(
2t, t̄

)
, until t = t̄ or f (x + td) > f (x + sd). In the latter case

replacet by its previous values. In both cases, terminate.
2. (Bisection phase) Repeatedly replacet by t/2, until t satisfies (19).

In this simple line search, either a doubling process (Step 1) or a bisection process
(Step 2) is executed. The doubling phase is initiated if the initial point satisfies (19)
and it continues until an increase inf, compared to its value at the previous point,
is obtained, at which point the line search terminates with the previous point, or the
bound on the step is reached. The bisection phase is initiated if the initial point vio-
lates (19) and it continues until a point is found satisfying (19). In exact arithmetic,
it must terminate since (19) must hold fort sufficiently small. In practice, we place
a limit of 50 on the number of bisection steps, and if this is exceeded, the inner loop
in Algorithm 1 is terminated, with control passing to its Step 2.

Algorithm 1 terminates in Step 1(d) if an iteratex is generated with‖x‖∞ = χ ,
the bound on the feasible region being considered. We also experimented with a
version of the algorithm that adds bounds to the quadratic program solved in Step
1(b), in order to minimizef over the box defined by‖x‖∞ � χ , but we do not discuss
this here as we prefer to keep the algorithm description as simple as possible.

We implemented Algorithm 1 in MATLAB. If we were able to solve the qua-
dratic program in Step 1(b) of Algorithm 1 exactly, no tolerance would be needed



128 J.V. Burke et al. / Linear Algebra and its Applications 351–352 (2002) 117–145

when comparingd to 0. In practice, a tolerance is needed; we use the test‖d‖2 � τ ,
whereτ is a positive parameter. We use MOSEK [22] to solve the quadratic program.
MOSEK implements one of a class of interior-point methods to solve convex pro-
grams that are known to be very efficient both in theory and in practice. It is available
as a MATLAB toolbox. It is more efficient than various other MATLAB-callable
codes that we tried.

Two key questions regarding Algorithm 1 remain open. First, under what con-
ditions can we guarantee that it will terminate with the test ond satisfied (d = 0
in exact arithmetic;‖d‖ � τ in floating point arithmetic)? Secondly, if this test is
satisfied, what can be concluded about approximate optimality? Both these questions
are under study at present, and a partial answer to the second one is given in [9], using
non-smooth analysis. Briefly, the motivation for termination is that if the test ond
is satisfied, 0 lies in the convex hull of the bundle of gradients off evaluated nearx
(exactly or approximately, depending on whether exact or floating point arithmetic is
assumed). Intuitively, this suggests thatx is near a critical point off; for example, in
the case thatf is a univariate function, the test is satisfied when the bundle includes
two derivatives with opposite sign, evaluated at two points near each other but on
either side of a critical point (0, forf (x) = x2 or f (x) = |x|, for example). The
descent property of the line search seeks to ensure that minimizers will be found in
preference to maximizers.

In Section 5, we report numerical results for minimizing the spectral abscissa
α(A(x)) by Algorithm 1.

4. A Newton barrier method

In this section, we briefly describe a Newton barrier method to solve (14), (15).
As in the previous section, we impose an a priori upper bound on the norm of the
solutionx. Since we are using a barrier method, the 2-norm is a convenient choice, so
we constrain‖x‖2 � ψ for some moderately large constantψ . Consider the barrier
functionBµ : R × Rm × Sn → R defined by

Bµ(γ, x, P ) = γ − µ log det(I − P t) − µ log det(P − δI )

−µ log det(2γP − (PA(x) + A(x)TP)) − µ log(ψ2 − xTx).

Recall thatδ is the fixed robustness parameter. The new parameterµ is a positive
barrier parameter, and we interpret log det(M) to have the value−∞ when its sym-
metric matrix argumentM is not positive definite. The three log determinant terms
impose the constraints in (15), and the final log term imposes the bound on‖x‖2. The
use of log barrier functions to impose non-linear inequality constraints goes back to
the 1950s and was used extensively in the 1960s [12]. The approach fell out of favor
in the 1970s but was revived in the 1980s and 1990s [32], following the explosion
of interest in interior point methods for linear and convex programming. The role
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of the log determinant function in the analysis of interior point methods for convex
semidefinite programs is particularly well known, but its use in the implementation
of barrier methods for problems with non-linear semidefinite constraints is also quite
well established; see e.g. [19,26].

As the title of [12] suggests, the standard approach for solving non-linear pro-
grams by barrier methods is to solve a sequence of unconstrained problems, i.e.,
minimize a sequence of barrier functions, ideally with monotonically decreasing val-
ues for the barrier parameterµ. As is also standard, we use Newton’s method to
solve these unconstrained problems. The barrier functionBµ(γ, x, P ) is smooth but
generally non-convex. It must be locally convex at any non-degenerate minimizer,
but the smaller the parameterδ is, the smaller is the region around the solution where
the barrier function is convex. Consequently, it is essential to implement Newton’s
method in a way that recognizes and deals with non-convexity. Indeed, the barrier
functionBµ(γ, x, P ) makes an excellent class of test functions for Newton barrier
codes.

The gradient and Hessian ofBµ(γ, x, P ) are derived in Appendix A. Let us write
v = (γ, xT, svec(P )T)T ∈ R × Rm × Rn(n+1)/2 = Rp, where svec is the standard
isometry fromSn to Rn(n+1)/2 andp = m + 1 + n(n + 1)/2. In order to implement
Newton’s method for minimizingBµ(γ, x, P ), we actually work in the spaceRp.
We denote the associated barrier function in this space byB̂µ(v). The formula for
∇2B̂µ(v) involves symmetrized Kronecker products [1,31]. We omit the details, but
we note that it is important to use symmetrized Kronecker products, not standard
Kronecker products, sinceP ∈ Sn, notMn(R). If Newton’s method is implemented
in R × Rm × Rn2

instead ofR × Rm × Rn(n+1)/2, so that standard Kronecker prod-
ucts are used instead of symmetrized Kronecker products, the resulting Hessian of
the barrier function in this space is necessarily singular. Our MATLAB m-file for
computing∇B̂µ(v) and∇2B̂µ(v) is available at [6].

There are two standard approaches to implementing Newton’s method for mini-
mizing smooth non-convex functions: trust region methods and modifed Cholesky
factorization methods. We chose to take neither approach, but to implement a simpler
algorithm. We start by attempting to compute the Cholesky factorization of the Hes-
sian matrix∇2B̂µ(v). If the factorization succeeds, a standard Newton direction is
passed to a line search. If the factorization breaks down, i.e., a negative or zero pivot
is encountered, we compute the eigenvalues of∇2B̂µ(v) and recompute the Chole-
sky factorization of a shifted Hessian matrix which is positive definite but nearly
singular. This yields an excellent modified Newton search direction, dominated by
the eigenvector corresponding toλmin(∇2B̂µ(v)) (the direction of greatest negative
curvature) unless it is very nearly orthogonal to the gradient. This direction is nor-
malized before being passed to the line search. Computing multiple factorizations
is, in principle, much more expensive than computing one modified Cholesky fac-
torization such as described in [13], but in MATLAB it is much more efficient than
implementing the modified Cholesky algorithm as an m-file, and in any case, in our
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application the cost is trivial, since forming the Hessian matrix is far more expensive
than computing its Cholesky factorization or its eigenvalues.

We now summarize the Newton barrier method. We state it so that it is applicable
to any family of barrier functionŝBµ(v). In our application, given an initial iterate
x, we initializeγ to 1

2λmax(A(x) + A(x)T) + 1 andP to 1
2I (since we are interested

only in δ < 1
2).

Algorithm 3 (Newton Barrier).
0. (Initialization) Choose an initial pointv with B̂µ(v) < ∞, a positive reduction

factor θ < 1, an increase factor̃θ satisfying 1< θ̃ < 1/θ , a very small positive
shift parameterν, a termination toleranceτ , and two positive integersM1 andM2
to terminate the iterations. Initialize the barrier parameterµ and setk = 1.

1. (Inner iteration) Carry out minimizationk, controlled by the barrier parameterµ,
as follows. Initializej = 0, and set̂v to v (i.e., save a copy of the starting point).
(a) Compute the gradient∇B̂µ(v). If ‖∇B̂µ(v)‖ � τ , go to Step 2. Compute the

Hessian matrix∇2B̂µ(v) and attempt to compute its Cholesky factorization
∇2B̂µ(v) = LLT, with L lower triangular. If this breaks down, compute the ei-
genvalues of∇2B̂µ(v) and recompute the Cholesky factorization of the shifted
matrix,

∇2B̂µ(v) +
(
ν‖∇2B̂µ(v)‖ − λmin(∇2B̂µ(v))

)
I = LLT

with L lower triangular.
(b) Define the search direction

d = −L−TL−1∇B̂µ(v). (20)

(c) Use a line search to find a positive steplength satisfying

B̂µ(v + td) < B̂µ(v). (21)

(d) Replacev by v + td. If j < M2, incrementj and return to Step (a).
2. (Update barrier parameter) If the test‖∇B̂µ(v)‖ � τ was satisfied in Step 1(a),

go to Step 2(b).
(a) If k < M1, replaceµ by the larger valuẽθµ, discard the current iteratev and

replace it byv̂, incrementk and return to Step 1. Otherwise terminate.
(b) If k < M1, replaceµ by the smaller valueθµ, incrementk and return to Step

1. Otherwise terminate.

For simplicity, we use the line search of the previous section (Algorithm 2), with-
out the upper bound ont, although it would be more standard to impose a sufficient
decrease condition since the barrier function is smooth. The absence of the sufficient
decrease condition, so essential for convergence analysis, does not seem to have
much practical effect. In fact, limited experiments with a more standard line search
imposing the well-known Wolfe conditions resulted in somewhat worse overall per-
formance.
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Note the parallel inner–outer iteration structure of Algorithms 1 and 3. The outer
iteration of the former reduces the sampling parameterε, while the outer iteration
of the latter reduces the barrier parameterµ. A key difference concerns the behavior
when the maximum number of iterates allowed for the inner iteration is reached.
Algorithm 1 proceeds to reduceε anyway, since the spectral abscissa is monotoni-
cally decreasing throughout the algorithm. There is no corresponding monotonicity
on which Algorithm 3 can rely, so if an inner iteration fails to reduce‖∇B̂µ(v)‖ to
the desired level, the algorithm backtracks, trying a less aggressive choice ofµ. An
alternative strategy would be to check whetherγ , the bound on the robust spectral
abscissa and the first component ofv, is lower than the first component of the inner
iteration starting point̂v.

5. Numerical results

We have experimented with various affine matrix familiesA(x), applying Algo-
rithm 1 (Gradient Bundle) to find local minimizers of the spectral abscissaα(A(x))

and Algorithm 3 (Newton Barrier) to find local minimizers of the robust spectral
abscissaαδ(A(x)). We focus our attention on small values ofn, the matrix dimen-
sion, andm, the number of variables, because, as we shall see, even small problems
are quite challenging. The reason for this is that, for most of our examples, local
minimizers of the spectral abscissa are associated with at least one active non-de-
rogatory multiple eigenvalue (see Section 1). Suppose that the optimal matrix has a
non-derogatory multiple eigenvalue with multiplicityk > 2. Then, as is well known
[21], small perturbations to the matrix with magnitudet result in eigenvalue per-
turbations whose dominant term is(ct)1/k for some complex numberc. For k > 2,
at least one of the perturbed eigenvalues moves right in the complex plane in all
but trivial cases, resulting in a spectral abscissa perturbation of the formrt1/k for
somer > 0. (Whenk = 2, it may be only the imaginary part of the eigenvalues that
changes rapidly under perturbation; see (3).) For example, ifk = 5,c = 1 andt is the
machine precision for the IEEE double format arithmetic used by MATLAB (about
10−16), the spectral abscissa is increased by approximately 10−3. Thus, the optimal
value of the spectral abscissa is extremely sensitive to even very small perturbations.

Before presenting the results, we specify the parameters defining the algorithms.
We setχ andψ , the bounds on‖x‖∞ and‖x‖2 in Gradient Bundle and Newton
Barrier, respectively, to 1000, the toleranceτ used in Step 1(b) of Algorithm 1 (see
discussion following statement of algorithm) and Step 1(a) of Algorithm 3 to 10−6,
and the outer and inner iteration limitsM1 andM2 in both algorithms to 6 and 100,
respectively. For Gradient Bundle, we set the initial value for the sampling radiusε

to 0.1, its reduction factorθ to 0.1, andN, the number of gradients per bundle, to 2m

(twice the number of variables). For Newton Barrier, we set the initial value for the
barrier parameterµ to 0.1, its reduction factorθ to 0.1, its increase factor̃θ to 3, and
the Hessian shift parameterν to 10−14.
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We initialized all runs of Gradient Bundle with random initial vectorsx whose
components were drawn from a normal distribution with mean 0 and variance 1. In
the case of Newton Barrier, since we wished to minimizeαδ(A(x)) for a variety of
δ, we always began withδ = 10−1, initializing x randomly, and then we initialized
runs for smaller values ofδ, ranging from 10−2 to 10−6, with thex iterate found in
the previous minimization. We also tried doing the same with theγ andP iterates,
instead of initializing them as described just before the statement of Algorithm 3,
but this is not a good idea; as is well known, interior point methods should not be
initialized with points too close to the boundary of the feasible region.

We present the examples one at a time, illustrating various points as we pro-
ceed. All figures show eigenvalues as points in the complex plane. When we refer to
multiple eigenvalues below, it may be assumed that they are non-derogatory except
as noted.

Example OneBlock. Our first example is (4), which we repeat here for conve-
nience. Givenn, definem = n − 1, and

A(x) =




−x1 1 0 · · 0
x1 0 1 0 · 0
x2 0 · · · ·
· · · · · 0
· · · · · 1

xn−1 0 · · · 0



.
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Fig. 4. Example OneBlock. Eigenvalues aftereach outer iteration of Gradient Bundle method to minimize
α(A(x)).
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This example is constructed so that the global minimizer isx̄ = 0, with A(x̄) hav-
ing an active multiple eigenvalue 0 with multiplicityn [8]. We usedn = 5 for our
experiments. Fig. 4 shows the results of a typical run of Gradient Bundle on this
problem, displaying the eigenvalues ofA(x) for x generated at the end ofeach
of the inner iterations of Gradient Bundle, i.e., for the sampling radiusε = 10−1

throughε = 10−6, respectively. Each subplot also displays the final value of the
spectral abscissaα that was found. Note the steady reduction in the value ofα

obtained asε is reduced. Note also the reduction in the size of theimaginary parts
of the eigenvalues, showing that the eigenvalues are moving, as the minimization
proceeds, towards the limiting multiple zero eigenvalue. The results for Gradient
Bundle did not vary much with different runs, although every run starts from a
different initial point and generates different bundles of random gradients. In rare
cases a run terminated with iterates on the boundary of the feasible region, i.e., with
‖x‖∞ = 1000. This was more common for largern, and indicates the existence of
recession directions forα, so that when constrained by‖x‖∞ � 1000, there may be
one or more local minimizers ofα on the boundary, although we know there are no
unconstrained local minimizers besides 0 and that 0 is a global minimizer. In order to
find constrained minimizers, the algorithm would have to be modified, as mentioned
earlier.

Fig. 5 shows results for six runs of Newton Barrier, for values of the robustness
parameterδ ranging from 10−1 to 10−6, respectively. Each one of these runs requires
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Fig. 5. Example OneBlock. Eigenvalues afterall outer iterations of Newton Barrier method to minimize
αδ(A(x)), for various choices ofδ.
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an outer iteration to vary the barrier parameterµ, and each of these requires an
inner iteration to minimize the barrier function. The amount of work required to
generate Fig. 5 is clearly at least an order of magnitude more than the work required
to generate Fig. 4; actually, it is much more than this, because the time required for
one Newton step is substantially more than the time required for one bundle step,
as more variables are involved. Despite this huge increase in computational work,
the information displayed by Fig. 5 is rather unimpressive compared with that in
Fig. 4. In fact, all subplots of Fig. 5 show eigenvalues that are strikingly similar
to the first plot in Fig. 4, which is trivial to compute by comparison. The reason
that the results for the smaller values ofδ do not show better convergence to the
multiple zero eigenvalue is apparently that the barrier functions are so illconditioned
that the Newton method is unable to minimize them to the specified accuracy. The
values ofγ shown are the best of the bounds on the robust spectral abscissa com-
puted by Newton Barrier, not necessarily the final bound, as the minimization of
the barrier function for the final barrier parameterµ may fail. Though the results
shown in Fig. 5 are typical, from some starting points the algorithm found minimiz-
ers near the boundary of the feasible region (see the discussion above for Gradient
Bundle).

Example TwoBlock. Givenn1 andn2, definem = n1 + n2 − 1, n = n1 + n2, and

A(x) =




−x1 1 0 · · 0 xn1 xn1+1 · · · xn1+n2−1

x1 0 1 0 · 0 0 0 · · · 0

x2 0 · · · · · · · · · ·
· · · · · 0 · · · · · ·
· · · · · 1 0 · · · · 0

xn1−1 0 · · · 0 0 · · · · 0

xn1 0 · · · 0 −1 0 · · · 0

xn1+1 0 · · · 0 0 −1 · · · 0

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · 0

xn1+n2−1 0 · · · 0 0 0 · · 0 −1




.

This example is constructed so that the global minimizer isx = 0, withA(0) having
an active non-derogatory multiple eigenvalue 0, with multiplicityn1, and an inactive
semisimple eigenvalue−1, with multiplicity n2. Example OneBlock is the special
casen2 = 0. We usedn1 = 5, n2 = 5 for our experiments. The results are very sim-
ilar to the results for Example OneBlock, except for the presence of the additional
eigenvalue−1, so we do not display them.
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Example SimpleEigs. Given an even integern, letm = (n/2) − 1, with

A(x) =




x1 1 0 · · · · · · 0
−1 x1 0 0 · · · · · ·
0 0 x2 2 · · · · · ·
· 0 −2 x2 · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · xm m 0 ·
· · · · · · −m xm 0 0
· · · · · · 0 0 y m + 1
0 · · · · · · 0 −m − 1 y




,

wherey = −∑m
k=1 xk. This example is constructed so that the global minimizer

is x̄ = 0, with A(x̄) havingm + 1 simple complex conjugate pairs of eigenvalues,
±ki, k = 1, . . . , m, all of them active, and no real eigenvalues. We usedn = 10.
Because all the active eigenvalues are simple, this problem is very easily solved to
high accuracy. Fig. 6 shows the eigenvalues computed in just one inner iteration of
Gradient Bundle with sampling radiusε = 0.1 and one run of Newton Barrier (six
inner iterations) withδ = 0.1. Even at these coarse levels of accuracy, the results
accurately identify the optimal eigenvalues.
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Fig. 6. Example SimpleEigs. Gradient Bundle and Newton Barrier move the eigenvalues close to the
imaginary axis even withε = 0.1 andδ = 0.1, respectively.
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Example PolShc. This consists of three specific small examples from [25].
(a)n = 3,m = 2, with

A(x) =

 −x1 1 0

13+ 5x1 − x2 0 1
−x2 0 0


 .

(b) n = 5,m = 3, with

A(x) =




−3 1 0 0 0
−1 0 1 0 0

3 − x2 0 0 1 0
2 − x1 0 0 0 1
−x3 0 0 0 0


 .

(c) n = 3,m = 3, with

A(x) =

 2 2 0

−1 0 0
−1 0 2


+ x1


−0.4582 0.4027 0.9691

0.737 −0.4511 −0.3452
−0.7406 0.816 0.7331




+ x2


 −0.589 0.5471 −0.6725

0.1761 0.5744 0.4972
−0.7262 −0.4928 −0.8219




+ x3


−0.9571 −0.3868 −0.1505

0.4578 −0.656 0.3161
−0.1786 0.4769 0.5364


 .

Apparently Examples PolShc(a) and PolShc(b) have only one local minimizer of
α(A(x)). In the case of Example PolShc(a), many runs of Gradient Bundle from dif-
ferent random starting points led to the same minimizer, approximatelyx̄ = [17.73,
206.4]T, for whichα(A(x̄)) = −5.909, with an active triple eigenvalue (and no in-
active eigenvalues). We refer to this minimizer as stable, since its spectral abscissa
is negative. Many runs also led to the boundary, indicating the probable presence of
local constrained minimizers with higher objective values.

In the case of Example PolShc(b), all runs of Gradient Bundle led to the same
stable minimizer, approximatelȳx = [2.008, 3.135, 0.0002]T, for whichα(A(x̄)) =
−0.0900, with an active quadruple eigenvalue (and one inactive simple eigenvalue).
Figs. 7 and 8 show the results for Example PolShc(b) for Gradient Bundle (at the end
of each inner iteration) and Newton Barrier (for various choices of the robustness
parameterδ), respectively, as was done in Figs. 4 and 5 for Example OneBlock. As
in that example, ill conditioning of the barrier functions prevented Newton Barrier
from obtaining accurate robust spectral abscissa boundsγ for the two smallest values
of δ.

In Example PolShc(c), the spectral abscissa is apparently unbounded below; al-
most all runs of Gradient Bundle generated stable iteratesx with ‖x‖∞ = 1000 and
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Fig. 7. Example PolShc(b). Eigenvalues aftereach outer iteration of Gradient Bundle method to minimize
α(A(x)).
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Fig. 8. Example PolShc(b). Eigenvalues afterall outer iterations of Newton Barrier method to minimize
αδ(A(x)), for various choices ofδ.
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every run of Newton Barrier generated stable iteratesx with ‖x‖2 nearly equal to
1000. Some runs of Gradient Bundle converged to an unstable local minimizer,x̄ =
[−1.45, 0.42, 1.75]T, for whichα(A(x̄)) = 0.672, with an active triple eigenvalue.

In the results reported in [25], no attempt was made to optimize stability. The
technique discussed there generates marginally stable matrices, e.g., for Example
PolShc(b), withα(A(x)) = −0.01.

Example ABKC0. Given ann × n matrix Ā, ann × r matrix B̄ and ans × n ma-
trix C̄, letm = rs − 1 and define the affine familyA(x) by Ā + B̄ mat(x) C̄, where
mat is the natural isometry fromRm to the space ofr by s matrices with lower
right entry fixed to zero. We fix one entry to zero because, without this restriction,
we find that randomly generated matricesĀ, B̄ andC̄ lead invariably to problems
where the first step of Gradient Bundle generates an iteratex on the boundary of
the feasible region, i.e., with‖x‖∞ = 1000. Though the restriction is artificial, it
serves the purpose of generating some problems with interior local minimizers and
therefore allowing us to keep the discussion of Gradient Bundle as simple as possible.
We setn = 6, r = 3 ands = 2, and generated the matricesĀ, B̄ andC̄ randomly;
the matrix data are available at [6].

We ran Gradient Bundle from 100 different starting points and repeatedly found
approximations to two distinct interior local minimizers ofα(A(x)). Fig. 9 shows the
eigenvalues (after all six inner iterations of Gradient Bundle) for the best approxi-
mations found for each of these two minimizers, as well as the number of times each
was found. Local Minimizer 1 has three active simple complex conjugate pairs of
eigenvalues. In contrast, Local Minimizer 2 has an active double real eigenvalue and
two active simple conjugate pairs. Almost all of the 39 runs that did not converge
to either minimizer generated iterates on or near the boundary. The two approximate
minimizers mat(x̄) are available at [6].
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Fig. 9. Example ABKC0. Eigenvalues afterall outer iterations of Gradient Bundle method to minimize
α(A(x)). Runs from 100 different starting points found two interior local minimizers.
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For this problem, every run of Newton Barrier generated iteratesx near its bound-
ary, i.e., with‖x‖2 nearly equal to 1000; we do not show these results.

Example Random. Given n andm, we randomly generated the matricesAk, k =
0, . . . , m. The randomly generated data may be found in [6].

(a) The first of our two random examples hasm = 5 andn = 8; the randomly
generated matrices are dense. We ran Gradient Bundle from 100 different starting
points, and found 12 distinct approximate minimizers. Fig. 10 shows the eigen-
values for the best approximation found for each of these, with subplots ordered
by spectral abscissa value and indicating how many times each one was found.
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Fig. 10. Example Random(a). Eigenvalues afterall outer iterations of Gradient Bundle method to mini-
mizeα(A(x)). Runs from 100 different starting points found 12 local minimizers.
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One minimizer, Local Minimizer 5, was found much more frequently than others.
Comparison of the data and examination of the intuitive conditions for optimality
discussed at the end of Section 3 gave us some confidence that each subplot in Fig. 10
indeed corresponds to a different local minimizer. It is interesting to compare the
various patterns of active eigenvalue multiplicities. Seven runs of Gradient Bundle
generated an iterate on the boundary and one run failed to converge to an approxi-
mate minimizer; these are not shown. The 12 approximate minimizers are available
in [6].

In contrast, all runs of Newton Barrier from many different starting points led
to the same minimizer (actually, the same set of minimizers for the variousδ);
see Fig. 11. Comparison of the iterates indicates that, as the robustness parameter
δ decreases, the Newton Barrier minimizer converges either to Gradient Bundle’s
Local Minimizer 5, with an active quadruple real eigenvalue and an active simple
conjugate pair, or (somewhat more likely) to its Local Minimizer 6, with an active
double real eigenvalue and an active double conjugate pair. The inaccuracy inherent
in the computations prevents us from being certain which is the case. Indeed, it is
possible, though doubtful, that Local Minimizers 5 and 6 are actually both approxi-
mations to the same exact local minimizer ofα(A(x)). In any case, both approximate
minimizers are unstable, in the sense that the spectral abscissa is positive; Newton
Barrier was unable to find a stable matrix. However, Gradient Bundle found two
stable Local minimizers (1 and 2).
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Fig. 11. Example Random(a). Eigenvalues afterall outer iterations of Newton Barrier method to mini-
mizeαδ(A(x)), for various choices ofδ. Runs from many different starting points found the same local
minimizer.
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Fig. 12. Example Random(b). Eigenvalues afterall outer iterations of Gradient Bundle method to mini-
mizeα(A(x)). Runs from 20 different starting points apparently found 20 local minimizers.

(b) The second of our two random examples hasn = m = 25; the randomly gen-
erated matrices are sparse. Fig. 12 shows the eigenvalues generated by 20 different
runs of Gradient Bundle. The subplots are ordered by spectral abscissa; the first
four minimizers are stable. We cannot be sure whether the 20 approximate mini-
mizers found are each approximations to 20 distinct associated local minimizers, or
whether some of them are poor approximations to the same minimizer, but given
the multitude of solutions for the much smaller example Random(a), the former
seems likely. This example is much too large for Newton Barrier to run in a rea-
sonable amount of time, but Gradient Bundle had no difficulties with it. However,
local minimizers are hard to find with any accuracy because of the high eigenvalue
multiplicities.
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6. Conclusions

We have presented two methods for optimizing matrix stability. Gradient Bundle
is a novel algorithm, inspired by bundle methods for convex optimization, but appli-
cable to non-Lipschitz problems. We believe it offers great versatility and reliability
at a very reasonable cost. Applied to spectral abscissa minimization, it demonstrates
beyond doubt that spectral abscissa minimizers are typically associated with mul-
tiple eigenvalues, and that local minimizers can nonetheless be approximated quite
accurately, thus locally optimizing asymptotic stability of the associated dynamical
systems.

Newton Barrier is a well-known-approach to smooth, non-convex optimization
with inequality constraints, including non-linear semidefinite constraints. We used
Newton Barrier to carry out robust spectral abscissa minimization, demonstrating
that the minimizers indeed, as expected, converge to spectral abscissa minimizers as
the robustness parameterδ is decreased. The motivation is that large transient peaks
in the associated dynamical system solution trajectories can be avoided by choosing
δ not too small. Although an interesting concept, the approach is too expensive to be
practical for any but the smallest problems. Furthermore, ifδ is chosen too large, it
may be impossible to achieve asymptotic stability, while ifδ is chosen too small, ill
conditioning may prevent convergence.

Although optimizing stability is an attractive approach to stabilization, inherent
difficulties remain. One is the longstanding question of how best to balance transient
system behavior with asymptotic stability. Even if an ideal compromise minimization
objective were known, another stumbling block is that there may be so many local
minimizers that finding any that are stable remains very difficult.

Appendix A. The barrier gradient and Hessian

In addition to our functionA(·), we define functions of the variable
γx
P


 ∈ R × Rm × Sn

(which we write for convenience(γ, x, P )) by

� = (I − P)−1,

� = (P − δI )−1,

Q = (2γP − PA − ATP)−1,

β = (ψ2 − xTx)−1.

So the barrier function is

Bµ = γ − µ(log det�−1 + log det�−1 + log detQ−1 + log β−1).
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We also define functions, fork = 1, 2, . . . , m,

Pk = PAk + AT
k P,

Qk = AkQ + QAT
k .

A straightforward application of the chain rule and the fact that the functionX ∈
Sn �→ log detX has gradientX−1 show that the gradient of the barrier function is
given by

∇Bµ =

DγBµ

∇xBµ

∇PBµ


 =


 1 − 2µtr(PQ)

µ(tr(PkQ))m1 + 2µβx
µ(� − � − 2γQ + AQ + QAT)


 ,

where(·k)m1 denotes a vector of lengthm indexed byk.
Consider a base point(γ̄ , x̄, P̄ ): we indicate the value of any of the above func-

tions at this point by a bar. In particular, the gradient of the barrier at this point is
just 

 1 − 2µtr(P̄ Q̄)

µ(tr(P̄kQ̄))m1 + 2µβ̄x̄
µ(�̄ − �̄ − 2γ̄ Q̄ + ĀQ̄ + Q̄ĀT)


 .

Now consider a nearby point(γ̄ , x̄, P̄ ) + (dγ, dx, dP). Expanding up to first-order
shows that at this point the various functions above have values

� = �̄ + �̄ dP �̄ + o(·),
� = �̄ − �̄ dP �̄ + o(·),
Q= Q̄ − D + o(·),
β = β̄ + 2β̄2x̄T dx + o(·),

where o(·) denotes terms of small order with respect to the size of the perturbation
(dγ, dx, dP), and

D = Q̄

(
2γ̄ dP + 2 dγ P̄ − dP Ā − ĀTdP −

∑
k

P̄k dxk

)
Q̄.

The Hessian of the barrier functionBµ at the point(γ̄ , x̄, P̄ ) is the self-adjoint linear
operator

H̄ : R × Rm × Sn → R × Rm × Sn

with the property that

H̄


dγ

dx
dP


 = ∇Bµ




γ̄x̄
P̄


+


dγ

dx
dP




− ∇Bµ


γ̄x̄
P̄


+ o(·).
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It is then a calculation to check that the Hessian is defined by

H̄


dγ

dx
dP




= µ


 2tr(P̄D − Q̄dP)

(tr(−P̄kD + Q̄k dP))m1 + 2β̄ dx + 4β̄3x̄x̄T dx
�̄ dP �̄ + 7̄dP7̄− 2Q̄dγ + 2γ̄D +∑

k Q̄k dxk − ĀD − DĀT


 .

A Matlab implementation is available in [6].
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